
Tight Bounds for Online Matching in
Bounded-Degree Graphs with Vertex Capacities
Susanne Albers !

Department of Computer Science, Technische Universität München, Germany

Sebastian Schubert1 !

Department of Computer Science, Technische Universität München, Germany

Abstract
We study the b-matching problem in bipartite graphs G = (S, R, E). Each vertex s ∈ S is a server
with individual capacity bs. The vertices r ∈ R are requests that arrive online and must be assigned
instantly to an eligible server. The goal is to maximize the size of the constructed matching. We
assume that G is a (k, d)-graph [19], where k specifies a lower bound on the degree of each server
and d is an upper bound on the degree of each request. This setting models matching problems in
timely applications.

We present tight upper and lower bounds on the performance of deterministic online algorithms.
In particular, we develop a new online algorithm via a primal-dual analysis. The optimal competitive
ratio tends to 1, for arbitrary k ≥ d, as the server capacities increase. Hence, nearly optimal solutions
can be computed online. Our results also hold for the vertex-weighted problem extension, and thus
for AdWords and auction problems in which each bidder issues individual, equally valued bids.

Our bounds improve the previous best competitive ratios. The asymptotic competitiveness of 1
is a significant improvement over the previous factor of 1 − 1/ek/d, for the interesting range where
k/d ≥ 1 is small. Recall that 1 − 1/e ≈ 0.63. Matching problems that admit a competitive ratio
arbitrarily close to 1 are rare. Prior results rely on randomization or probabilistic input models.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases online algorithms, deterministic algorithms, primal-dual analysis, b-matching,
bounded-degree graph, variable vertex capacities, unweighted matching, vertex-weighted matching

Digital Object Identifier 10.4230/LIPIcs.ESA.2022.4

Related Version Full Version: https://arXiv.org/abs/2206.15336

1 Introduction

Maximum matching is a fundamental problem in computer science. In a seminal paper Karp,
Vazirani and Vazirani [15] introduced online matching in bipartite graphs G = (S ∪R, E).
The vertices of S are known in advance, while the vertices of R (requests) arrive one by
one and must be matched immediately to an eligible partner. The b-matching problem
is a generalization where the vertices of S (servers) have capacities and may be matched
multiple times, see e.g. [14]. Online bipartite matching and capacitated extensions have
received tremendous research interest over the past 30 years. In this paper we study the
b-matching problem in bounded-degree graphs, defined in [19]. We assume that there is a
lower bound on the degree of each server s ∈ S, meaning that there is a certain demand for
each server. Furthermore we assume that there is an upper bound on the degree of each
r ∈ R, i.e. each request can only be assigned to a subset of the servers. This setting models
matching problems in many timely applications, as we will describe below.

1 Corresponding author

© Susanne Albers and Sebastian Schubert;
licensed under Creative Commons License CC-BY 4.0

30th Annual European Symposium on Algorithms (ESA 2022).
Editors: Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman; Article No. 4; pp. 4:1–4:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:albers@in.tum.de
mailto:sebastian.schubert@tum.de
https://orcid.org/0000-0002-3883-2297
https://doi.org/10.4230/LIPIcs.ESA.2022.4
https://arXiv.org/abs/2206.15336
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Tight Bounds for Online b-Matching in Bounded-Degree Graphs

More formally, we investigate the following problem. Again, let G = (S ∪ R, E) be a
bipartite graph, where the vertices of S are servers and the vertices of R are requests. The
set S is known in advance. Each server s ∈ S has an individual capacity bs ∈ N, indicating
that the server can be matched with up to bs requests. The vertices of R arrive online, one
by one. Whenever a new request r ∈ R arrives, its incident edges are revealed. The request
has to be matched immediately and irrevocably to an eligible server, provided that there
is one. The goal is to maximize the number of matching edges. We will also examine the
vertex-weighted problem extension, where additionally each server s ∈ S has a weight ws

and the value of every matching edge incident to s is multiplied by ws. Now the goal is to
maximize the total weight of the constructed matching.

We assume that G is a (k, d)-graph, defined by Naor and Wajc [19], where k and d are
positive integers. Each server s ∈ S has a degree d(s) ≥ k · bs. Each request r ∈ R has a
degree d(r) ≤ d. Naor and Wajc [19] defined these graphs for the general AdWords problem.
Note that the inequality d(s) ≥ k · bs expresses a degree bound in terms of the server capacity.
This is essential. As we shall see, the performance of algorithms depends on the degrees
d(s) as a function of bs. A degree bound independent of bs is vacuous for larger bs. Also, a
company operating a high-capacity server expects the server to be attractive and a potential
host for a large number of requests. Otherwise it might be beneficial to reduce the server
capacity.

The best results will be obtained if k ≥ d. In this case the average demand for each server
slot is high, compared to the number of servers a request can be assigned to. This setting
is also very relevant in applications. We will assume that d ≥ 2. If d = 1, any Greedy
algorithm constructs an optimal matching. We remark that (k, d)-graphs are loosely related
to d-regular graphs in which each vertex has a degree of exactly d and a capacity of 1. This
graph class has been studied extensively in computer science and discrete mathematics, see
e.g. [5, 6, 7, 10, 20].

The b-matching problem in (k, d)-graphs models many problems in modern applications,
cf. [4, 12, 19]. The following description also addresses the degree constraints.

Video content delivery, web hosting, remote data storage: Consider a collection of servers
in a video content delivery network, a web hosting provider, or a remote data storage service.
A sequence of clients arrives, each with a request that videos be streamed, web pages be
hosted, or data be stored. Based on the servers’ geographic distribution, average performance,
technology used or pricing policies, each request can only be hosted at a small subset of the
servers or server locations. Each server has a large capacity and is well suited to service a
huge number of requests in the arriving client sequence.

Job scheduling: Consider a collection of compute servers, each with certain capabilities,
located for instance in a data center. Over a time horizon jobs arrive, requesting service.
Based on computing demands, expected response time, hardware and software requirements,
each job can only be executed on a subset of the servers. During the given time horizon,
each server can process a large number of jobs and is a suitable platform to execute very
many of the incoming jobs.

AdWords and ad auctions: Consider a search engine company or digital advertising
platform. There is a set of advertisers, each with a daily budget, who wish to link their ads
to users of the search engine/digital platform and issue respective bids. The users arrive
online and must be allocated instantly to the advertisers. Based on his search keywords,
browsing history and possible profile, each user is interesting to a small set of advertisers.
Each advertiser has a decent budget and targets a large population of the users. Obviously,
in this application the advertisers correspond to the servers and the users are the incoming

S. Albers and S. Schubert 4:3

requests. The b-matching problem models the basic setting where the bids of all advertisers
are either 0 or 1. The vertex-weighted extension captures the scenario where all the bids of
an advertiser s ∈ S have a value of 0 or ws. These base cases are also studied in recent work
by Vazirani [21].

We analyze the performance of online algorithms using competitive analysis. Given
an input graph G, let Alg(G) denote the size (or weight) of the matching constructed by
an online algorithm Alg. Let Opt(G) be the corresponding value of an optimal offline
algorithm Opt. Algorithm Alg is c-competitive if Alg(G) ≥ c ·Opt(G) holds, for all G. In
our analyses we will focus on bipartite (k, d)-graphs G.

Related work. As mentioned above, Karp et al. [15] introduced online matching in bipartite
graphs, in which every vertex has a capacity of 1. The best competitive ratio of deterministic
online algorithms is equal to 1/2. Karp et al. proposed a randomized Ranking algorithm
that achieves an optimal competitive ratio of 1 − 1/e ≈ 0.63. Aggarwal et al. [1] defined
online vertex-weighted bipartite matching and devised a (1− 1/e)-competitive algorithm.

Kalyanasundaram and Pruhs [14] investigated the b-matching problem if all servers have
equal capacity, i.e. bs = b for all s ∈ S. They presented a deterministic Balance algorithm
that matches a new request to an adjacent server whose current load is smallest. Balance
achieves an optimal competitive ratio of 1− 1/(1 + 1/b)b. As b grows, the latter expression
tends from below to 1− 1/e. Grove et al. [12] and Chaudhuri et al. [4] studied b-matchings
with a different objective. At any time an algorithm must maintain a matching between the
requests that have arrived so far and the servers. The goal is to minimize the total number
of switches, reassigning requests to different servers.

The AdWords problem was formally defined by Mehta et al. [18]. They presented a
deterministic online algorithm that achieves a competitive ratio of 1−1/e, under the small-bids
assumption where the bids are small compared to the advertisers’ budgets. No randomized
algorithm can obtain a better competitive factor. Buchbinder et al. [3] examined a setting
where the degree of each incoming user is upper bounded by d and gave an algorithm with
a competitive ratio of nearly 1 − (1 − 1/d)d. Azar et al. [2] showed that this ratio is best
possible, also for randomized algorithms. The expression 1− (1− 1/d)d is always greater
than 1− 1/e but approaches the latter value as d increases.

The class of (k, d)-graphs was defined by Naor and Wajc [19], who studied online bipartite
matching and the AdWords problem. They proposed an algorithm HighDegree that
matches a new request to an available neighbor of highest current degree. Naor and Wajc
proved that HighDegree and generalizations attain a competitive factor of 1− (1− 1/d)k.
This ratio holds for online bipartite matching and the vertex-weighted extension, where all
vertices have a capacity of 1. Furthermore, it holds for AdWords with equal bids per bidder.
For AdWords with arbitrary bids, the ratio is (1−Rmax)(1− (1− 1/d)k), where Rmax is the
maximum ratio between the bid of any bidder and its total budget. Naor and Wajc showed
that no deterministic online algorithm for bipartite matching can achieve a competitive ratio
greater than 1 − (1 − 1/d)k if k ≥ d. For the general AdWords problem, they proved an
upper bound of (1−Rmax)(1− (1− 1/d)k/Rmax) if k ≥ d. For increasing k/d, the expression
1− (1− 1/d)k tends to 1. For k ≈ d increasing, it approaches again 1− 1/e.

Cohen and Wajc [5] studied online bipartite matching in d-regular graphs and developed
a randomized algorithm with a competitive ratio of 1−O(

√
log d/d), which tends to 1 as d

increases.
Online bipartite matching and the AdWords problem have also been examined in stochastic

input models. A random permutation of the vertices of R may arrive. Alternatively, the
vertices of R are drawn i.i.d. from a known or unknown distribution. For online bipartite

ESA 2022

4:4 Tight Bounds for Online b-Matching in Bounded-Degree Graphs

matching, the best online algorithms currently known achieve competitive ratios of 0.696
and 0.706 [13, 16]. The best possible performance ratios are upper bounded by 0.823 [17],
and hence bounded away from 1. For AdWords, (1− ε)-competitive algorithms are known,
based on the small-bids assumption [8, 9].

Our contributions. We present a comprehensive study of the b-matching problem in (k, d)-
graphs. Specifically, we develop tight lower and upper bounds on the performance of
deterministic online algorithms. The optimal competitive ratio tends to 1, for any choice of
k and d with k ≥ d, as the server capacities increase.

First, in Section 2 we investigate the setting that all servers have the same capacity, i.e.
bs = b for all s ∈ S. We develop an optimal online algorithm WeightedAssignment via a
primal-dual analysis. The resulting strategy is simple. Associated with each server of current
load l and current degree δ is a value V (l, δ). An incoming request is assigned to an eligible
server for which the increment V (l, δ + 1) − V (l, δ) is maximized. The values V (l, δ) can
be calculated in a preprocessing step and retrieved by table lookup when the requests of R

are served. The best values V (l, δ), for variable l and δ, are determined using recurrence
relations. Solving them is non-trivial because two parameters are involved.

We prove that WeightedAssignment achieves a competitive ratio of c∗, where

c∗ = 1− 1
b

(
b∑

i=1
i

(
kb

b− i

)
1

(d− 1)b−i

)(
1− 1

d

)kb

.

This is a slightly complex expression, but it is exact in all terms. In Section 3 we prove that
no deterministic online algorithm can attain a competitive ratio greater than c∗, for any
choices of k and d that fulfill k ≥ d.

In Section 4 we consider two generalizations. We assume that each server s ∈ S has an
individual capacity bs and adapt WeightedAssignment. As for the competitive factor, in
c∗ the capacity b has to be replaced by bmin := mins∈S bs. The resulting competitiveness is
again optimal for k ≥ d. Furthermore, we study the vertex-weighted problem extension and
again adjust our algorithm. The competitive ratios are identical to those in the unweighted
setting, for uniform and variable server capacities. Our results also hold for the AdWords
problem where bidders issue individual, equally valued bids.

In Section 5 we analyze the optimal competitive ratio c∗. We prove that it tends to 1,
for any k ≥ d, as b increases. Furthermore, we show that it is strictly increasing in b. The
analyses are involved and make non-trivial use of Gauss hypergeometric functions.

A strength of our results is that the optimal competitiveness tends to 1, for increasing
server capacities. Hence almost optimal solutions can be computed online. For the AdWords
problem, high server capacities correspond to the small-bids assumption. Remarkably, in
this setting near-optimal ad allocations can be computed based on structural properties of
the input graph if bidders issue individual, equally valued bids. Recall that, without degree
bounds, the competitive ratio for the b-matching problem tends from below to 1− 1/e ≈ 0.63.
The competitiveness of c∗ improves upon the previous best ratio of 1− (1− 1/d)k [19]. The
ratio c∗ is equal to 1− (1− 1/d)k for b = 1 and strictly increasing in b, for any k ≥ d. Our
asymptotic competitiveness of 1 is a significant improvement over 1− (1−1/d)k ≈ 1−1/ek/d,
for the interesting range of small k/d ≥ 1. For k < d, 1− (1− 1/d)k and c∗ can become small.
The algorithms are still 1

2 -competitive since they match requests whenever possible. We are
aware of only two other online matching problems that admit competitive ratios arbitrarily
close to 1. As mentioned above, a randomized algorithm is known for online matching in
d-regular unit-capacity graphs [5]. For the general AdWords problem, respective algorithms
exist if the input R is generated according to probability distributions [8, 9].

S. Albers and S. Schubert 4:5

2 An optimal online algorithm

In this section we study the setting that all servers have a uniform capacity of b. We develop
our algorithm WeightedAssignment. While serving requests, the algorithm maintains a
value V (ls, δs), for each server s with load ls and current degree δs. At any point in time
during the execution of the online algorithm, the load of a server s denotes the amount of
matched edges incident to s, while the current degree indicates the total number of edges
incident to s. In order to construct the function V and for the purpose of analysis, we
formulate WeightedAssignment as a primal-dual algorithm. The primal and dual linear
programs of the b-matching problem are given below. The primal variables m(s, r) indicate
if an edge {s, r} ∈ E belongs to the matching. We have dual variables x(s) and y(r).

In the pseudocode of WeightedAssignment, also stated below, Line 7 is the actual
matching step. A new request r is assigned to a neighboring server s for which the difference
V (ls, δs + 1) − V (ls, δs) is maximized. N(r) is the set of adjacent servers with remaining
capacity. All other instructions essentially update primal and dual variables so that a primal
and a dual solution are constructed in parallel.

Observe that no dual variable y(r) of any request r is ever increased by WeightedAs-
signment. The dual variable x(s) of a server s can be increased in Lines 9 and 11. It is
increased if s is matched to a neighboring request r and, importantly, x(s) is also increased
if this r is assigned to a different server.

P: max
∑

{s,r}∈E

m(s, r) D: min
∑
s∈S

b · x(s) +
∑
r∈R

y(r)

s.t.
∑

r:{s,r}∈E

m(s, r) ≤ b, (∀s ∈ S) s.t. x(s) + y(r) ≥ 1, (∀{s, r} ∈ E)

∑
s:{s,r}∈E

m(s, r) ≤ 1, (∀r ∈ R) x(s), y(r) ≥ 0, (∀s ∈ S,∀r ∈ R)

m(s, r) ≥ 0, (∀{s, r} ∈ E)

Algorithm 1 WeightedAssignment.

1 Initialize x(s) = 0, y(r) = 0 and m(s, r) = 0, ∀s ∈ S and ∀r ∈ R;
2 while a new request r ∈ R arrives do
3 Let N(r) denote the set of neighbors s of r with remaining capacity;
4 if N(r) = ∅ then
5 Do not match r;
6 else
7 Match r to arg max {V (ls, δs + 1)− V (ls, δs) : s ∈ N(r)};
8 Update m(s, r)← 1;
9 Set x(s)← V (ls + 1, δs + 1);

10 forall s′ ̸= s ∈ N(r) do
11 Set x(s′)← V (ls′ , δs′ + 1);
12 end
13 end
14 end

In the analysis, we will see how the function V has to be defined so that Weighted-
Assignment achieves the desired competitive ratio c∗. Note that we always construct a
feasible dual solution if x(s) = 1 holds, for all servers s ∈ S, by the end of the algorithm.

ESA 2022

4:6 Tight Bounds for Online b-Matching in Bounded-Degree Graphs

Here lies a crucial idea of the algorithm and the construction of V . We demand V (b, δ) = 1,
for all δ ≥ b, and V (l, δ) = 1 if δ ≥ kb, for all 0 ≤ l ≤ b. Also, V (0, 0) = 0. These constraints
have two important implications.
1. The dual variable x(s) of a server s with load ls and degree δs is always equal to V (ls, δs):

Consider an incoming request r that is a neighbor of s. While ls < b, it holds N(r) ̸= ∅
and r is matched to some server. Lines 9 and 11 correctly update x(s) with respect to
the new load and degree values. If ls = b, then inductively by the first constraint x(s) = 1
and no update is necessary.

2. The constructed dual solution is feasible: Implication 1 and the second constraint ensure
that x(s) = 1 holds for all s ∈ S by the end of the algorithm, since every server s has a
degree of at least kb.

Let P and D denote the value of the primal and dual solution constructed by the algorithm,
respectively. We denote a change in the value of the primal and dual solution by ∆P and ∆D,
respectively. It holds that the size of the matching constructed by WeightedAssignment is
exactly |Alg| = P . Moreover, by weak duality, we get that the size of the optimum matching
is |Opt| ≤ D. Hence, if we were able to bound ∆D ≤ ∆P/c at every step, we would obtain
a competitive ratio of c.

|Alg|
|Opt| ≥

P

D
≥ P

1
c · P

= c .

Recall that the value of the dual solution is only increased if a request r is matched to a
server s. Then, the value of the primal solution is increased by 1, while the value of the dual
solution is increased by

∆D = b ·
(

V (ls + 1, δs + 1)− V (ls, δs) +
∑

s′∈N(r)\{s}

V (ls′ , δs′ + 1)− V (ls′ , δs′)
)

.

The algorithm chooses s such that V (ls, δs + 1)− V (ls, δs) ≥ V (ls′ , δs′ + 1)− V (ls′ , δs′) holds
for all s′ ∈ N(r). Furthermore, |N(r)| ≤ d implies that we can bound this increase by

∆D ≤ b ·
(

V (ls + 1, δs + 1)− V (ls, δs) + (d− 1) ·
(
V (ls, δs + 1)− V (ls, δs)

))
.

This means, that we need to determine the biggest possible constant c∗ ∈ (0, 1] such that

b ·
(

V (l + 1, δ + 1)− V (l, δ) + (d− 1) ·
(
V (l, δ + 1)− V (l, δ)

))
≤ 1

c∗ (1)

holds for all 0 ≤ l < b and all δ ≥ l, while still satisfying our constraints that V (b, ·) = 1 and
V (·, δ′) = 1 for δ′ ≥ kb. For this, we define

p(l, δ) := V (l + 1, δ + 1)− V (l, δ) and q(l, δ) := V (l, δ + 1)− V (l, δ) .

In other words, the dual variable x(s) of a server s with load l and current degree δ is increased
by p(l, δ), when a request is assigned to s, and increased by q(l, δ), when a neighboring
request is assigned to a different server. Our constraints immediately give p(l, δ) = q(l, δ) = 0,
if l = b or δ ≥ kb. Hence, we will focus on the case 0 ≤ l < b and l ≤ δ < kb in the following.
Rewriting and rearranging inequality (1) in terms of p and q yields

q(l, δ) ≤ 1
d− 1

(
1

b · c
− p(l, δ)

)
.

S. Albers and S. Schubert 4:7

We treat the values p(i, i), for 0 ≤ i < b− 1, as the variables of our optimization, since every
other p and q value can then be computed based on these choices. To get comfortable with
the recursions and ideas in the latter part of this section, we do the following warm-up, where
we consider V (b− 1, δ). It holds

V (b− 1, δ) =
b−2∑
i=0

p(i, i) +
δ−1∑

j=b−1
q(b− 1, j) .

Our first constraint V (b, δ) = 1, for all δ ≥ b, implies that p(b− 1, δ) = 1− V (b− 1, δ).
We do not want to waste any potential increases in our dual variables, since we want to
maximize c. Thus, we will choose the maximum possible value for q(b− 1, δ), which is

q(b− 1, δ) = 1
d− 1

(
1

b · c
− p(b− 1, δ)

)
= 1

d− 1

(
1

b · c
− 1 + V (b− 1, δ)

)
.

It follows that

V (b− 1, δ + 1) = V (b− 1, δ) + q(b− 1, δ) = d

d− 1V (b− 1, δ) + 1
d− 1

(
1

b · c
− 1
)

, (2)

for all b− 1 ≤ δ < kb and with V (b− 1, b− 1) =
∑b−2

i=0 p(i, i). To ease notation in the future,
we further define Pi :=

∑i−1
j=0 p(j, j), for all 0 ≤ i ≤ b− 1, so that we get Pi = V (i, i). Note

that P0 = 0. Solving the recurrence relation (2) yields

V (b− 1, δ) =
(

d

d− 1

)δ−(b−1)
Pb−1 + 1

d− 1

(
1

b · c
− 1
)
·

δ−(b−1)−1∑
i=0

(
d

d− 1

)i

=
(

d

d− 1

)δ−(b−1)
Pb−1 + 1

d− 1

(
1

b · c
− 1
)
·

(
d

d−1

)δ−(b−1)
− 1(

d
d−1

)
− 1

=
(

d

d− 1

)δ−(b−1)(
Pb−1 + 1

b · c
− 1
)

+ 1− 1
b · c

.

The following lemma generalizes the computation above to all other load levels.

▶ Lemma 1. For all l, 0 ≤ l ≤ b, and for all δ, l ≤ δ ≤ kb, it holds that

V (l, δ) =
b−1∑
i=l

(−1)i−l 1
(d− 1)i−l

(
δ − l

i− l

)(
d

d− 1

)δ−i(
Pi + b− i

b · c
− 1
)

+ 1− b− l

b · c
. (3)

Proof. By induction over l, starting with l = b and going down to l = 0. The induction base
l = b is true, because we have V (b, δ) = 1. Thus, we focus on the induction step l + 1⇝ l.
Similar arguments as before yield for l ≤ δ < kb

q(l, δ) = 1
d− 1

(
1

b · c
− p(l, δ)

)
= 1

d− 1

(
1

b · c
− V (l + 1, δ + 1) + V (l, δ)

)
.

We can now define the recurrence relation for V (l, δ)

V (l, δ + 1) = V (l, δ) + q(l, δ) = d

d− 1V (l, δ) + 1
d− 1

(
1

b · c
− V (l + 1, δ + 1)

)
,

ESA 2022

4:8 Tight Bounds for Online b-Matching in Bounded-Degree Graphs

with V (l, l) = Pl. Solving this recurrence yields

V (l, δ) =
(

d

d− 1

)δ−l

Pl + 1
d− 1

1
b · c

δ−l−1∑
i=0

(
d

d− 1

)i

− 1
d− 1

δ−l−1∑
i=0

(
d

d− 1

)i

V (l + 1, δ − i) .

(4)

In the next step, we will need the following fact [11].

▶ Fact 2. For n, k ∈ N0, it holds that

n∑
i=0

(
i

k

)
=
(

n + 1
k + 1

)
.

Next, we apply the induction hypothesis to determine V (l, δ). For clarity, we focus on
the last sum of equality (4) first

δ−l−1∑
i=0

(
d

d− 1

)i

V (l + 1, δ − i) IH=
δ−l−1∑

i=0

(
d

d− 1

)i
 b−1∑

j=l+1
(−1)j−(l+1) 1

(d− 1)j−(l+1)

·
(

δ − i− (l + 1)
j − (l + 1)

)(
d

d− 1

)δ−i−j (
Pj + b− j

b · c
− 1
)

+ 1− b− (l + 1)
b · c

]

=
b−1∑

j=l+1

[
(−1)j−(l+1) 1

(d− 1)j−(l+1)

(
d

d− 1

)δ−j (
Pj + b− j

b · c
− 1
)

·
δ−l−1∑

i=0

(
δ − i− (l + 1)

j − (l + 1)

)]
+
(

1− b− (l + 1)
b · c

) δ−l−1∑
i=0

(
d

d− 1

)i

=
b−1∑

j=l+1
(−1)j−(l+1) 1

(d− 1)j−(l+1)

(
d

d− 1

)δ−j (
Pj + b− j

b · c
− 1
) δ−l−1∑

i=0

(
i

j − (l + 1)

)

+
(

1− b− (l + 1)
b · c

)
(d− 1)

((
d

d− 1

)δ−l

− 1
)

=
b−1∑

j=l+1
(−1)j−(l+1) 1

(d− 1)j−(l+1)

(
d

d− 1

)δ−j (
Pj + b− j

b · c
− 1
)(

δ − l

j − l

)

+
(

1− b− (l + 1)
b · c

)
(d− 1)

((
d

d− 1

)δ−l

− 1
)

,

where we used Fact 2 in the last step. Now, we can finish the induction step by plugging this
into (4)

S. Albers and S. Schubert 4:9

V (l, δ) =
(

d

d− 1

)δ−l

Pl + 1
b · c

((
d

d− 1

)δ−l

− 1
)

+
b−1∑

j=l+1
(−1)j−l 1

(d− 1)j−l

(
d

d− 1

)δ−j (
Pj + b− j

b · c
− 1
)(

δ − l

j − l

)

−
(

1− b− (l + 1)
b · c

)((
d

d− 1

)δ−l

− 1
)

=
(

d

d− 1

)δ−l(
Pl + 1

b · c
+ b− (l + 1)

b · c
− 1
)

+ 1− 1
b · c
− b− (l + 1)

b · c

+
b−1∑

j=l+1
(−1)j−l 1

(d− 1)j−l

(
d

d− 1

)δ−j (
Pj + b− j

b · c
− 1
)(

δ − l

j − l

)

=
b−1∑
j=l

(−1)j−l 1
(d− 1)j−l

(
d

d− 1

)δ−j (
Pj + b− j

b · c
− 1
)(

δ − l

j − l

)
+ 1− b− l

b · c
. ◀

So far, we have only leveraged our constraint V (b, ·) = 1. With our description of V (l, δ),
for all 0 ≤ l ≤ b and l ≤ δ ≤ kb, we can also leverage V (·, kb) = 1 to determine Pi, for all
0 ≤ i ≤ b− 1. For this, we will need the following technical lemma. The proof is given in the
full version of the paper.

▶ Lemma 3. For k, n, m ∈ N, with m ≥ n ≥ k, it holds that

n−k∑
i=1

(−1)i

(
m

i

)(
m− i

n− k − i

)
= −

(
m

n− k

)
.

▶ Lemma 4. For all l, 0 ≤ l ≤ b− 1, it holds that

(
d

d− 1

)kb−l(
Pl + b− l

b · c
− 1
)

= 1
b · c

(
b−l∑
i=1

i

(
kb− l

b− l − i

)
1

(d− 1)b−l−i

)
. (5)

Proof. By induction over l from l = b− 1 down to l = 0. We start with the induction base
l = b− 1. Our second constrain yields V (b− 1, kb) = 1. It then follows from Lemma 1 that

V (b− 1, kb) =
(

d

d− 1

)kb−(b−1)(
Pb−1 + 1

b · c
− 1
)

+ 1− 1
b · c

def.= 1 ,

which immediately finishes the induction base, since the right-hand side of (5) is simply
1/(b · c).

We can now move on to the induction step ∀i > l⇝ l. We use V (l, kb) = 1 and rearrange
with the help of Lemma 1(

d

d− 1

)kb−l(
Pl + b− l

b · c
− 1
)

= b− l

b · c

−
b−1∑

i=l+1
(−1)i−l 1

(d− 1)i−l

(
kb− l

i− l

)(
d

d− 1

)kb−i(
Pi + b− i

b · c
− 1
)

.

(6)

ESA 2022

4:10 Tight Bounds for Online b-Matching in Bounded-Degree Graphs

It is now possible to apply the induction hypothesis. For clarity, we focus on the second line
of (6)

b−1∑
i=l+1

(−1)i−l 1
(d− 1)i−l

(
kb− l

i− l

)
1

b · c

b−i∑
j=1

j

(
kb− i

b− i− j

)
1

(d− 1)b−i−j

= 1

b · c

b−l−1∑
a=1

(−1)a

b−(l+a)∑
j=1

j
1

(d− 1)b−l−j

(
kb− l

a

)(
kb− (l + a)

b− (l + a)− j

) ,

where we substituted a := i− l. Next, we carefully swap these nested sums. For this, observe
that, for a fixed value j, we have exactly b− l − j addends, more precisely, one addend for
each 1 ≤ a ≤ b− l − j

1
b · c

b−l−1∑
a=1

(−1)a

b−(l+a)∑
j=1

j
1

(d− 1)b−l−j

(
kb− l

a

)(
kb− l − a

b− l − a− j

)
= 1

b · c

b−l−1∑
j=1

j
1

(d− 1)b−l−j

b−l−j∑
a=1

(−1)a

(
kb− l

a

)(
kb− l − a

b− l − a− j

)
= − 1

b · c

b−l−1∑
j=1

j
1

(d− 1)b−l−j

(
kb− l

b− l − j

) ,

where we applied Lemma 3 with k = j, n = b− l and m = kb− l in the last step. Plugging
this back into (6) gives

(
d

d− 1

)kb−l(
Pl + b− l

b · c
− 1
)

= b− l

b · c
+ 1

b · c

b−l−1∑
j=1

j
1

(d− 1)b−l−j

(
kb− l

b− l − j

)
= 1

b · c

b−l∑
j=1

j
1

(d− 1)b−l−j

(
kb− l

b− l − j

) . ◀

With the help of Lemma 4, we can finally determine the resulting constant c∗. For l = 0,
we have P0 = 0, and thus(

d

d− 1

)kb(1
c∗ − 1

)
= 1

b · c∗

(
b∑

i=1
i

(
kb

b− i

)
1

(d− 1)b−i

)
,

where solving for c∗ yields

c∗ = 1− 1
b

(
b∑

i=1
i

(
kb

b− i

)
1

(d− 1)b−i

)(
1− 1

d

)kb

.

▶ Theorem 5. WeightedAssignment achieves a competitive ratio of c∗ for the online
b-matching problem with uniform server capacities on (k, d)-graphs.

Lemma 1, together with Lemma 4 and c∗, specifies the function V . Its values can be
calculated in a preprocessing step and accessed by table lookup when WeightedAssignment
serves requests. The parameters k and d must be known. In an application, they can be
learned over time. Alternatively, one can work with conservative estimates. Figure 1 shows

S. Albers and S. Schubert 4:11

0 1 2 3 4 5 6 7 8

0

1

2

3

4

l

δ

0 16 37 63 93 125 157 189 221

48 59 75 97 125 157 189 221

101 107 117 133 157 189 221

159 161 165 173 189 221

221 221 221 221 221

16 21 26 30 32 32 32 32

48 43 38 34 32 32 32 32

11 16 22 28 32 32 32

53 48 42 36 32 32 32

6 10 16 24 32 32

58 54 48 40 32 32

2 4 8 16 32

62 60 56 48 32

Figure 1 The function V for k = d = 2 and b = 4. All values are multiplied by 221.

the function V for a small example with k = d = 2 and b = 4. In this case, we have
c∗ = 221/256 and 1/(bc∗) = 64/221. The arrows depict the possible increases in V for every
l, 0 ≤ l < b, and δ, l ≤ δ < kb, i.e. horizontal arrows denote the q(l, δ) values and diagonal
arrows the p(l, δ) values. All actual values are multiplied by 221 in order to eliminate fractions.
Observe that p(l, δ) + (d− 1)q(l, δ) = 1/(bc∗) holds for all l and δ. This is what allows us to
bound the total increase in the dual solution by 1/c∗, if we always pick the neighboring server
s that maximizes q(ls, δs). For the matching decisions, WeightedAssignment only uses
the horizontal arrows. Notice that WeightedAssignment is different from a Balance
algorithm that breaks ties by HighDegree, or from a HighDegree algorithm that breaks
ties by Balance. For example, WeightedAssignment prefers a server with load 1 and
degree 5 to a server with load 0 and degree 1, whom it then prefers to a server with load 3
and degree 6.

3 Upper bounds

We will show that WeightedAssignment is optimal for (k, d)-graphs with k ≥ d, i.e. no
deterministic online algorithm can achieve a competitive ratio better than c∗. We start by
proving this for the online b-matching problem with uniform server capacities, and later
extend it to the more general problems.

First, we show that any (k, d)-graph with uniform server capacities b has a perfect b-
matching, i.e. a matching where every server s ∈ S is matched exactly b times, if k ≥ d.
This generalizes Lemma 6.1 in [19], which states this for b = 1. The proof is given in the full
version of this paper.

▶ Lemma 6. Every (k, d)-graph G = (S ∪R, E), where k ≥ d, with uniform server capacities
b has a perfect b-matching.

We move on to describing the adversary input. We start by following the construction
of the previously known upper bound detailed in [19]. There are N = dkb servers, and the
requests arrive in kb rounds. Let Si denote the set of unmatched servers at the beginning

ESA 2022

4:12 Tight Bounds for Online b-Matching in Bounded-Degree Graphs

of round i, 0 ≤ i < kb. It will hold that every server in Si has a current degree of i and
that |Si| = N(1 − 1/d)i. Note that this number is always a multiple of d, by choice of N .
During round i, |Si|/d requests are introduced, such that every request is adjacent to exactly
d distinct servers in Si and every server in Si gains one new neighboring request. If the
online algorithm decides not to match an introduced request, we consider it matched to an
arbitrary neighbor. This will only improve the performance of said algorithm. This means
that a (1− 1/d) fraction of the servers in Si are still unmatched after round i, explaining the
previously mentioned |Si| = N(1− 1/d)i. Thus, there are N · (1− 1/d)kb servers with degree
kb and load 0 after round kb− 1, irrespective of what choices the algorithm makes. In a final
round, further requests are introduced to all matched servers arbitrarily, such that we get a
valid (k, d)-graph. The online algorithm will have matched at most bN ·

(
1− (1− 1/d)kb

)
requests, while Lemma 6 implies that an optimal offline algorithm matches bN requests.
This yields the previously known upper bound of

(
1− (1− 1/d)kb

)
.

However, it seems suboptimal to introduce requests arbitrarily after the initial kb rounds.
In fact, we will show that we can further limit the number of requests matched by the online
algorithm if we introduce the requests more carefully. Note that all the servers that are
matched during round i of the previous input are similar in the sense that they all have
degree i and load 1. We will apply the ideas above recursively to the sets of matched servers
of all rounds. More precisely, let T denote the set of matched server during some round. Say
all servers in T have load l, 0 ≤ l < b, and degree δ, l ≤ δ < kb. We then schedule kb − δ

rounds for T using the same construction as above. Let Tj denote the set of servers that still
have load l at the beginning of round j, 0 ≤ j < kb− δ. It will now hold that every server in
Tj has a current degree of δ + j and that |Ti| = |T |(1− 1/d)i. We have to make sure that all
the possible values of |Ti| are multiples of d. This is done by increasing the initial number
of servers N adequately. After these kb− δ round, we have |T | · (1− 1/d)kb−δ servers with
degree kb and load l. This process is repeated for all the sets of matched servers until we
eventually obtain a valid (k, d)-graph, in which every server has degree kb.

For this, we formally define a function F , where F (x, l, δ) denotes how many units of
capacity we can force a deterministic online algorithm to leave empty when starting with
x servers that all have load l and degree δ. This allows us to upper bound the number of
matched requests by bN − F (N, 0, 0), yielding the following upper bound

c ≤ bN − F (N, 0, 0)
bN

= 1− F (N, 0, 0)
bN

. (7)

We cannot create any empty spots on full servers, so we have F (x, b, δ) = 0, for all
b ≤ δ ≤ kb. Once a server has kb adjacent requests, we have satisfied the (k, d)-graph
property locally, so we do not need to introduce any more adjacent requests for this server.
This is captured by F (x, l, kb) = x · (b− l), for all 0 ≤ l ≤ b. For all other combinations of l

and δ, it is possible to define F recursively. Recall that we introduce kb− δ rounds when
starting with x servers all with load l and degree δ. During each of these rounds, exactly
a 1/d fraction of the servers that still had load l at the start of the round are discarded.
Moreover, every server gets exactly one new neighbor during each round until they are
matched. This implies

F (x, l, δ) = x ·
(

1− 1
d

)kb−δ

(b− l) +
kb−δ∑
i=1

F

(
x · 1

d

(
1− 1

d

)i−1
, l + 1, δ + i

)
, (8)

for all 0 ≤ l < b and l ≤ δ < kb. The following lemma solves this recurrence, which we can
then apply in (7) to obtain the theorem.

S. Albers and S. Schubert 4:13

▶ Lemma 7. For all l, 0 ≤ l ≤ b, and all δ, l ≤ δ ≤ kb, it holds that

F (x, l, δ) = x

(
1− 1

d

)kb−δ
(

b−l∑
i=1

i

(
kb− δ

b− l − i

)
1

(d− 1)b−l−i

)
. (9)

Proof. By induction over l, starting with l = b and going down to l = 0. The induction
base is satisfied as we get the empty sum in (9), making the whole expression zero. In the
induction step l + 1⇝ l, we can apply our induction hypothesis to F in (8).

kb−δ∑
i=1

F

(
x · 1

d

(
1− 1

d

)i−1
, l + 1, δ + i

)

IH=
kb−δ∑
i=1

x
1
d

(
1− 1

d

)i−1(
1− 1

d

)kb−(δ+i)
b−(l+1)∑

j=1
j

(
kb− δ − i

b− (l + 1)− j

)
1

(d− 1)b−(l+1)−j

= x

1
d

(
1− 1

d

)kb−δ−1
b−(l+1)∑

j=1
j

1
(d− 1)b−(l+1)−j

kb−δ∑
i=1

(
kb− δ − i

b− (l + 1)− j

)
= x

(
1− 1

d

)kb−δ 1
d− 1

b−(l+1)∑
j=1

j
1

(d− 1)b−l−j−1

kb−δ−1∑
i=0

(
i

b− l − j − 1

)
= x

(
1− 1

d

)kb−δ
b−(l+1)∑

j=1
j

1
(d− 1)b−l−j

(
kb− δ

b− l − j

) ,

where we used Fact 2 in the last step. Finally, we can plug this result back into (8) to obtain

F (x, l, δ) = x ·
(

1− 1
d

)kb−δ

(b− l) +
kb−δ∑
i=1

F

(
x · 1

d

(
1− 1

d

)i−1
, l + 1, δ + i

)

= x ·
(

1− 1
d

)kb−δ
(b− l) +

b−(l+1)∑
j=1

j
1

(d− 1)b−l−j

(
kb− δ

b− l − j

)
= x ·

(
1− 1

d

)kb−δ
b−l∑

j=1
j

1
(d− 1)b−l−j

(
kb− δ

b− l − j

) . ◀

▶ Theorem 8. No deterministic online algorithm for the b-matching problem with uniform
server capacities b can achieve a competitiveness better than c∗ on (k, d)-graphs with k ≥ d.

We extend this upper bound to the more general case with variable server capacities, which
we will examine in the next section. Let bmin = mins∈S bs. The optimal competitiveness is
then

c∗
min = 1− 1

bmin

(
bmin∑
i=1

i

(
kbmin

bmin − i

)
1

(d− 1)bmin−i

)(
1− 1

d

)kbmin

.

▶ Corollary 9. No deterministic online algorithm for the b-matching problem with variable
server capacities can achieve a competitive ratio better than c∗

min on (k, d)-graphs with k ≥ d.

The proof is detailed in the full version of this paper. Obviously, Theorem 8 and Corollary 9
also hold for the more general vertex-weighted b-matching problem, addressed in the next
section.

ESA 2022

4:14 Tight Bounds for Online b-Matching in Bounded-Degree Graphs

4 Variable server capacities and vertex weights

We detail the necessary changes to WeightedAssignment such that it can handle variable
server capacities as well as vertex weights, while still achieving the optimal competitive ratio.

4.1 Variable server capacities

Recall that every server s ∈ S now has a server capacity bs, and thus a degree of at least
d(s) ≥ k · bs. This changes the objective function of the dual linear program to∑

s∈S

bs · x(s) +
∑
r∈R

y(r) .

We handle this by computing the function Vs for every server individually, for its capacity bs.
This means that we construct Vs according to Section 2, such that

bs ·
(

Vs(l + 1, δ + 1)− Vs(l, δ) + (d− 1) ·
(
Vs(l, δ + 1)− Vs(l, δ)

))
≤ 1

c∗
s

, (10)

where c∗
s is equal to c∗, but b is replaced by bs. Moreover, we have Vs(bs, ·) = 1 and

Vs(·, δ′) = 1 if δ′ ≥ kbs, meaning that we again construct a feasible dual solution. However,
we still have to adapt the decision criterion of WeightedAssignment. We change Line 7
in Algorithm 1 to

Match r to arg max
{

bs ·
(
Vs(ls, δs + 1)− Vs(ls, δs)

)
: s ∈ N(r)

}
.

This allows us to upper bound the total increase in the dual solution when the adapted
strategy, called WeightedAssignment(VC), assigns a request r to a server s by

∆D = bs ·
(

Vs(ls + 1, δs + 1)− Vs(ls, δs)
)

+
∑

s′∈N(r)\{s}

bs′ ·
(

Vs′(ls′ , δs′ + 1)− Vs′(ls′ , δs′)
)

≤ bs ·
(

Vs(ls + 1, δs + 1)− Vs(ls, δs) + (d− 1) ·
(
Vs(ls, δs + 1)− Vs(ls, δs)

))
≤ 1

c∗
s

.

Thus, WeightedAssignment(VC) achieves a competitive ratio of mins∈S c∗
s. In Section 5

we will show that c∗ is monotonically increasing in b for k ≥ d, meaning that mins∈S c∗
s = c∗

min,
cf. Section 3.

▶ Theorem 10. WeightedAssignment(VC) achieves a competitive ratio of mins∈S c∗
s the

b-matching problem with variable server capacities on (k, d)-graphs. The ratio equals c∗
min

and is optimal for k ≥ d.

4.2 Vertex weights

At last, we consider the vertex-weighted extension of the online b-matching problem. Every
server s ∈ S now has a weight ws assigned to it, and the value of every matching edge
incident to s is multiplied by ws. This problem is modelled by the following linear programs.

S. Albers and S. Schubert 4:15

Primal: max
∑

{s,r}∈E

ws ·m(s, r)

s.t.
∑

r:{s,r}∈E

ws ·m(s, r) ≤ ws · bs, (∀s ∈ S)

∑
s:{s,r}∈E

m(s, r) ≤ 1, (∀r ∈ R)

m(s, r) ≥ 0, (∀{s, r} ∈ E) .

Dual: min
∑
s∈S

ws · bs · x(s) +
∑
r∈R

y(r)

s.t. ws · x(s) + y(r) ≥ ws, (∀{s, r} ∈ E)
x(s), y(r) ≥ 0, (∀s ∈ S, ∀r ∈ R) .

Observe that x(s) = 1, for all s ∈ S, by the end of the algorithm still implies dual feasibility.
Hence, we do not need to change the construction of Vs, and still obtain a feasible dual
solution. All we need to do is to change the decision criterion of WeightedAssignment(VC)
once more to

Match r to arg max
{

ws · bs ·
(
Vs(ls, δs + 1)− Vs(ls, δs)

)
: s ∈ N(r)

}
.

Whenever the resulting algorithm WeightedAssignment(VW) assigns a request r to a
server s, we increase the primal solution by ws, while we can upper bound the increase in
the dual solution by

∆D ≤ wsbs ·
(

Vs(ls + 1, δs + 1)− Vs(ls, δs) + (d− 1)
(
Vs(ls, δs + 1)− Vs(ls, δs)

))
≤ ws

c∗
s

.

This again yields a competitiveness of mins∈S c∗
s.

▶ Theorem 11. WeightedAssignment(VW) achieves a competitive ratio of mins∈S c∗
s

for the vertex-weighted b-matching problem with variable server capacities on (k, d)-graphs.
The ratio equals c∗

min and is optimal for k ≥ d.

5 Analysis of the competitive ratio

▶ Theorem 12. If k ≥ d ≥ 2, the competitive ratio c∗ converges to one as b tends to infinity,
that is limb→∞ c∗ = 1.

▶ Theorem 13. If k ≥ d ≥ 2, the competitive ratio c∗ is strictly increasing in b, for b ≥ 1.

The proofs of these two theorems are given in the full version of the paper. Theorem 12
is shown with the help of Gaussian hypergeometric functions. They allow us to upper bound
c∗ with a closed expression. The convergence of this expression can then be shown with
the help of Stirling’s approximation. Since this does not prove monotonicity, we consider
the fraction of c∗ with b + 1 over c∗ with b in the proof of Theorem 13. We show that this
fraction is lower bounded by 1, again with the help of hypergeometric functions.

ESA 2022

4:16 Tight Bounds for Online b-Matching in Bounded-Degree Graphs

References
1 G. Aggarwal, G. Goel, C. Karande, and A. Mehta. Online vertex-weighted bipartite matching

and single-bid budgeted allocations. In Proc. 22nd Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1253–1264. SIAM, 2011.

2 Y. Azar, I.R. Cohen, and A. Roytman. Online lower bounds via duality. In Proc. 28th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1038–1050. SIAM, 2017.

3 N. Buchbinder, K. Jain, and J. Naor. Online primal-dual algorithms for maximizing ad-auctions
revenue. In Proc. 15th Annual European Symposium on Algorithms (ESA), Springer LNCS,
Volume 4698, pages 253–264, 2007.

4 K. Chaudhuri, C. Daskalakis, R.D. Kleinberg, and H. Lin. Online bipartite perfect matching
with augmentations. In Proc. 28th IEEE International Conference on Computer Communica-
tions (INFOCOM), pages 1044–1052, 2009.

5 I.R. Cohen and D. Wajc. Randomized online matching in regular graphs. In Proc. 29th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 960–979. SIAM, 2018.

6 R. Cole, K. Ost, and S. Schirra. Edge-coloring bipartite multigraphs in O(E log D) time.
Comb., 21(1):5–12, 2001.

7 J. Csima and L. Lovász. A matching algorithm for regular bipartite graphs. Discret. Appl.
Math., 35(3):197–203, 1992.

8 N.R. Devanur and T.P. Hayes. The adwords problem: online keyword matching with budgeted
bidders under random permutations. In Proc. 10th ACM Conference on Electronic Commerce
(EC), pages 71–78. ACM, 2009.

9 N.R. Devanur, B. Sivan, and Y. Azar. Asymptotically optimal algorithm for stochastic adwords.
In Proc. 13th ACM Conference on Electronic Commerce (EC), pages 388–404. ACM, 2012.

10 A. Goel, M. Kapralov, and S. Khanna. Perfect matchings in O(n log n) time in regular bipartite
graphs. SIAM J. Comput., 42(3):1392–1404, 2013.

11 R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Mathematics: A Foundation for
Computer Science. Addison-Wesley, 1989.

12 E.F. Grove, M.-Y. Kao, P. Krishnan, and J.S. Vitter. Online perfect matching and mobile
computing. In Proc. 4th International Workshop on Algorithms and Data Structures (WADS),
LNCS, Volume 955, pages 194–205. Springer, 1995.

13 P. Jaillet and X. Lu. Online stochastic matching: New algorithms with better bounds. Math.
Oper. Res., 39(3):624–646, 2014.

14 B. Kalyanasundaram and K. Pruhs. An optimal deterministic algorithm for online b-matching.
Theor. Comput. Sci., 233(1-2):319–325, 2000.

15 R.M. Karp, U.V. Vazirani, and V.V. Vazirani. An optimal algorithm for on-line bipartite
matching. In Proc. 22nd Annual ACM Symposium on Theory of Computing (STOC), pages
352–358, 1990.

16 M. Mahdian and Q. Yan. Online bipartite matching with random arrivals: An approach based
on strongly factor-revealing LPs. In Proc. 43rd ACM Symposium on Theory of Computing
(STOC), pages 597–606, 2011.

17 V.H. Manshadi, S. Oveis Gharan, and A. Saberi. Online stochastic matching: Online actions
based on offline statistics. Math. Oper. Res., 37(4):559–573, 2012.

18 A. Mehta, A. Saberi, U.V. Vazirani, and V.V. Vazirani. Adwords and generalized online
matching. J. ACM, 54(5):22, 2007.

19 J. Naor and D. Wajc. Near-optimum online ad allocation for targeted advertising. ACM Trans.
Economics and Comput., 6(3-4):16:1–16:20, 2018.

20 A. Schrijver. Bipartite edge coloring in O(∆m) time. SIAM J. Comput., 28(3):841–846, 1998.
21 V.V. Vazirani. Randomized online algorithms for Adwords. CoRR, abs/2107.10777, 2021.

arXiv:2107.10777.

http://arxiv.org/abs/2107.10777

	1 Introduction
	2 An optimal online algorithm
	3 Upper bounds
	4 Variable server capacities and vertex weights
	4.1 Variable server capacities
	4.2 Vertex weights

	5 Analysis of the competitive ratio

