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Abstract
In a graph G with a source s, we design a distance oracle that can answer the following query:
Query(s, t, e) – find the length of shortest path from a fixed source s to any destination vertex
t while avoiding any edge e. We design a deterministic algorithm that builds such an oracle in
Õ(m

√
n) time1. Our oracle uses Õ(n

√
n) space and can answer queries in Õ(1) time. Our oracle is

an improvement of the work of Bilò et al. (ESA 2021) in the preprocessing time, which constructs
the first deterministic oracle for this problem in Õ(m

√
n + n2) time.

Using our distance oracle, we also solve the single source replacement path problem (Ssrp
problem). Chechik and Cohen (SODA 2019) designed a randomized combinatorial algorithm to
solve the Ssrp problem. The running time of their algorithm is Õ(m

√
n + n2). In this paper, we

show that the Ssrp problem can be solved in Õ(m
√

n + |R|) time, where R is the output set of
the Ssrp problem in G. Our Ssrp algorithm is optimal (upto polylogarithmic factor) as there is a
conditional lower bound of Ω(m

√
n) for any combinatorial algorithm that solves this problem.
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1 Introduction

Real-life graph networks are prone to failures, e.g., nodes or links can fail. Thus, algorithms
developed for these networks must be resilient to failures. For example, there may be some
edges or links which are not working in the network and we want to avoid them. In this
paper, we present an algorithm to create an oracle for the single source shortest path problem
in a fault-prone graph. Such algorithms are also called fault-tolerant algorithms.

Consider an undirected and unweighted graph G with a source s. We want to build an
oracle that can find the length of shortest path from s to any other vertex in the presence of
faulty edges – such an oracle is also called a fault-tolerant distance oracle. Formally,

▶ Definition 1. A fault-tolerant distance oracle answers the following query in a graph G:

Query(s, t, F ): Find the length of shortest path from s to t avoiding the set F of edges.

1 Õ() hides polylog n factor
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42:2 Near Optimal Fault Tolerant Distance Oracle and SSRP Problem

The time it takes to answer a query is called the query time. If the query is always from
a fixed source s and |F | ≤ f , then the distance oracle is called a f -edge fault tolerant single
source distance oracle, or Sdo(f) in short. If all vertices can be sources, the oracle is called
f -edge fault tolerant distance oracle, or Do(f). We list some results related to distance
oracles:

Demetrescu et al. [12] designed a Do(1) with Õ(n2) space and O(1) query time. Bernstein
and Karger[3] showed that this oracle can be built in Õ(mn) time. Pettie and Duan [15]
extended the result of Demestrescu et al. to two faults. They designed a Do(2) with Õ(n2)
space and Õ(1) query time. Gupta and Singh [20] designed a Sdo(1) with Õ(n

√
n) space and

Õ(1) query time. Recently Bilò et al. [5] built the Sdo(1) (described in [20]) in Õ(m
√

n+n2)
time. They also showed that, the lower bound of size for such an oracle is O(n

√
n) Many

different aspects of distance oracles have been studied in literature [4, 3, 6, 9, 10, 14, 29]. In
the line of k simple shortest paths the some important works are [27, 28, 2]

In this paper, we will focus our attention on building Sdo(1). Due to Bilò et al. [5],
the time to build Sdo(1) is Õ(m

√
n + n2). Chechik and Cohen [8] showed that, the first

term in this running time is a conditional lower bound for Ssrp problem. But it is not clear
if the second term is necessary. In this paper, we build a Sdo(1) in Õ(m

√
n) time – this

preprocessing algorithm has a better runtime than [5] for sparse graphs, which is state of the
art for this problem till now. Using our Sdo(1) data structure, we are able to reduce the
runtime of the algorithm solving Ssrp problem too. Our distance oracle is quite different
from the distance oracle of Gupta and Singh [20] – though we use the main technical idea
of [20] crucially in our paper too. The construction of this new oracle is the main technical
result of this paper.

▶ Theorem 2. For undirected, unweighted graphs there is a deterministic algorithm that can
build a Sdo(1) of size Õ(n

√
n) and query time Õ(1) in Õ(m

√
n) time.

1.1 Application: Single Source Replacement Path Problem
Let us first look at the replacement path problem. In this problem, we are given a source s

and a destination t. We assume that there is a unique shortest path from s to t, denoted
by st.

▶ Definition 3 (Replacement Path Problem). Let s be a source and vertex t be the destination
in G. For each e ∈ st path, output the length of the shortest path from s to t avoiding e.

The replacement path problem was first investigated due to its relation with auction
theory [21, 24] and has been studied extensively. For an undirected graph with non-negative
edge weights, the replacement path problem can be solved in Õ(m + n) time[22, 21, 23]. We
look at the generalization of the replacement path problem – the single source replacement
path problem.

▶ Definition 4 (Ssrp problem). Let s be a source in a graph G which is undirected and
unweighted. For each vertex t ∈ G and each e ∈ st path, output the length of the shortest
path from s to t avoiding e.

Chechik and Cohen [8] designed a randomized combinatorial algorithm that solves the Ssrp
problem in Õ(m

√
n + n2) time. They also showed a matching conditional lower bound via

Boolean Matrix Multiplication.
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▶ Lemma 5 ([8]). Let Bmm(n, m) be the time taken to multiply two n× n boolean matrices
with a total of m ones. Under the assumption that any combinatorial algorithm for Bmm(n, m)
requires mn1−o(1) time2, any combinatorial algorithm for Ssrp problem requires Ω(m

√
n)

time.

It may seem that the algorithm of Chechik and Cohen [8] is nearly optimal. It is indeed
the case if the output size is O(n2). However, for a low-diameter graph, this extra additive
factor seems unnecessary. If the graph is dense (m ≥ n3/2), then the n2 factor is subsumed
by the first term m

√
n. Thus, when m < n3/2 and the graph has a low diameter, can we

improve the running time of the Ssrp problem? For such a graph, the algorithm of Chechik
and Cohen [8] is not optimal. Similar to [8], Gupta et al. [18] also designed an algorithm for
the Ssrp problem. Even this algorithm has the running time Õ(m

√
n + n2) – though it uses

an entirely different approach compared to [8]. Thus, the main question is: can we remove
this extra additive factor of n2 from the running time of the Ssrp problem? In this paper,
we design such an algorithm:

▶ Theorem 6. There is a deterministic algorithm for Ssrp problem with a running time of
Õ(m

√
n + |R|) where |R| is the output size of Ssrp problem in G.

In the above theorem, |R| is the output size, thus an implicit lower bound on the
Ssrp problem. Using Lemma 5, we conclude that our algorithm is nearly optimal up to a
polylogarithmic factor.

To build an algorithm for the Ssrp problem, we first build a Sdo(1). Then, for each
t ∈ G and each e ∈ st path, we call Query(s, t, e) and output the answer. Thus, we claim
the following lemma:

▶ Lemma 7. If we can build a Sdo(1) with query time q in time T , then there is an algorithm
for Ssrp problem with a running time O(T + q|R|), where |R| is the output size in G.

The above lemma, along with Theorem 2 implies Theorem 6.

1.2 Related Work
Other related problems include the fault-tolerant subgraph problem. In this problem, we
want to find a subgraph of G such that the shortest path from s is preserved in the subgraph
after any edge deletion. Parter and Peleg [26] designed an algorithm to compute a single
fault-tolerant subgraph with O(n3/2) edges. They also showed that their result could be
easily extended to multiple sources. This result was later extended to dual fault by Parter
[16] with O(n5/3) edges. Gupta and Khan [19] extended the above result to multiple sources.
All the above results are optimal due to a result by Parter [25] which states that a multiple
source f -fault tolerant subgraph requires Ω

(
n2− 1

f+1

)
edges. Bodwin et al. [7] showed the

existence of a f -fault tolerant subgraph of size O
(

fn2− 1
2f

)
.

2 Preliminaries

Let G(V, E) be an undirected unweighted graph with a source s. Given two vertices u and v

in a graph H, unless otherwise stated, (uv)H denotes the shortest path from u to v in H. If
H = G, we will remove the subscript and the brackets – we will apply this policy for all the

2 In a RAM model with words of O(log n) bits.

ESA 2022



42:4 Near Optimal Fault Tolerant Distance Oracle and SSRP Problem

notations below. |uv|H denotes the length of the shortest path in H. Some of our graphs
will be weighted, even though G is unweighted. If H is weighted, then we will abuse notation
and use |uv|H to denote the weight of the shortest path from u to v in H. The edges and
vertices of H will be denoted by EH and VH , respectively. Additionally, mH and nH will
denote the number of edges and vertices in H, respectively. SptH(s) denotes the shortest
path tree from s in H. We can view the SptH(s) to be drawn from top to bottom with the
top vertex being s. For any two vertices u, v on the st path in SptH(s), we say that u is
before / above v if |su|H < |sv|H . Similarly, we say that u is after/below v if |su|H > |sv|H .
For an edge e in a weighted graph H, wtH(e) will denote the weight of e. Given two paths
(uv)H and (vw)H , the path (uv)H + (vw)H denotes their concatenation. P [u, v] denotes a
contiguous subpath of P starting at u and ending at v. Sometimes, we may also write the
interval [u, v] of P to denote P [u, v]. We say u comes before v on a path R starting from s,
if |R[s, u]| < |R[s, v]|. Similarly, we can define the term u comes after v on path R.

A replacement path R is the shortest path from s to t avoiding an edge e on st path.
There can be many replacement paths of the same length avoiding e. To ensure uniqueness,
we will use the following definition of replacement path3.

s

t

e

u

v

Figure 1 Replacement path with detour uv and detour point u.

▶ Definition 8 (Replacement Path). A path R from s to t avoiding e is called a replacement
path if (1) it diverges from and merges to the st path just once (2) its divergence point from
the st path is as close to s as possible. (3) it is the lexicographically smallest4 shortest
path in G satisfying (1) and (2).

We now define some terms related to replacement paths. (st⋄e)H denotes the replacement
path from s to t avoiding the edge e in H. We can generalize this notation to a replacement
path that avoids a set of edges. Thus, (st ⋄ F )H denotes the replacement path from s to t in
H avoiding a set F of edges. In our algorithm, after we find the replacement path (st ⋄ e)H ,
we will store its length in dH(s, t, e). Sometimes, we also want to store the length of (st⋄F )H .
In that case, we will store it in dH(s, t, F ).

▶ Definition 9 (Detour and Detour point of a replacement path). Let R = st ⋄ e. Then, the
detour of R is R \ st. That is, let us assume that R leaves st above e at a vertex u, and
merges back on st at vertex v after e, then detour of R is R[u, v]. Also, the vertex at which
the detour starts is called the detour point of R. So, u is the detour point of R or in short
Dp(R) = u.

3 This was referred to as preferred replacement path in [19].
4 Let P and P ′ first diverge from each other to x ∈ P and x′ ∈ P ′ respectively. If the index of x is lower

than x′, then P is said to be lexicographically smaller than P ′.
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Lastly, in our algorithm, we will need to find least common ancestor of any two vertices u

and v in SptH(s). Let LcaH(u, v) denotes the least common ancestor of u and v in SptH(s).
To find the Lca, we will use the following result:

▶ Lemma 10 (See [1] and its references). Given a tree T on n vertices, we can build a
data structure of size O(n) in O(n) time such that the least common ancestor query can be
answered in O(1) time.

3 Overview of our algorithm to build SDO(1)

We will use divide and conquer approach to build Sdo(1). This strategy has been previously
used for directed graphs in [16, 11]. However, simply using this strategy will not get us close
to our desired bound of Õ(m

√
n). For that, we need to combine this divide and conquer

strategy with an idea of Gupta and Singh [20]. This combination is one of the technical
contributions of the paper.

Like [16, 11], we use the following separator lemma to divide the graph G.

▶ Theorem 11 (Separator Lemma [16, 11]). Given a tree T with n nodes rooted at a source
s, one can find in O(n) time a vertex r that separates the tree T into edge disjoint sub-trees
M, N such that EM ∪ EN = ET , VM ∩ VN = {r} and n

3 ≤ |VM |, |VN | ≤ 2n
3 .

Without loss of generality, we will assume that s ∈ VM . Thus, r is the root of N . Also,
note that s and r may or may not be the same. Let GM and GN be the graph induced by
the vertices of M and N , respectively. There is one more important term that we will use in
our paper:

▶ Definition 12 (Primary Path P). Using the separator lemma, Spt(s) can be divided into
two sub-trees M and N with roots s and r. The path from s to r is called the primary path
and is denoted by P.

We now describe our data structure that we will build recursively. We can view the data
structure as a binary tree T . The root contains data structure for the entire graph G. We
will abuse notation and say the root is the graph G.

The left child of the root will contain the graph GM and some weighted edges – we will
describe the utility of these weighted edges in the next section. These weighted edges are not
in G but are added by our algorithm. We will then build a data structure for GM recursively.
The right child of the root will contain the graph GN , again with some weighted edges.

At the root of T , we store the following data structures. For each v ∈ G, set d(s, v) = |sv|.
Similarly, set d(r, v) = |rv|. For each v ∈ GN , set d(s, v, GN ) = |sv ⋄GN |. Similarly, for each
v ∈ GM , set d(s, v, GM ) = |sv ⋄GM |. All these quantities can be computed using a single
source shortest path algorithm in Õ(m + n) time. Additionally, we will find the length of all
replacement paths from s to r avoiding edges on the primary path P. This can be done in
Õ(m + n) time using5 [21]. We will set d(s, r, e) = |sr ⋄ e| for each edge e ∈ P.

We store the above data-structure in each node of T . If a node of T contains graph H,
then we can contruct the above data-structures in Õ(mH + nH) time. We now describe our
algorithm that finds replacements paths using T .

Let us see how we find and store lengths of the replacement paths at the root of T , that
contains graph G. First, we find the replacement paths for edges on the primary path. Let
R = st ⋄ e where e ∈ P . We define R to be either jumping or departing depending on whether
it merges back to the primary path or not.

5 This algorithm work for graphs with non-negative edge weights. And our graph may have weighted
edges.

ESA 2022



42:6 Near Optimal Fault Tolerant Distance Oracle and SSRP Problem

▶ Definition 13 (Jumping and Departing paths [11, 17]). Let R = st ⋄ e where e ∈ P . R is
called a jumping path if it uses some vertex u ∈ P after e. If the path is not jumping then it
is a departing path. If a replacement path is jumping, then it is called jumping replacement
path. Similarly, we define departing replacement path. See Figure 2 for a visualization of
these two kinds of paths.

s

r

t

e

P
GM

GN

(a) Departing Replacement Path.

s

r

GM

GN

e

t

P

t

(b) Jumping Replacement Path.

Figure 2 Departing and Jumping Replacement Path.

Note that, jumping or departing path is defined only when the edge fault is on the primary
path. Also, if a replacement path is departing, then the destination t cannot lie on P. In
Section 4, we will find all jumping replacement paths.

In Section 5, we design a new algorithm for finding and storing all departing replacement
paths. To this end, we will use the main idea in the paper of Gupta and Singh [20]. In [20],
the authors sampled a set of vertices with probability of O( 1√

n
). Then, for a vertex t ∈ G,

they find a sampled vertex near t on the st path. They call this vertex ts. Then, they show
the following important lemma, which is the main idea of their paper:

▶ Lemma 14 (Lemma 11 in [20]). The number of replacement paths from s to t that avoid
edges in sts path and also avoid ts is O(

√
n).

An astute reader can see that the definition of replacement paths in the above definition
looks very similar to departing replacement paths. We prove that this is indeed the case.
Thus, we can transfer the result in Lemma 14 to departing replacement paths. This is the
main novelty of the paper. The main technical result of Section 5 is as follows:

▶ Lemma 15. For each t ∈ G, all departing replacement paths to t can be found in
deterministic Õ(m

√
n) time. Moreover, the length of all such departing paths can be stored

in a data structure of size Õ(n
√

n) and can be queried in Õ(1) time.

4 Algorithm to build SDO(1): Replacement paths that are not
departing

In Section 5, we will find all and store all departing replacement paths. Thus, we just need
to concentrate on the replacement paths that are either jumping or the faulty edge e /∈ P.
We now divide remaining replacement paths depending on where the destination t and faulty
edge e lies. There are following cases:
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s

r

w

GM

GN

e

P

t

(a) e ∈ P.

r

t

e
P

GM

GN

(b) e /∈ P.

Figure 3 e ∈ GM and t ∈ GN .

4.1 e ∈ GM and t ∈ GN

This case itself can be divided into two cases depending on whether e lies on the primary
path or not.
1. e ∈ P (See Figure 3(a))

Let R = st ⋄ e. If R is departing then we will see how to find it in Section 5. So, assume
that R is jumping . This implies that R merges back to P at a vertex, say w, after
the edge e. Since t ∈ GN , st = sw + wr + rt. Thus, after merging with P at w, the
replacement path passes through r. In that case, |st ⋄ e| = |sr ⋄ e|+ |rt|. We can easily
find the right hand side of the above equality as we have stored d(s, r, e) = |sr ⋄ e| and
d(r, t) = |rt|.

2. e /∈ P (See Figure 3(b))
In this case, we claim that st ⋄ e = st. The st path has P as its prefix. Since P lies in
GM and survives after the deletion of e, st path remains intact.

4.2 e ∈ GM and t ∈ GM

Since both e and t lie in GM , one may think that we can recurse our algorithm in GM to
find st ⋄ e. If st ⋄ e completely lies inside GM , this is indeed the case. However, st ⋄ e may
also use edges of GN . To handle such cases, before recursing in GM , we will add weighted
edges to it. For each v ∈ GM , we will add an edge from r to v with a weight |rv ⋄GM |. We
have already calculated this weight, it is stored in d(r, v, GM ). Let the set of weighted edges
added to GM be called X. We now look at two cases, (1) e ∈ P and (2) e /∈ P.

4.2.1 e ∈ P
Let R = st ⋄ e be a jumping replacement path. We will show that st ⋄ e = sr ⋄ e + rt. As we
have calculated the length of both the paths in the right-hand side of the above equality,
there is no need to even recurse in this case. To prove the above equality, we first prove the
following simple lemma:

▶ Lemma 16. Let e ∈ P, t ∈ GM . Assume that the jumping replacement path R = st ⋄ e

uses some edges of GN . Then st ⋄ e passes through r.

Proof. Since R is jumping, it merges with P. There are two ways in which R can merge
with P.
1. R merges with P and then visits the edges of GN .

Let us assume that u is the last vertex of GN in the path R and R merges with P at
w. Since R first merges with P and then visits the edges of GN , u comes after w on R.

ESA 2022
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s

r

GM

GN

e

P

t

(a) e ∈ P, t ∈ GM and the
jumping replacement path uses
GN .

r

t e

P

s

GM

GN

(b) e ∈ GM \P, t ∈ GM and the
replacement path uses GN .

Figure 4 e ∈ GM and t ∈ GM .

Since w is below e on P, we claim that the sub-path wu of su survives in G \ e and is
also the shortest path from w to u. But wu path passes through r. Thus, st ⋄ e passes
through r by construction in Theorem 11.

2. R visits an edge of GN and then merges with P (See Figure 4(a))
In this case, we will show that R merges with P at r. For contradiction, let w be the vertex
at which R merges with P such that w ̸= r. Let u be the first vertex of GN visited by R.
Also, w lies after u on path R. Thus, the replacement path R = R[s, u]+R[u, w]+R[w, t].
Since w lies below e on P, wu sub-path of su does not contain e and is also the shortest
path from w to u. Thus, R[u, w] = uw. But uw path passes through r. This implies that
R merges with P at r contradicting our assumption that w ̸= r. ◀

We are now ready to prove the main lemma in this subsection.

▶ Lemma 17. Let e ∈ P and t ∈ GM . Assume that the jumping replacement path R = st ⋄ e

uses some edges of GN . Then |st ⋄ e| = |sr ⋄ e|+ |rt|.

Proof. Using Lemma 16, R passes through r. So, we have R = R[s, r] + R[r, t]. The first
summand on the right hand side of the above equality represent a path from s to r avoiding
e. Thus, |R[s, r]| = |sr ⋄ e|.

We will now show that |R[r, t]| = |rt|. Clearly |R[r, t]| ≥ |rt| as the first path avoid e

and the second path may or may not. We will now show that the second path also avoids
e which will imply that both paths are of same length. For contradiction, assume that rt

passes through e. Let us assume that there is a vertex w before the edge e on path P such
that rt = rw + wt. Thus, rw passes through e but wt avoids e. But then, there is a path R′

such that R′ = sw + wt which avoids e. We claim that |R′| < |R| contradicting the fact that
R is the replacement path from s to t avoiding e.

To this end,

|R|= |sr ⋄ e|+ |R[r, t]|
≥ |sr ⋄ e|+ |rt|
= |sr ⋄ e|+ |rw|+ |wt|
≥ |sr ⋄ e|+ |wt|

Since |sw| < |sr|, |sw| < |sr ⋄ e|
> |sw|+ |wt|
= |R′|.

This completes the proof of the lemma. ◀
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4.2.2 e /∈ P
In this case, we will show a path in GM ∪X such that it avoids e and has the same length
as st ⋄ e. Please see Figure 4(b) for a visualization of this case.

▶ Lemma 18. Let e ∈ GM \ P and t ∈ GM . Assume that the replacement path R = st ⋄ e

uses some edges of GN . Then there is a path in GM ∪X that avoids e and has length |st ⋄ e|.

Proof. Let us first prove that R can alternate between edges of GN and GM just once. To
this end, let u be the last vertex of GN visited by R. Thus, R = R[s, u] + R[u, t]. But the
shortest path su remains intact in G \ e as e /∈ P and the shortest su path passes through
r. This implies that R = R[s, u] + R[u, t] = R[s, r] + R[r, u] + R[u, t]. By construction,
the first path R[s, r] = sr and it completely lies in GM . The second path R[r, u] = ru and
it completely lies in GN . Let v be the vertex just after u in R. So, v ∈ GM . So we have
R = sr + ru + (u, v) + R[v, t]. By construction, R[v, t] completely lies in GM . Thus, R

alternates from edges of GN to GM just once.
From the above discussion R = R[s, r]+R[r, u]+(u, v)+R[v, t] = R[s, r]+R[r, v]+R[v, t].

The first and the last paths of the above equality completely lies in GM . By construction,
R[r, v] does not contain any edge of GM . Thus, R[r, v] is the shortest path from r to v

avoiding edges of GM , that is |R[r, v]| = |rv ⋄GM | = d(r, v, GM ).
Since we have added an edge from r to v with weight d(r, v, GM ), we will now show that

there is a path in GM ∪ X that avoids e and has same weight as R. Consider the path
R′ = R[s, r] + (r, v) + R[v, t]. The reader can check all the three subpaths lie completely
in GM ∪X. Moreover, (r, v) ∈ X is a weighted edge. Thus the weight of |R′| = |R[s, r]|+
wt(GM ∪X)(r, v) + |R[v, t]| = |R[s, r]|+ d(r, v, GM ) + |R[v, t]| = |R[s, r]|+ |R[r, v]|+ |R[v, t]| =
|R|. This completes the proof. ◀

4.3 e ∈ GN and t ∈ GM

In this case, st path completely lies in GM and thus survives. Thus, |st ⋄ e| = |st| = d(s, t).

4.4 e ∈ GN and t ∈ GN

In this case, we will recurse in GN . However, GN may not contain the source s if s ̸= r. In
that case, before recursing, we add a new source sN in GN . We also add some weighted edges
to GN . For each v ∈ GN , we add an edge from sN to v with a weight d(s, v, GN ) = |sv ⋄GN |.
Let this set of edges be called Y . Let us now show that we will find all the replacement paths
if we recurse in GN ∪ Y .

▶ Lemma 19. Let e ∈ GN and t ∈ GN . There is a path from sN to t in GN ∪ Y that avoids
e and has weight |st ⋄ e|.

Proof. Let R = st ⋄ e. Let us first prove that once R visits an edge of GN , it cannot visit
an edge of GM anymore. Let u be the last vertex of GM visited by R and v be the vertex
after u in R. Thus, v ∈ GN . Thus, R = R[s, u] + (u, v) + R[v, t]. By construction, R[v, t]
completely lies in GN . The shortest path su remains intact in G \ e as e ∈ GN and the
path su completely lies in GM . Thus, R[s, u] = su . So, the path R first visits only edges
of GM (in R[s, u]), then goes to GN (by taking the edge (u, v)) and then remains in GN (in
R[v, t]). Thus, R does not visit any edge of GM once it visits an edge of GN .

By the above discussion, R = R[s, u] + (u, v) + R[v, t] = R[s, v] + R[v, t] such that R[v, t]
completely lies in GN . Also, R[s, v] completely lies in GM except the last edge which has
one endpoint in GM and other endpoint v ∈ GN . Thus, R[s, v] = |sv ⋄ GN | = d(s, v, GN )
and we have R = sv ⋄GN + R[v, t].
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Now consider a path R′ that avoids e from sN to t in GN ∪ Y . We construct this path as
follows: we will first take the weighted edge sN → v and then the path R[v, t]. The reader
can check that these two subpaths completely lie in GN ∪ Y . The weight of this path is
|R′| = |sv ⋄GN |+ |R[v, t]| = d(s, v, GN ) + |R[v, t]| = |R[s, v]| + |R[v, t]| = |R|. ◀

4.5 One endpoint of e is in GM and the other is in GN and t ∈ G

This is an easy case as the st path survives in G \ e as st does not contain e. Thus, st ⋄ e = st

5 Departing Replacement paths

In the previous section, we have already found out a replacement path if it is jumping or
if the edge failure is not on the primary path. In this section, we will try to find the best
departing path after an edge failure. To this end, we define the following:

▶ Definition 20 (Candidate departing paths). Let e ∈ P and let D be the set of all path
avoiding e that do not use any vertex of P after e. P ∈ D is called the candidate departing
path for e, if among paths in D, P has the minimum length. In case there are many departing
paths avoiding same edge with same length, we will break ties using Definition 8.

Note that, a candidate departing path may or may not be a replacement path. In case it
is, we call it a departing replacement path. Also, P may be a candidate departing path for
all edges in an interval, say yz ∈ P, but may be a replacement path for a sub-interval of yz.
With this definition in hand, we will now find all candidate departing paths.

5.1 Finding all candidate departing paths
In the previous section, we added some weighted edges in the graph when we recurse. Thus,
there might be two types of edges in the graph – weighted and unweighted. The weighted
edges represent paths in the graph G, and the unweighted edges are present in G. G contains
only unweighted edges. However, the graph at an internal node of T , say graph Ĝ, may have
weighted as well as unweighted edges.

In the ensuing discussion, let Ĝ be the graph processed by our algorithm at some internal
node of T . In the graph Ĝ, we will assume that there is a source s. Let G be the parent of
Ĝ. In our algorithm, we partition G into two disjoint graphs and then recurse on it. If Ĝ is
the left child of G, then it includes a set X of weighted edges added by us in Section 4.2.
Similarly, if Ĝ is the right child of G then it includes a set Y of weighted edges added by us
in Section 4.4. Using the separator lemma, we will find the vertex r that partitions Spt

Ĝ
(s)

. Also, the primary path P = sr.
We now give an overview of our method to find candidate departing paths in Ĝ. To this

end, we will use the main idea in the paper of Gupta and Singh [20]. In [20], the authors
proved Lemma 14. Though they did not mention it, the paths in the Lemma 14 look very
much like the departing paths. Indeed, that lemma is more general than what the authors
originally intended it to be. The authors show the above lemma for a specific vertex ts, but
a careful reading of the paper suggests that the above lemma is true for any vertex on the st

path. We now generalise this lemma. However, there is one problem. The above result holds
only for an unweighted graph, whereas Ĝ is weighted. Thus, we cannot prove the above
lemma as it is. However, we will prove the following weaker lemma:
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▶ Lemma 21. Let Ĝ be the graph at an internal node in the binary tree T . Let s be the source
of Ĝ. For a destination t ∈ Ĝ, let p be any vertex on st path. The number of replacement
paths from s to t that avoid edges on sp path and also avoid p is O(

√
n).

Some discussion is in order. In an ideal case, the number of replacement paths that avoid
edges on sp and also avoid p should have been O(√n

Ĝ
). This result would have been similar

to Lemma 14. Unfortunately, we cannot prove this result as Ĝ is weighted. However, if we
just expand the weighted edge in the graph Ĝ, then we will get an unweighted graph. By
expanding, we mean that for each weighted edge, add the path that represents that weighted
edge. However, this process may increase the number of vertices in the graph to n. Now, we
can adapt Lemma 14. For an unweighted graph with n vertices, this lemma guarantees that
the number of replacement paths avoiding p will be at most

√
n. Indeed, this is our result in

Lemma 21. Interested reader can find the proof of this in the full version of the paper [13] as
it is an extension of the proof in [20].

Lemma 21 implies that there are only O(
√

n) replacement paths that have some special
properties which are similar to the properties of departing paths. So, our plan of action is as
follows:
1. Show that there are only O(

√
n) candidate departing paths to t in Ĝ. This will be done

by showing the similarity between the replacement paths in Lemma 21 and candidate
departing paths.

2. Show that we can find the lengths of all the candidate departing paths in Ĝ in O(m
Ĝ

√
n)

time. Additionally, we show that we can store the lengths in a compact data structure of
size O(n

Ĝ

√
n). Given any query Query(s, t, e) to this data-structure such that s, t ∈ Ĝ

and e is on the primary path of Ĝ, we can find the length of corresponding candidate
departing path in Õ(1) time.

This completes the overview of our algorithm for finding candidate departing paths.

5.2 Similarity between candidate departing paths and replacement paths
in Lemma 21

Let us first prove some simple results that will help us prove this section’s main idea.

▶ Lemma 22. Let t ∈ Ĝ and p = Lca(t, r). All the candidate departing paths from s to t

avoiding edges on sp path also avoid p. For any edge e on pr path , st ⋄ e = st.

Proof. Let R = st ⋄ e where e ∈ sp and R is departing. The detour of R must start above e

on P. Since R is departing, it can not merge with the path P again. So, it avoids p also.
The st path passes through p and does not use any vertex of P below p. So, removing

any edge on pr path does not disturb st path. So, for any edge e ∈ pr , st ⋄ e = st. ◀

We now show that the candidate departing paths and the replacement paths in Lemma 21
have the same property.

▶ Lemma 23. For any vertex t ∈ Ĝ, there are O(
√

n) candidate departing paths to t.

Proof. The proof of the lemma can be derived using Lemma 22 and Lemma 21 together.
For complete proof please see the full version [13]. ◀

Given the above lemma, we need to store O(
√

n) candidate departing paths to t in Ĝ. Before
designing an algorithm to find candidate departing paths, we first see how we plan to store
these paths in a compact data structure.
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5.3 The data-structure at each node of T
Let us first discuss a small technical detail that may be perceived as a problem but is not.
Our graph Ĝ is weighted. It stands to reason that even the primary path P in Ĝ maybe
weighted. Since candidate departing paths are only for the faults on the primary path, it
may not be clear what happens if the edge on the primary path is weighted. To this end, we
show that on any st path in Ĝ, all edges except may be the first one, are unweighted.

▶ Lemma 24. For t ∈ Ĝ, except may be the first edge of (st)
Ĝ

, all other edges of (st)
Ĝ

are
unweighted.

Proof. We will prove using induction on the nodes of T . In the root of T , we have the graph
G. Clearly, the graph G satisfies the property of the lemma. Let us assume using induction
that the parent of the graph Ĝ satisfies the property of the lemma. Let G be the parent of Ĝ.
Let s be the source in G. Thus, in the graph G, using the separator lemma, we find a r that
divides G into two parts. The path from s to r, say P is the primary path. By induction,
only the first edge of the primary path may be weighted. There are two cases:
1. Ĝ is the left child of G.

In this case, the source of Ĝ is also s. For each t ∈ Ĝ, it can be observed that the path
(st)G = (st)

Ĝ
. Using induction hypothesis, since (st)G satisfies the statement of lemma,

so does (st)
Ĝ

.
2. Ĝ is the right child of G.

There are two cases. When s = r, then we fall back in point(1). So, let us look at the
case when s ̸= r.
For a t ∈ Ĝ, by construction, (st)G passes through r. Thus, (st)G = (s̄r̄)G + (rt)G. In Ĝ,
we add a new source s. Also, we add a weighted edge from s to r in Ĝ. The weight of
this edge is |s̄r̄ ⋄ Ĝ|G. Also, (rt)G = (rt)

Ĝ
. This implies that there is path in Ĝ from s to

t, (s, r) + (rt)
Ĝ

. By induction, we claim that on this path except (s, r), all the edges are
unweighted. ◀

Using the above lemma, all except the first edge of the primary path are unweighted.
The weighted edges represent edges for which we have already found candidate departing
paths at the parent or an ancestor of Ĝ. Thus, we will only find candidate departing paths
for unweighted edges in P. In the ensuing discussion, whenever we mention a path avoiding
an edge on the primary path, it will always refer to an unweighted edge.

We now prove some simple lemmas that will help us build data structures for candidate
departing paths.

▶ Lemma 25. Let R and R′ be two different candidate departing paths from s to t avoiding
edges e and e′ respectively on the path P. If e lies above e′ on P, then |R| > |R′|.

Proof. The detour of the candidate departing R starts before e, and once it departs, it does
not merge with P again. As e lies above e′ on P, R also avoids e′. If |R| ≤ |R′|, then by
Definition 8, R must be the candidate departing path avoiding e′, leading to a contradiction.
So, it must be the case that |R| > |R′|. ◀

▶ Lemma 26. Let R be a candidate departing path. Let yz be the maximal subpath of P
such that R is the candidate departing path for edges in yz. Then Dp(R) = y.

Proof. For complete proof of the lemma please see the full version [13]. ◀

The above lemma states that if R avoids edges in yz, then the detour of R necessarily starts
from y. We will now prove the contrapositive of the Lemma 25.
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▶ Lemma 27. Let R and R′ be two different candidate departing paths from s to t. If
|R| > |R′|, then Dp(R) lies above Dp(R′) on P.

Proof. For complete proof of the lemma please see the full version [13]. ◀

We will now use the above lemmas and our deduction to build a compact data-structure
for all candidate departing paths. To this end, we will store an array Dep(t) for each
t ∈ Ĝ. Dep(t) will store candidate departing paths from s to t in increasing order of their
lengths. By Lemma 23, there are O(

√
n) such paths. let us denote them by R1, R2, . . . , Rk

where k = O(
√

n). For any two consecutive candidate departing paths Ri and Ri+1, using
Lemma 27 and Lemma 26, we claim that Ri+1 is the candidate departing path avoiding
edges in [Dp(Ri+1), Dp(Ri)] on the primary path P . Since the size of Dep(t) = O(

√
n), the

total size of Dep data-structure is bounded by O(n
Ĝ

√
n).

▶ Lemma 28.
∑

t∈Ĝ
size of Dep(t) = O(n

Ĝ

√
n)

5.4 Finding and storing all candidate departing paths efficiently
Let us first describe the setting that will be used throughout this section. At an internal
node Ĝ of T , we are planning to find all candidate departing paths from the source s. To
this end, we will find a vertex r that will divide Spt

Ĝ
(s) roughly equally. Also, P = sr.

To find all candidate departing path, we will build an auxiliary graph G which we will
build incrementally. The source in this graph is (s). All other vertices in G are tuples of the
form (v, |R|), where v ∈ Ĝ\P and R is a candidate departing path to v. During initialization,
we will add (v, |sv|

Ĝ
) in G for each v ∈ Ĝ \ P. Also, there will be an edge from (s) to

(v, |sv|
Ĝ

) with weight |sv|
Ĝ

. We will show the following property at the end of our analysis.

▶ Property 29. Let R be the candidate departing path to v avoiding edge on the subpath yz

of P. Then, there is a vertex (v, |R|) in G. Moreover the shortest path from (s) to (v, |R|) in
the graph G is of length |R|, that is |R| = |(s)(v, |R|)|G

In Lemma 30, we will show that Property 29 is true for all the nodes added during
initialization. Also, we will create Dep(v) for each v during intialization. We will store
candidate departing paths in Dep(v) in increasing order of lengths. Given a departing path
R, we will assume that we will store the following information about R in Dep().
1. The endpoints of R.
2. The weight of path R.
3. The last edge of R and its weight.
4. Dp(R).

After initialization, we will run a variant of Dijkstra’s algorithm in G. To this end, we
will construct a min-heap H in which we will store all the departing paths that we have
discovered at any point in the algorithm. We use the first two points of Definition 9 to
select the minimum element from H,i.e., given two candidate departing paths R and R′, R

is smaller than R′ if |R| < |R′| or |R| = |R′| and Dep(R) is closer to s than Dep(R′). If
Dep(R) = Dep(R′), then we can break ties arbitrarily.

We now explain the adaptation of Dijkstra’s algorithm. After initialization,for each
(v, |sv|), and for each neighbor neighbor w of v, we add the departing path sv + (v, w) in H

if w /∈ P. Then, we go over all the elements of the heap till it is empty. Let us assume that
R is the minimum element of the heap and it ends at v and (u, v) ∈ Ĝ is the last edge of R.
This implies that R was added in H while processing a candidate departing path for u. Let
this path be Ru. Thus, there is a node (u, |Ru|) in G. We now need to decide whether R is
a candidate departing path for v.
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To this end, we look at the last candidate departing path added by us in Dep(v), let it
be Q. We then check if the d

Ĝ
(s, Dp(R)) is less than d

Ĝ
(s, Dp(Q)). If yes, then we have

found a new candidate departing path to v that avoids all edges in [Dp(R), Dp(Q)] of P.
Thus, we will add the vertex (v, |R|) in the graph with an edge of weight wt

Ĝ
(u, v) from

(u, |Ru|). Also, for each neighbor w of v, we will add the departing path R + (v, w) to the
heap if w /∈ P. For the formal pseudocode, see the full version [13] of this paper.

5.5 Correctness and running time of the algorithm storing candidate
departing paths

We claim that, the time taken to construct the Dep() data-structure at a node of the binary
tree with graph Ĝ is O(m

Ĝ

√
n). Moreover, the size of the data-structure is O(n

Ĝ

√
n). At

first, we prove that our algorithm stores correct lengths of all candidate departing paths.

▶ Lemma 30. Let R be a candidate departing path to v where v ∈ Ĝ \ P. Let yz be the
maximal subpath of P such that R is the candidate departing path for edges in yz. Then
(v, |R|) ∈ G and satisfies Property 29.

Proof. We will prove the above lemma using induction on the weighted distance of a vertex
from (s) in G. During initialization, for each v ∈ G \ P, we add a vertex (v, |sv|

Ĝ
) ∈ G.

Also, the weight of the edge from (s) to (v, |sv|
Ĝ

) is |sv|
Ĝ

. We claim that the statement of
the lemma is true for the smallest candidate departing path to v. Indeed, using Lemma 22,
(sv)

Ĝ
is the a replacement path for the edges in subpath pr on P where p = Lca

Ĝ
(v, r).

Also, (sv)
Ĝ

is the smallest replacement path because it is the shortest path from s to v in Ĝ.
Thus, the base case is true for all v ∈ Ĝ \ P.

Let us now assume that the statement of the lemma is true for all candidate departing
paths to v with length < |R|. Let the second last vertex of R be u. Since R is a candidate
departing path, even R \ (u, v) is a candidate departing path. Since R[s, u] has length less
than R, by induction hypothesis, there is a vertex (u, |R \ (u, v)|) in G. Also there is at least
one replacement path in Dep(v) of weight less than |R| – as we have added (sv)

Ĝ
in Dep(v).

Let Q be a candidate departing path of largest weight less than the weight of R. Let us also
assume that Q avoids edge on subpath zz′ ∈ P. Thus, using Lemma 26, Dp(Q) = z. Since
|Q| < |R|, using Lemma 27, Dp(R) lies above Dp(Q) on P. Using the induction hypothesis,
there is a vertex (v, |Q|) in G.

We will now show that our algorithm will add (v, |R|) in G. There are four cases:
1. Our algorithm does not add any vertex for v after (v, |Q|)

But our algorithm does process the vertex (u, |R \ (u, v)|). Thus, it will check each
neighbour of u. When it checks the neighbor v, it will add the departing path R in the
heap H. Thus, we will add the vertex (v, |R|) in G while processing R, leading to a
contradiction.

2. Our algorithm adds a vertex (v, |R′|) where Dp(R) lies above Dp(R′) on P
We claim that the weight of R′ cannot be less than the weight of R as then R is not
the candidate departing path for all the edges in Dp(R′)z subpath, contradicting the
statement of the lemma. So let us assume that |R| = |R′|. But then Dp(R) lies above
Dp(R′) on P. Thus, the min-heap will give preference to the replacement path R first,
and our algorithm will make the vertex (v, |R|). Again a contradiction.

3. Our algorithm adds a vertex (v, |R′|) where Dp(R) lies below Dp(R′) on P
Again, we claim that the weight of R′ cannot be less than the weight of R as then it R is
not the replacement path for all edges in yz subpath, contradicting the statement of the
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lemma. So let us assume that |R| = |R′|. But Dp(R′) is closer to s than Dp(R). Thus,
R′ should be the candidate departing path avoiding edges of yz. This contradicts our
assumption that R is the candidate departing path for all edges in yz.

4. Our algorithm adds a vertex (v, |R′|) where Dp(R) = Dp(R′)
|R′| cannot be less than |R| as otherwise our algorithm will give preference to path R.
But, if |R| = |R′|, then there is a vertex (v, |R′|) = (v, |R|) in G.

So, we add the node (v, |R|) in the graph G. At that moment, we also adds an edge from
(u, R \ (u, v)) to (v, |R|) in G with weight wt

Ĝ
(u, v). Using induction, |(s)(u, R \ (u, v))|G =

|R \ (u, v)|. Thus, |(s)(v, |R|)|G = |R \ (u, v)| + wt
Ĝ

(u, v) = |R|. This completes our
proof. ◀

Let’s determine the running time of our algorithm. Using Lemma 23, for each v ∈ Ĝ, we
make O(

√
n) entries in Dep(v). In other words, we make O(

√
n) nodes of type (v, )̇ in G.

Whenever we add a node (v, |R|) in G, we see all the edges of v. This implies that the total
time taken to process all the vertices of v in G is O(

√
n deg

Ĝ
(v)). Summing it over all the

vertices gives us the bound of O(m
Ĝ

√
n). Using a similar calculation, the total size of our

data-structure for Ĝ is O(n
Ĝ

√
n). Thus, we claim the following lemma:

▶ Lemma 31. The time taken to construct the Dep() data-structure at a node of the binary
tree with graph Ĝ is O(m

Ĝ

√
n). Moreover, the size of the data-structure is O(n

Ĝ

√
n).

5.6 Querying for a candidate departing path
In this section, we describe how to find a candidate departing path using our data-structure
Dep(). Let t ∈ Ĝ \ P and e ∈ P be an edge on st path. Let st ⋄ e be a candidate departing
path, then we can find it using the algorithm given in the full version of this paper [13].

In this algorithm, we perform a binary search in Dep(t) to find two consecutive paths
R and Q such that e lies in the interval [Dep(R), Dep(Q)] of P. Using Lemma 27 and
Lemma 26, R is the candidate departing path avoiding e.

6 Construction time, size and query time of the SDO(1)

In this section, we show that the construction time of our algorithm is Õ(m
√

n). We also
bound the size of the data-structure of our algorithm by Õ(n

√
n). We also design a query

algorithm with a query time Õ(1). This proves the main result of the paper.
At the root of T , except for the recursions, we claim that constructing all other data-

structures take O(m
√

n) time. This is beacuse, the construction time is dominated by the
time to construct Dep(), which using Lemma 31, is O(m

√
n). At the second level of the

tree T , we have two nodes. In the left child, we have the graph GM ∪ X. This graph
has mGM

+ nGM
edges and nGM

vertices. Again applying Lemma 31, the time taken to
construct all the data-structures in the left child of root is (mGM

+ nGM
)
√

n. In the right
child of the root, we have the graph GN ∪ Y . This graph has mGN

+ nGN
edges and nGN

+ 1
vertices. The +1 is for the new root in GN . Again applying Lemma 31, the time taken to
construct all the data-structures in the right child of root is (mGN

+ nGN
)
√

n. Thus, the
total time taken at the second level of T is = (mGM

+ nGM
)
√

n + (mGN
+ nGN

)
√

n. Since
mGM

+ mGN
≤ m and nGM

+ nGN
= n + 1, the total time taken is ≤ (m + n + 1)

√
n. Note

that nGM
+ nGN

= n + 1 because r is shared both by GM and GN . Since, the number of
nodes in T is O(n), we claim that the number of vertices shared by sibling graphs at any
level of T is O(n). Similar to the second level, we claim that the time taken at level ℓ is
Õ((m + n+ #nodes shared at level ℓ)

√
n) = Õ((m + n)

√
n). We can assume that our graph
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G is connected as we need not even process a component that is not reachable from our
source s. Thus, the previous running time bound is equal to Õ(m

√
n). Since the height of

the tree is Õ(1), the total time taken to construct our data-structure is Õ(m
√

n). Using the
same argument, we can bound the size of the data-structure of our algorithm by Õ(n

√
n).

6.1 The Query Algorithm
In this section, we will design our query algorithm that will take s, t, e as its parameter.
Additionally, it also takes the root of the tree T as a parameter which contains data structures
of the main graph G. The algorithm then basically goes over all the possible cases described
in Section 4 (Please see algorithm 3). Also, the algorithm compares that output with the
best candidate departing path given by and return the minimum among them.

Algorithm 1 Query(s, t, e, T ).

1 mindist←−∞;
/* Section 4.1 */

2 if e ∈ GM , t ∈ GN then
3 if e ∈ P then

/* if st ⋄ e happens to be departing */
4 mindist← Query-DEP(s, t, e) using Dep() data-structure at T ;

/* if st ⋄ e happens to be jumping */
5 mindist←− min{mindist, |sr ⋄ e|+ |rt|}
6 else
7 mindist← |st|

/* Section 4.2 */
8 if e ∈ GM , t ∈ GM then

/* Section 4.2.1 */
9 if e ∈ P then

/* if st ⋄ e happens to be departing */
10 mindist← Query-DEP(s, t, e) using Dep() data-structure at T ;

/* if st ⋄ e happens to be jumping */
11 mindist←− min(mindist, |sr ⋄ e|+ |rt|)

/* Section 4.2.2 */
12 if e ∈ GM \ P then
13 mindist←− Query(s, t, e, left child of T )

/* Section 4.3 */
14 if e ∈ GN , t ∈ GM then
15 mindist← |st|;

/* Section 4.4 */
16 if e ∈ GN , t ∈ GN , then
17 mindist← Query(s, t, e, right child of T );

/* Section 4.5 */
18 if one endpoint of e is in GM and other in GN then
19 mindist← |st|;
20 return mindist;
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The reader can see that the time taken by the algorithm (excluding recursion) is Õ(1).
Since, at each step in this algorithm, we either go to the left child of a node in the tree
T or to the right child, the number of recursive steps in this algorithm is Õ(1) or to be
specific O(log n). Then for each child the call to Query-DEP(s, t, e) takes O(log n) time.
This implies that the running time of the query algorithm is O(log2 n) or Õ(1). Thus, we
have proven the main theorem of the paper.
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