
A Simpler QPTAS for Scheduling Jobs with
Precedence Constraints
Syamantak Das !

Department of Comp Science and Engineering, IIIT Delhi, India

Andreas Wiese !

Department of Mathematics, Technical University of Munich, Germany

Abstract
We study the classical scheduling problem of minimizing the makespan of a set of unit size jobs
with precedence constraints on parallel identical machines. Research on the problem dates back to
the landmark paper by Graham from 1966 who showed that the simple List Scheduling algorithm
is a (2 − 1

m
)-approximation. Interestingly, it is open whether the problem is NP-hard if m = 3

which is one of the few remaining open problems in the seminal book by Garey and Johnson.
Recently, quite some progress has been made for the setting that m is a constant. In a break-
through paper, Levey and Rothvoss presented a (1 + ϵ)-approximation with a running time of
n(log n)O((m2/ϵ2) log log n)

[STOC 2016, SICOMP 2019] and this running time was improved to quasi-
polynomial by Garg [ICALP 2018] and to even nOm,ϵ(log3 log n) by Li [SODA 2021]. These results
use techniques like LP-hierarchies, conditioning on certain well-selected jobs, and abstractions like
(partial) dyadic systems and virtually valid schedules.

In this paper, we present a QPTAS for the problem which is arguably simpler than the previous
algorithms. We just guess the positions of certain jobs in the optimal solution, recurse on a set of
guessed subintervals, and fill in the remaining jobs with greedy routines. We believe that also our
analysis is more accessible, in particular since we do not use (LP-)hierarchies or abstractions of the
problem like the ones above, but we guess properties of the optimal solution directly.

2012 ACM Subject Classification Theory of computation → Scheduling algorithms

Keywords and phrases makespan minimization, precedence constraints, QPTAS

Digital Object Identifier 10.4230/LIPIcs.ESA.2022.40

1 Introduction

A classical problem in scheduling theory is the problem to schedule jobs on parallel machines
in order to minimize the makespan, while obeying precedence constraints between the jobs.
It goes back to the 1966 when Graham proved in his seminal paper [5] that the simple
List Scheduling algorithm yields a is a (2 − 1

m)-approximation algorithm. Formally, the
input consists of a set J of n jobs, a number of machines m ∈ N, and each job j ∈ J is
characterized by a processing time pj ∈ N. We seek to schedule them non-preemptively on
m machines in order to minimize the time when the last job finishes, i.e., to minimize the
makespan. Additionally, there is a precedence order ≺ which is a partial order between the
jobs. Whenever j ≺ j′ for two jobs j, j′ ∈ J then job j′ can only be started when j has
already finished. Given that the List Scheduling algorithm is essentially a simple greedy
routine, one may imagine that one can achieve a better approximation ratio with more
sophisticated algorithmic techniques. However, Svensson showed that even for unit size
jobs (i.e., pj = 1 for each j ∈ J) there can be no (2 − ϵ)-approximation algorithm for any
ϵ > 0 [9], assuming a variant of the Unique Games Conjecture. Hence, under this conjecture
List Scheduling is the essentially best possible algorithm. Slight improvements are known for
unit size jobs: there is an algorithm by Coffman and Graham [1] which computes an optimal
solution when m = 2, and a which is a (2 − 2

m)-approximation algorithm for general m, as
shown by Lam and Sethi [6]. Also, there is an (2 − 7

3m+1)-approximation algorithm known
© Syamantak Das and Andreas Wiese;
licensed under Creative Commons License CC-BY 4.0

30th Annual European Symposium on Algorithms (ESA 2022).
Editors: Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman; Article No. 40; pp. 40:1–40:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:syamantak@iiitd.ac.in
mailto:andreas.wiese@tum.de
https://doi.org/10.4230/LIPIcs.ESA.2022.40
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 A Simpler QPTAS for Scheduling Jobs with Precedence Constraints

due to Gangal and Ranade [2]. In fact, the setting of unit-size jobs is interesting since then
the complexity of the problem stems purely from the precedence constraints and not from
the processing times of the jobs (which might encode problems like Partition). We assume
this case from now.

In practical settings m might be small, e.g., m might be the number of processors in
a system, or the number of cores of a CPU. Thus, it is a natural question whether better
approximation ratios are possible when m is a constant. Note that the mentioned lower
bound of 2− ϵ [9] does not hold if m = O(1). For m = 2 the mentioned algorithm by Coffman
and Graham [1] computes an optimal solution; however, even if m = 3 it is not known
whether the problem is NP-hard! In fact, it is one of the few remaining open problems in the
book by Garey and Johnson [3].

In a break-through result, Levey and Rothvoss presented a (1 + ϵ)-approximation with
a running time of n(log n)O((m2/ϵ2) log log n) [7]. Subsequently, the running time was improved
by Garg [4] to nOm,ϵ(logO(m2/ϵ2) n) which is quasi-polynomial. Both algorithms are based
on the natural-LP relaxation of the problem, (essentially) lifted by a certain number r of
rounds of the Sherali-Adams hierarchy, and it can be solved in time nO(r). Given the optimal
LP-solution x∗, they condition on certain variables in the support of x∗, which effectively
fixes time slots for the corresponding jobs. Each conditioning operation changes not only the
variable that one conditions on, but possibly also other variables in the support. After a
well-chosen set of conditioning operations, they recurse into smaller subintervals and give
each of them a copy of the current LP-solution (which might be different from x∗ due to the
conditioning operations). Intuitively, in each recursive call for some subinterval I they seek
to schedule jobs that can only be scheduled during I according to the previous conditionings
and the precedence constraints; they call these jobs bottom jobs and the other jobs top and
middle jobs. The middle jobs can be discarded. For the top jobs, they first use a matching
argument to show that most of the top jobs can be inserted if one can ignore the precedence
constraints between top jobs. Knowing this, they insert most of the top jobs with a variation
of Earliest-Deadline-First (EDF), such that all precedence constraints are satisfied; some of
the top jobs are discarded in the process. The discarded jobs are later inserted in a greedy
manner which is affordable since they are very few.

A different approach is used by Li [8] who improved the running time further to
nOm,ϵ(log3 log n). Instead of working with an LP, he guesses directly certain properties of
the optimal solution. While in the above argumentation each conditioning step costs a
factor nO(1) in the running time, he argues that – roughly speaking – most of the time the
information he guesses is binary and hence costs only a factor of 2 in the running time. More
precisely, he guesses properties of a technical abstraction based on dyadic systems, partial
dyadic systems, and virtually valid schedules. On a high level, he shows that based on the
optimal schedule one can define a corresponding dyadic system and a virtually valid schedule
for it, at the cost of discarding a few jobs. His algorithm then searches for the dyadic system
and a virtually valid schedule for it that discards as few jobs as possible. Then, he shows
that based on them, he can construct an actually valid schedule, which discards only few
additional jobs.

1.1 Our Contribution

In this paper we present a QPTAS for the makespan minimization problem with unit size jobs
on a constant number of machines along with precedence constraints (Pm|prec, pj = 1|Cmax
in the three-field notation) which is arguably simpler than the (1+ϵ)-approximation algorithms

S. Das and A. Wiese 40:3

sketched above. We do not use an LP-formulation and in particular no LP-hierarchy or a
similar approach based on conditioning on variables. Instead, we guess properties of the
optimal solution directly, similarly as Li [8]. However, we do not use the reduction to dyadic
systems or a similar abstraction but work with the optimal solution directly. We believe
that this makes the algorithm and the analysis easier to understand. Our running time is
nOm,ε((log n)m/ε) so it is asymptotically better than the running time by Garg [4] up to hidden
constants.

Our algorithm is actually pretty simple. Let T be the optimal makespan (which we guess).
For a parameter k = (log n)O(1) we guess the placement of k jobs in OPT and a partition
of [0, T) into at most k intervals. For each interval I, there are some jobs that need to be
scheduled during I according to our guesses and the precedence constraints. We recurse on
each interval I and its corresponding jobs. Then, we add all remaining jobs with a simple
variant of EDF where the release dates and deadlines are defined such that the precedence
constraints between these jobs and the other jobs (that we recursed on) are satisfied. For
the correct guesses, we show that the resulting schedule discards at most O(ϵT) jobs, and we
add those jobs at the end with a simple greedy routine.

In our analysis, we use a hierarchical decomposition of intervals, like the previous
results [8, 7, 4]. In contrast to those, we define the decomposition such that each interval
is subdivided into O(log n/ε) subintervals (instead of 2 subintervals) since this makes the
analysis easier. Based on the optimal solution, for each level we identify certain jobs that
we want to guess in that level later. Also, we assign a level to each job. Via a shifting step,
we show that we can discard the jobs from intuitively every (m/ϵ)-th level. Based on these
levels, we argue that there are guesses for our algorithm that yield a small total number
of discarded jobs. Intuitively, we guess the jobs from the first m/ϵ levels that we identified
above and the intervals of the (m/ϵ + 1)-th level. We recurse on the latter intervals. When
we insert the jobs of the first m/ϵ levels via EDF (those jobs that we did not guess already),
the jobs from our recursion and their precedence constraints dictate for each inserted job j a
time window [rj , dj). It might happen that the position of j in the optimal solution is not
contained in [rj , dj), but we show that it is always contained in the larger time window of
[rj − λ, dj + λ] for a small value λ > 0. We show that we need to discard at most O(mT ϵ

log n)
jobs to compensate for this error and due to the precedence constraints between the inserted
jobs. We analyze EDF directly and do not need to go via a matching argumentation as done
in [7]. It turns out that our algorithm recurses for at most O(ε

m log n) levels and hence this
yields O(ε log n

m · mT ϵ
log n) = O(ϵ2T) discarded jobs in total.

While our analysis borrows ideas from the mentioned previous results [8, 7, 4] we believe
that our algorithm and our analysis are simpler and more accessible.

2 Algorithm

We present a simple QPTAS for the problem Pm|prec, pj = 1|Cmax. Let ϵ > 0 and assume
w.l.o.g. that 1/ϵ ∈ N. We guess T := OPT and assume w.l.o.g. that T is a power of 2 (if this
is not the case, then we can add some dummy jobs that need to be processed after all other
jobs; note that a (1+ϵ)-approximate solution for this larger instance is a (1+2ϵ)-approximate
solution for the original instance). Also, w.l.o.g. we assume that in OPT each job starts and
ends at an integral time point, i.e., during a time interval of the form [t, t + 1) for some t ∈ N.
We will refer to such a time interval as a time slot. Furthermore, we assume that w.l.o.g.
that the precendence constraints are transitive, i.e., if j ≺ j′ and j′ ≺ j′′ then also j ≺ j′′.

ESA 2022

40:4 A Simpler QPTAS for Scheduling Jobs with Precedence Constraints

Our algorithm works on a “guess and recurse” framework. Define a parameter k :=
(m log n/ε)m/ϵ+1. The reader can think of the parameter k as Om,ε((log n)m/ε+1), where
Om,ε() hides constants that are only dependent on m, ε. Our algorithm has three steps. First,
we guess up to k jobs from OPT and their time slots in OPT, i.e., we try all combinations of
up to k input jobs and all combinations for their time slots to schedule them. Then, we guess
a partition of [0, T) into at most k intervals, i.e., we try all combinations of partitioning
[0, T) into at most k intervals. By allowing empty intervals, we assume w.l.o.g. that we guess
exactly k intervals and denote them by I1, ..., Ik. Let Jguess denote the guessed jobs. There
might be precedence constraints between jobs in Jguess and jobs in J \ Jguess. In particular,
these precedence constraints might dictate that some job j ∈ J \ Jguess needs to be scheduled
within some interval Ij . In this case, we say that j is a bottom job. Let Jbottom ⊆ J \ Jguess

denote the set of all bottom jobs. We call each job j ∈ J \ (Jguess ∪ Jbottom) =: Jtop a top job.
Given our guess for the jobs Jguess and their time slots and our guessed partitioning of

[0, T), we make k recursive calls: one for each interval Ii with i = 1, 2, · · · , k. Let us denote
by J

(i)
bottom the subset of jobs in Jbottom that need to be scheduled within Ii according to our

guesses above, and let J
(i)
guess denote the jobs in Jguess for which we guessed a time slot within

Ii. We make a recursive call on the interval Ii whose input are the jobs J
(i)
bottom ∪ J

(i)
guess and

the guessed time slots for the jobs in J
(i)
guess. In this recursive call, we want to compute a

schedule in which
all jobs in J

(i)
guess are scheduled in the time slots that we had guessed for them,

a (hopefully very large) subset of the jobs in J
(i)
bottom are scheduled; we denote by

J
(i)
disc ⊆ J

(i)
bottom the jobs in J

(i)
bottom that were not scheduled, we call them the discarded

jobs, and
we obey the precedence constraints between the jobs in J

(i)
bottom ∪ J

(i)
guess. We ignore all

precedence constraints that involve the jobs in J
(i)
disc.

Suppose that we are given a solution from each recursive call. We define Jdisc :=
⋃k

i=1 J
(i)
disc.

We ignore these discarded jobs for now. We want to schedule the jobs in Jtop. Recall that
these are jobs in J \ Jbottom ∪ Jguess. To this end, for each job j ∈ Jtop we define an artificial
release date rj and an artificial deadline dj . Let j ∈ Jtop. We define rj to be the earliest
start time of an interval Ii at which each job j′ ∈ Jguess ∪ Jbottom with j′ ≺ j has completed;
we define rj := 0 if there is no such job j′. Similarly, we define dj to be the latest end time of
an interval Ii at which no job j′′ ∈ Jguess ∪ Jbottom with j ≺ j′′ has already started; again, if
there is no such job j′′ we define dj := T . In order to find slots for the jobs in Jtop we use the
following variation of the Earliest Deadline First (EDF) algorithm. We sweep the time axis
from left to right. For each time t = 0, 1, 2, ... we consider the not yet scheduled jobs j ∈ Jtop

with rj ≤ t whose predecessors in Jguess ∪ Jbottom \ Jdisc we have already scheduled before
time t. We sort these jobs non-decreasingly by their deadlines (breaking ties arbitrarily) and
add them in this order to the machines that are idle during [t, t + 1). We do this until no
more machine is idle during [t, t + 1). It might happen that a job j ∈ Jtop misses its deadline
at the current time t, i.e., it holds that t = dj but j has not been scheduled by us at any
slot rj ≤ t′ ≤ t and during [t′, t′ + 1) all machines are busy. In this case we add j to the set
Jdisc. Among all our guesses for the jobs and the partition into intervals, we output the
solution in which at the very end the smallest number of jobs is in the set Jdisc (breaking
ties arbitrarily).

Each recursive call for an interval works similarly as the main call of the recursion
described above. The (straightforward) differences are the following: the input of each
recursive call consists of the interval Ī, a set of jobs J̄guess which were guessed in previous
levels in the recursion, together with their guessed time slots, and a set of (not yet scheduled)

S. Das and A. Wiese 40:5

jobs J̄ . We guess the time slots for up to k guessed jobs Jguess ⊆ J̄ , and we require that these
guesses do not violate the precedence constraints with the jobs in J̄guess. Also, we guess a
partition of I into k intervals (rather than a partition of [0, T)). The input for each recursive
call for a subinterval Īi of Ī consists of Īi, J̄guess ∪ Jguess, and the jobs in J̄ that need to be
scheduled within Īi according to our guesses for J̄guess ∪ Jguess. We return the computed
schedule for Ī for a subset of the jobs J̄guess ∪ J̄ and the discarded jobs in J̄guess ∪ J̄ .

If the algorithm is called on an interval of length 1 then we skip the step of partitioning
the interval further into at most k subintervals (and in particular we do not recurse anymore).
We will show later that there are guesses that lead to an (1 + ϵ)-approximate solution such
that the recursion depth is ε

m log n. In order to enforce that the recursion depth is ε
m log n

(limiting the running time of the algorithm), we define that a recursive call at recursion
depth ε

m log n + 1 simply outputs a solution in which all of the jobs in J̄ are discarded and
the algorithm does not recurse further.

After running the recursive algorithm described above, we need to schedule the jobs in
Jdisc. Intuitively, for each such job j ∈ Jdisc we create an empty time slot that we add into
our schedule and inside which we schedule j. This will increase our makespan by |Jdisc|.
Formally, we consider the jobs j ∈ Jdisc in an arbitrary order. For each job j ∈ Jdisc we
determine a time t such that all its predecessors in our current schedule have finished by
time t, but none of its successors in our current schedule have started yet. Such a time t

always exists since we show later that we obtain a feasible schedule for all jobs in J \ Jdisc

and we assumed that the precedence constraints are transitive. We insert an empty time slot
[t, t + 1] into our schedule, i.e., we move all jobs scheduled during [t, ∞) by one unit to the
right, and we schedule j during [t, t + 1]. This completes the description of our algorithm.

3 Analysis

In this section, we prove that the above algorithm is a QPTAS.

▶ Lemma 1. The above algorithm runs in time n(log n)Om,ε(m/ϵ) .

Proof. For the running time, we observe that there are at most nO(k) choices for the guessed
k jobs, at most T O(k) = (n)O(k) = nO(k) choices for their time slots, and similarly nO(k)

choices for the at most k intervals that we guess. Since we bound the recursion depth to be
at most log n + 1, this yields a running time of nO(k log n) = n(log n)Om,ε(m/ϵ) . ◀

Now we prove the approximation ratio of our algorithm. To this end, we define guesses
for jobs and their time slots and intervals in each call of our recursion, such that for these
guesses our algorithm outputs a schedule with makespan at most 1 + 6ϵ.

3.1 Laminar family of intervals
For this, we define a laminar family L of intervals. Recall that we assumed that T , the
guessed makespan, is a power of 2. We define that the entire interval [0, T) forms the (only)
interval of level 0. Let us define ρ = ⌈log(log n/ε)⌉. Consider an interval I of some level
ℓ = 0, 1, 2, · · · (we will argue the number of levels later). If |I| ≥ 2ρ then I is partitioned into
2ρ = Θ(log n/ε) equal-sized intervals of length |I|/2ρ. These intervals constitute the level
ℓ + 1 of the family L. For each interval I ∈ L, we denote by ℓ(I) the level of I.

If 1 < |I| < ρ then I is partitioned into |I| intervals of level ℓ + 1 of length 1 each. If
|I| = 1 then I is not partitioned further.

ESA 2022

40:6 A Simpler QPTAS for Scheduling Jobs with Precedence Constraints

▶ Lemma 2. The total number of levels in the laminar family L is at most log n/ log(log n/ε)+
1.

Proof. By construction, each interval at a particular level ℓ = 0, 1, 2, · · · is of equal length.
Hence the length of an interval at level ℓ is at most T/(log n/ε)ℓ. Further, once the length
of intervals of a level becomes less than 2ρ ≤ 2 log n/ε, there could only be one additional
level where every interval is of length 1. Hence the total number of levels could be at most
log T/ log(log n/ε) + 1 ≤ log n/ log(log n/ε) + 1 ◀

3.2 Guessed, top, and bottom jobs
Next, we assign the jobs to levels. More precisely, for each level ℓ we define a set of guessed
jobs J

(ℓ)
guess and a set of top jobs J

(ℓ)
top. The intuition is that later we want to guess the jobs in⋃ℓ

ℓ′=0 J
(ℓ′)
guess and the jobs in

⋃ℓ
ℓ′=0 J

(ℓ′)
top will form top jobs. We say that a chain of jobs is a

set of jobs J ′ = {j1, j2, ..., jc} for some s ∈ N such that ji ≺ ji+1 for each i ∈ {1, ..., c − 1},
and we say that c is the length of the chain.

We define these sets J
(ℓ)
guess and J

(ℓ)
top level by level in the order ℓ = 0, 1, 2, Consider a

level ℓ. Let I be an interval of level ℓ. We initialize J
(ℓ)
guess = J

(ℓ)
top = ∅. Our plan is that we

add jobs to J
(ℓ)
guess step by step. Let JI denote the jobs that can only be scheduled during

I, assuming that we schedule the jobs in J
(0)
guess ∪ · · · ∪ J

(ℓ−1)
guess exactly as in OPT. We say

that a job j ∈ JI is flexible if it can still be scheduled in more than one subinterval of level
ℓ + 1 of I, assuming that we schedule the jobs in J

(0)
guess ∪ ... ∪ J

(ℓ)
guess exactly as in OPT.

Suppose that there is a chain J ′ ⊆ JI \ J
(ℓ)
guess of length at least ε|I|/2⌈log log n⌉ that contains

only flexible jobs. Then for each interval I ′ of level ℓ + 1 we add to J
(ℓ)
guess the first and the

last job from J ′ that is scheduled during I ′ in OPT. If we guess these jobs in our algorithm,
the effect is that each job in J ′ that we did not add to J

(ℓ)
guess can be scheduled only during

one interval of level ℓ + 1. Hence, one way to think of this procedure is that we push these
jobs one level down. We do this operation until there is no more chain J ′ of length at least
ε|I|/2⌈log log n⌉ that contains only flexible jobs. We define that J

(ℓ)
top,I contains all remaining

flexible jobs in JI . We do this procedure for each interval I of level ℓ, and define at the end
J

(ℓ)
top :=

⋃
I J

(ℓ)
top,I .

▶ Proposition 3. For every job j ∈ J , there exists a unique ℓ ∈ {0, 1, 2, · · · , ρ} such that
j ∈ Jℓ

top.

3.3 Few rejected jobs
With the preparation above, we will show that there are guesses of our algorithm for the
guessed jobs and the intervals that lead to few discarded jobs overall, at most O(ϵT) many.
Since the algorithm selects the guesses that lead to the minimum total number of discarded
jobs, we will show that it computes a solution with at most O(ϵT) discarded jobs. We need
some preparation for this. First, we establish that we can afford to discard all jobs in sets
J

(a+r·m/ϵ)
top for r ∈ N0, for some offset a.

▶ Lemma 4. There is an offset a ∈ {0, 1, ..., m
ϵ − 1} such that

∣∣∣⋃r∈N0
J

(a+r·m/ϵ+1)
top

∣∣∣ ≤ ϵT .

Proof. For every a ∈ {0, 1, ..., m
ϵ − 1}, we define La = {ℓ : ℓ = (a + r · m/ϵ + 1), r ∈ N0}

and the set
⋃

ℓ∈La
Jℓ

top. Now Proposition 3 implies that the resulting sets
⋃

ℓ∈La
Jℓ

top are
pairwise disjoint. Since T is the optimal makespan, the total number of jobs cannot exceed
mT . Hence, there exists some a ∈ {0, 1, ..., m

ϵ − 1} such that |
⋃

ℓ∈La
Jℓ

top| ≤ εT . ◀

S. Das and A. Wiese 40:7

For the root problem of the recursion, we will show that the following guesses lead to few
discarded jobs overall: the guessed subintervals are the subintervals of the laminar family at
level a + 1 where a which is the offset as identified by the above lemma. The guessed jobs
are all jobs in

⋃a
ℓ=0 J

(ℓ)
guess and we guess their time slots in OPT. We recurse on the guessed

intervals of level a+1 of the laminar family. Suppose that in some level r ∈ N of the recursion
we are given as input an interval Ī of some level ℓr = a + (r − 1) · m/ϵ of the laminar family,
together with a set of jobs of the form J̄ = J̄bottom∪̇J̄guess such that for each job j ∈ J̄guess

we are given a (guessed) time slot that equals the time slot in OPT during which j is executed,
but we are not given a time slot for any job in J̄bottom. We will show that the following
guesses lead to few discarded jobs overall: we guess the intervals of level ℓr+1 =a + r · m/ϵ + 1
of the laminar family; the guessed jobs are all jobs in J̄bottom ∩

⋃a+r·m/ϵ
ℓ=a+(r−1)·m/ϵ+1 J

(ℓ)
guess that

are scheduled in Ī in OPT and we guess their time slots in OPT.
With the next lemma, we prove inductively that there are few discarded jobs. We define

rmax := ⌈ϵ(log n/ log log n + 1)/m⌉ which is an upper bound on the number of recursion
levels that we need in this way.

▶ Lemma 5. Consider a recursive call of our algorithm in which the input is of the following
form:

an interval Ī such that Ī = [0, T) (we define r = 0 in this case) or Ī is an interval of
some level ℓr = a + (r − 1) · m/ϵ of the laminar family, for some r ∈ N,

a set of jobs J̄ = J̄bottom∪̇J̄guess such that
for each job j ∈ J̄guess we are given a time slot that coincides with the time slot during
which j is scheduled in OPT,
each job j ∈ J̄bottom is scheduled during Ī in OPT.

Then our algorithm returns a schedule for J̄ in which at most∑
ℓ′∈La

∑
Ī′∈L:ℓ(Ī′)=ℓ′∧Ī′⊊Ī

∣∣∣J (ℓ′)
top,Ī′

∣∣∣ + 5mϵ

log n
(rmax − r)|Ī| (1)

jobs are discarded.

Our goal is now to prove Lemma 5. Consider a recursive call of our algorithm of the form
specified in Lemma 5 for some r ∈ N. If r = rmax then our algorithm simply enumerates
over all possible schedules for J̄bottom and thus finds a schedule in which no job is discarded
(since this is the case in OPT). Suppose by induction that the claim is true for all r ≥ r∗ + 1
for some r∗. We want to prove that it is true also for r = r∗ so we consider such a recursive
call. Let J̃guess denote the guessed jobs and let Ĩ1, ..., Ĩk denote the guessed partition of
Ī into subintervals, according to our description right before Lemma 5. Let J̃top ⊆ J̄

and J̃bottom ⊆ J̄ denote the resulting set of top and bottom jobs, respectively (thus, the
sets J̄ , J̄guess, J̄bottom are part of the input, while the sets J̃guess, J̃top, J̃bottom and intervals
Ĩ1, ..., Ĩk stem from our guesses). Recall that for each job j ∈ J̃top we define a release time rj

and a deadline dj in our algorithm. Let λ denote the length of each interval Ĩi (note that
they all have the same length), i.e., the length of the intervals of level ℓr+1 =a + r · m/ϵ + 1
(where r = 0 in the root problem of the recursion). Note that λ ≤ |Ī|/(log n/ε)m/ε+1. We
show in the next lemma that in OPT each job j ∈ J̃top is essentially scheduled during [rj , dj)
and thus rj and dj are almost consistent with OPT.

▶ Lemma 6. For each job j ∈ J̃top it holds that in OPT the job j is scheduled during
[rj − λ, dj + λ).

ESA 2022

40:8 A Simpler QPTAS for Scheduling Jobs with Precedence Constraints

Proof. Let us recall that for each job j ∈ J̄top the release time rj is defined to be the earliest
start time of an interval Ĩi, i = 1, 2, 3, · · · k such that every job j′ ∈ J̄guess ∪ J̄bottom with
j′ ≺ j is completed before rj . We want to prove in OPT the job j does not start before time
rj −λ. Let Î = [t1, t2] denote the interval of level ℓr+1 =a+ r ·m/ϵ+ 1 for which t2 = rj (and
observe that t2 = t1 + λ). By definition of rj , there exists a job j′ ∈ J̄guess ∪ J̃guess ∪ J̃bottom

with j′ ≺ j that completes in Î in the schedule that we obtained from the recursive call in Î.
Since we assumed that our guessed time slots for the jobs in J̄guess ∪ J̃guess are identical to
the corresponding time slots in OPT, we conclude that also in OPT the job j′ is scheduled
during Î. Thus, in OPT the job j cannot start before time t1 = rj − λ. An analogous
argument shows that j cannot be scheduled in OPT after dj + λ. ◀

We want to show now that our variant of EDF discards only few jobs from J̃top. To
this end, we partition J̃top into the sets J̃top,1 := J̃top ∩

⋃a+r·m/ϵ
ℓ=a+(r−1)·m/ϵ+1 J

(ℓ)
top and J̃top,2 :=

J̃top ∩ J
(a+r·m/ϵ+1)
top . We can afford to discard all jobs in J̃top,2, see (1), but we need to bound

the number of discarded jobs in J̃top,1. For a job j ∈ J̃top it can happen that rj = dj . In this
case we say that j is degenerate. Note that a degenerate job is always discarded.

▶ Lemma 7. There are at most 2mε|Ī|/ log n degenerate jobs in J̃top,1.

Proof. Consider any job j ∈ J̃top,1. By definition, there exist two adjacent intervals I ′ =
[t′

1, t′
2), I ′′ = [t′

2, t′
3) such that ℓ(I ′) = ℓ(I ′′) = a + r · m/ε such that j can be potentially

scheduled during both the intervals as dictated by the guessed jobs J̄guess. Thus, if j is
degenerate, then rj = dj = t′

2. Further, by Lemma 6, all jobs j ∈ J̃top,1, rj = dj = t′
2 must

be scheduled in OPT in the interval [t′
2 − λ, t′

2 + λ]. Hence the total number of such jobs is
upper bounded by

m · 2λ|{I ′ : I ′ ∈ L ∧ ℓ(I ′) = a + r · m/ε ∧ I ′ ⊂ Ī}|

≤ 2m · (log n/ε)m/ε · |Ī|
(log n/ε)m/ε+1

= 2mε|Ī|/ log n ◀

Our goal now is to bound the number of discarded non-degenerate jobs in J̃top,1. We
partition Ī into meta-intervals Î1, Î2, ...Îk′ with k′ ≤ k with the properties that each interval
Îi ∈ {Î1, Î2, ...} is of the form Îi = [t1, t2) for some t1, t2 ∈ N such that

each value t1, t2 is the start or the end point of some interval in Ĩ1, ..., Ĩk,
at time t2 there is no (non-degenerate) job j ∈ J̃top pending that was released before t2,
for each t ∈ [t1, t2) such that t is the start or end point of some interval in Ĩ1, ..., Ĩk, some
non-degenerate job j ∈ J̄top is pending at time t.

Now the intuition is that during each meta-interval Îi = [t1, t2) EDF tries to schedule only
jobs that OPT schedules during [t1 − λ, t2 + λ) (due to Lemma 6), so essentially we have
enough space on our machines to schedule all these jobs. We might waste space due to the
precedence constraints. However, this space is bounded via the following lemma.

▶ Lemma 8. Let Ĩi be an interval such that at each time t ∈ Ĩi some job j ∈ J̃top is pending.
Then during Ĩi there are at most

∣∣Ĩi

∣∣ ϵ
log n time slots [t, t + 1) with t ∈ N such that some

machine is idle during [t, t + 1).

Proof. For the interval Îi = [t1, t2), let JÎi
denote the subset of jobs in j ∈ J̄top,1 such that

rj ≤ t1. We now create a partition of JÎi
according to the precedence constraints. Let

J0 ⊆ JÎi
denote the jobs whose preceding jobs have been either scheduled or discarded

S. Das and A. Wiese 40:9

before t1. For every p = 1, 2, · · · η (where η is some positive integer), let Jp denote the set
of jobs j ∈ JÎi

for which there exists a job j′ ∈ Jp−1 such that j′ ≺ j and there is no job
j′′ ∈ JÎi

\ Jp−1 such that j′′ ≺ j.
Let τ1, τ2, τ3, · · · , τη′ be defined such that the time slots [τ1, τ1 +1), [τ2, τ2 +1), ..., [τη′ , τη′ +

1) are exactly the time slots during Îi such that some machine is idle for the entire respective
time slot. We claim that any job j′ ∈ J̃top that is pending at the end of a time slot
[τq, τq + 1) with q = {1, 2, 3, · · · } must belong to Jp for some p > q. We prove this by
induction. Since no jobs are released inside Îi, no job in J0 is pending at time τ0 + 1 since
otherwise this would contradict the definition of our variant of EDF and the fact that a
machine is idle during [τ0, τ0 + 1). Now assume the hypothesis to be true for the time slots
[τ1, τ1 + 1), [τ2, τ2 + 1), ..., [τq, τq + 1) for some q and consider the time slot [τq+1, τq+1 + 1).
If a job j′ ∈ J̃top is pending at time τq + 1 then j′ ∈ Jp′ for some p′ > q by the induction
hypothesis. This means that all jobs in

⋃q
p=0 Jp have completed before time τq + 1. Hence,

the jobs in Jq+1 can be scheduled at any time after time τq + 1. Suppose that there is a
pending job j at time τq+1 + 1. Since a machine is idle during [τq+1, τq+1 + 1) we have that
j ∈ Jp′ for some p′ > q + 1 since otherwise our variant of EDF would have scheduled j during
[τq+1, τq+1 + 1). By our construction of the guessed, top and bottom jobs in Section 3.2 the
length of the longest chain of the jobs in J̃top is at most ε|Ĩi|/2⌈log log n⌉ ≤

∣∣Ĩi

∣∣ ϵ
log n . Therefore,

η′ ≤ η ≤
∣∣Ĩi

∣∣ ϵ
log n which completes our proof. ◀

Also, we show that there are only few meta-intervals which – together with the argument-
ation above – yields the following lemma.

▶ Lemma 9. The total number of discarded non-degenerate jobs in J̃top,1 is at most
m|Ī|

(
2ε

log2 n
+ ε

log n

)
.

Proof. Consider a meta-interval Îi. Let j be the last non-degenerate job in J̄top,1 that is
discarded during Îi. Let t1 denote the beginning of the interval Îi. We know that dj is the
end point of some interval Ĩi′ . Since j is non-degenerate we know that [rj , dj) ̸= ∅ and by
definition of Îi this implies that at each time t ∈ [t1, dj) there is some job from J̄top pending.
Using Lemma 8, the total number of (wasted) idle slots across all machines during [t1, dj) is
at most mε|[t1, dj)|/m log n.

We further invoke Lemma 6 to argue that all jobs in J̃top that we schedule or discard
during [t1, dj) are scheduled in OPT during [t1 − λ, dj + λ). The maximum number of jobs
that OPT could have scheduled during [t1 − λ, dj + λ) is hence m(dj − t1 + 2λ). Since our
wasted space during [t1, dj) is at most mε|[t1, dj)|/m log n, we conclude that we discard at
most

m(dj − t1 + 2λ) − m(dj − t1) + ϵ

log n
(dj − t1) = 2λm + ϵ

log n
(dj − t1)

jobs during [t1, dj). By definition, for each job j ∈ J̄top,1 we have that j ∈ J
(ℓ)
top for some level

ℓ with ℓ ≤ a + (r + 1) · m/ϵ − 1. Thus, for such a job j we have that rj and dj lie in different
intervals of level a + (r + 1) · m/ϵ of L. Thus, if during a meta-interval Îi a job j ∈ J̄top,1 is
discarded, then Îi has non-empty intersection with at least two different intervals of level
a + (r + 1) · m/ϵ of L. Hence, there can be at most (log n/ε)m/ϵ−1 such meta-intervals. We
conclude that in total we discard at most

(log n/ε)m/ϵ−1 ·2λm+ ϵ

log n
|Ī| ≤ m

2|Ī|(log n/ε)m/ϵ−1

(log n/ε)m/ε+1 + ϵ

log n
|Ī| ≤ m|Ī|

(
2ε

log2 n
+ ε

log n

)
jobs in J̄top,1. ◀

ESA 2022

40:10 A Simpler QPTAS for Scheduling Jobs with Precedence Constraints

Now we are ready to bound the total number of discarded jobs using Lemmas 7, 9, and the
induction hypothesis.

Proof of Lemma 5. We shall prove the lemma for the input interval Ī at level ℓr∗ = a +
(r∗ −1) ·m/ε. By induction hypothesis, suppose (1) is true for all r ≥ r∗ +1. Hence, applying
our recursive algorithm with the input intervals Ĩi, i = 1, 2, · · · k returns a schedule where
number of discarded jobs is at most∑

ℓ′∈La

∑
Ī′∈L:ℓ(Ī′)=ℓ′∧Ī′⊊Ĩi

∣∣∣J (ℓ′)
top,Ī′

∣∣∣ + 5mϵ

log n
(rmax − (r∗ + 1)|Ĩi| (2)

Summing (2) over all i = 1, 2, · · · k and observing that Ī =
⋃̇k

i=1Ĩi yields that the total
number of discarded jobs is at most∑

ℓ′∈La

∑
Ī′∈L:ℓ(Ī′)=ℓ′∧Ī′⊊Ī

∣∣∣J (ℓ′)
top,Ī′

∣∣∣ + 5mϵ

log n
(rmax − (r∗ + 1))|Ī| (3)

We would now like to prove the statement for r = r∗. Now at the recursive call at level
r = r∗ with the input subinterval |Ī| consider the guesses as described in the preceding
discussion. Using Lemmas 9 and 7, the total number of jobs rejected from J̃top,1 under these
guesses is at most

2εm|Ī|/ log n + m|Ī|
(

2ε

log2 n
+ ε

log n

)
≤ 5mε|Ī|/ log n (4)

Further, we could have potentially rejected all the jobs in J̃top,2. The total number of
such jobs is

|J̃top,2| =
∑

Ī′∈L:ℓ(Ī′)=ℓ′,ℓ′=a+r∗·m/ε

∣∣∣J (ℓ′)
top,Ī

∣∣∣ (5)

Adding the above two quantities (4) and (5) to the quantity (3) and observing that our
recursive algorithm selects the guesses at a particular level that minimizes the number of
discarded jobs, the lemma holds for a recursive call at level r∗. ◀

▶ Lemma 10. Our algorithm computes a solution with a makespan of at most (1 + 6ϵ)T .

Proof. The input at the top level recursive call in our algorithm is an interval Ī = [0, T)
and the entire set of jobs J . Plugging in r = 0 in Lemma 5 and using Lemma 4, the first
term in (1) is bounded by

∑
ℓ′∈La

|Jℓ
top| ≤ εT . Since rmax := ⌈ϵ(log n/ log log n + 1)/m⌉,

the second term for r = 0 in (1) bounded by 5ε2T/(log log n + 1).
Hence, the number of discarded jobs in our algorithm is upper bounded by 6εT . All

the other jobs are scheduled within the interval [0, T). We potentially need to introduce
one additional time-slot of the form [t, t + 1) for each discarded job. We observe that for
each discarded job j we can find a position to insert a time-slot for j since we assumed
the precendence constraints to be transitive and we obtained a feasible schedule for all
non-discarded jobs. Hence, the total length of the schedule is at most (1 + 6ε)T . ◀

Combining Lemma 10 and Lemma 1 gives us the following theorem.

▶ Theorem 11. There exists an algorithm for the precedence constrained scheduling on
identical parallel machines that is a (1 + ε)-approximation and runs in time nOm,ε((log n)m/ε).

S. Das and A. Wiese 40:11

References
1 Edward G Coffman and Ronald L Graham. Optimal scheduling for two-processor systems.

Acta informatica, 1(3):200–213, 1972.
2 Devdatta Gangal and Abhiram Ranade. Precedence constrained scheduling in (2-

7/3p+1)optimal. Journal of Computer and System Sciences, 74(7):1139–1146, 2008. doi:
10.1016/j.jcss.2008.04.001.

3 Michael R Garey and David S Johnson. Computers and intractability, volume 174. freeman
San Francisco, 1979.

4 Shashwat Garg. Quasi-PTAS for Scheduling with Precedences using LP Hierarchies. In
Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors,
45th International Colloquium on Automata, Languages, and Programming (ICALP 2018),
volume 107 of Leibniz International Proceedings in Informatics (LIPIcs), pages 59:1–59:13,
Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/
LIPIcs.ICALP.2018.59.

5 Ronald L Graham. Bounds for certain multiprocessing anomalies. Bell system technical
journal, 45(9):1563–1581, 1966.

6 Shui Lam and Ravi Sethi. Worst case analysis of two scheduling algorithms. SIAM Journal
on Computing, 6(3):518–536, 1977.

7 Elaine Levey and Thomas Rothvo. A (1+ epsilon)-approximation for makespan scheduling with
precedence constraints using LP hierarchies. SIAM Journal on Computing, 50(3):STOC16–201,
2019.

8 Shi Li. Towards PTAS for precedence constrained scheduling via combinatorial algorithms.
In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
2991–3010. SIAM, 2021.

9 Ola Svensson. Hardness of precedence constrained scheduling on identical machines. SIAM
Journal on Computing, 40(5):1258–1274, 2011.

ESA 2022

https://doi.org/10.1016/j.jcss.2008.04.001
https://doi.org/10.1016/j.jcss.2008.04.001
https://doi.org/10.4230/LIPIcs.ICALP.2018.59
https://doi.org/10.4230/LIPIcs.ICALP.2018.59

	1 Introduction
	1.1 Our Contribution

	2 Algorithm
	3 Analysis
	3.1 Laminar family of intervals
	3.2 Guessed, top, and bottom jobs
	3.3 Few rejected jobs

