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Abstract
Motivated by a real-world vehicle routing application, we consider the maximum-weight independent
set problem: Given a node-weighted graph, find a set of independent (mutually nonadjacent) nodes
whose node-weight sum is maximum. Some of the graphs arising in the vehicle routing application
are large, having hundreds of thousands of nodes and hundreds of millions of edges.

To solve instances of this size, we develop a new local search algorithm, which is a metaheuristic
based on the greedy randomized adaptive search (GRASP) framework. This algorithm, named
METAMIS, uses a wider range of simple local search operations than previously described in the
literature. We introduce data structures that make these operations efficient. A new variant of
path-relinking is introduced to escape local optima and so is a new alternating augmenting-path
local search move that improves algorithm performance.

We compare an implementation of our algorithm with a state-of-the-art publicly available code
on public benchmark sets, including some large instances. Our algorithm is, in general, competitive
and outperforms this openly available code on large vehicle routing instances of the maximum
weight independent set problem. We hope that our results will lead to even better maximum-weight
independent set algorithms.
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1 Introduction

Given an undirected graph G = (V, E), where V is the set of nodes and E the set of edges,
an independent set S ⊆ V is a set of mutually non-adjacent nodes of graph G. If each node
v ∈ V is assigned a weight wv, a maximum-weight independent set (MWIS) of nodes S∗ ⊆ V

is an independent set whose sum of weights, W (S∗) =
∑

v∈S∗ wv is maximum. We denote
n = |V | and m = |E|.
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45:2 A Local Search Algorithm for Large Maximum Weight Independent Set Problems

A simple way to state MWIS is as an Integer Linear Program (ILP). Let xv be a binary
decision variable such that xv = 1 if node v ∈ S ⊆ V and xv = 0 otherwise, where S is an
independent set of nodes. A simple integer programming (IP) formulation for selecting a
maximum-weight independent set of nodes is

max
∑
v∈V

wvxv

subject to
xu + xv ≤ 1,∀ (u, v) ∈ E

xv ∈ {0, 1},∀ v ∈ V.

A well-known way to strengthen the formulation is to add clique inequalities. Let C be a
subset of all cliques in the input graph. We add the constraints∑

v∈Q

xv ≤ 1 ∀Q ∈ C.

While these constraints are redundant for the ILP problem, they strengthen the linear
programming relaxation of the problem.

MWIS is a classical optimization problem that has been extensively studied and has
many applications [2]. Solving the MWIS problem is hard. It is one of Karp’s original
NP-complete problems [10, 12]. The problem is also hard to approximate [11]. Over the years,
heuristics have been the workhorse for solving large instances of the maximum independent
set problem approximately [18]. In particular, the most successful heuristics have been the
ones based on metaheuristic algorithms, such as GRASP [8], tabu search [9], and iterated
local search [1, 17].

In this paper we introduce METAMIS, a new metaheuristic algorithm for the MWIS prob-
lem. METAMIS is based on the greedy randomized adaptive search procedure – GRASP [20],
with truncated path-relinking [19]. GRASP is a procedure consisting of iterations made
up from successive constructions of a greedy randomized solution and subsequent iterative
improvements of it through a local search, and path-relinking is a technique for escaping
local optima by generating intermediate solutions along a path that connects two known
high-quality solutions. Our motivation is a long-haul vehicle routing (VR) application that
yields large MWIS problems, some with close to 900 thousand nodes. Compared to bench-
mark instances used in previously published work, the VR-MWIS instances are often larger
and have a very different structure. We conduct experiments with METAMIS on MWIS
instances arising in different applications, including on our VR-MWIS instances and on other
publicly available ones. Due to page limit, we omit some of the details of our implementation.
See the full version of the paper [4] for details.

We start with known local search moves and perturbation techniques and introduce new
local search moves with data structures to make these moves efficient. We also introduce
improved perturbation technique variants. Although our algorithm is a general-purpose
heuristic, our motivation comes from the VR problem. A variant of our algorithm takes
advantage of the application-specific features. In this application, we have a good initial
solution which can be used to for warm-start. In addition, graphs from this application come
with a large set of known cliques. This allows us to get a good relaxed LP solution, which
we use to guide local search.

Due to the page limit, we omit some of the algorithm and implementation details and
focus only on the benchmark from our motivating vehicle routing application. We also omit
some intuition and discussions. The full paper [4] covers this material.
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2 High Level Description

The MWIS algorithm is an iterative local search algorithm based on the Greedy Randomized
Adaptive Search Procedure (GRASP) metaheuristic, which is a general metaheuristic for
combinatorial optimization [6, 7, 20]. The algorithm also uses path-relinking to escape local
optima [15, 20].

Algorithm 1 Algorithm Overview.
1: procedure MWIS(G = (V, E, w), maxTime, S0)
2: S ← localSearch(G, S0)
3: ES ← {} ▷ Empty set of elite solutions
4: ES.add(S)
5: while t ≤ maxTime do
6: SG ← findRandomizedGreedySolution(G)
7: if LsBeforeRelinking then ▷ Optional local search
8: SG ← localSearch(G, SG)
9: end if

10: Se ← ES.randomEliteSolution()
11: S′ ← pathRelinking(G, SG, Se)
12: S′ ← localSearch(G, S′)
13: ES.tryToAddAndEvict(S′) ▷ Add solution to elite set, if full evict similar

solution of lesser value (or don’t insert if no worse elite solution exists)
14: end while
15: return ES.bestSolution()
16: end procedure

Algorithm 1 gives a high-level view of the algorithm. In addition to the graph, the input
to the algorithm includes a stopping criterion, e.g., a time limit, and an initial solution.
When no such solution is available, one can find a solution using the randomized greedy
algorithm described later in this section. The algorithm applies local search to improve the
initial solution and enters the main loop. At termination of the local search procedure, we
are at a local optimum.

The algorithm maintains a set of elite solutions ES, which are the best solutions we
have seen so far. We add a solution to ES immediately after a local search, so the elite
solutions are always locally optimal. At each iteration of the loop, we first attempt to escape
the local optimum corresponding to the elite solution. In this process, we can decrease the
objective function. To escape a local optimum, we first find a randomized greedy solution
SG. Optionally, we apply local search to improve SG. Then we apply path-relinking to SG

and a random elite solution from ES to find a new solution S′. Then we apply local search
to improve S′, and update S∗ if we find a better solution.

For the VR-MWIS instances, the algorithm variant without the optional local search
(on line 8) works better, so we omit the search for these instances. We also set the size of
the elite set ES to 1, so we only retain the best solution. This setting works best for the
VR-MWIS instances. For other problem families, different parameter choices were found to
work better [13, 14].

ESA 2022



45:4 A Local Search Algorithm for Large Maximum Weight Independent Set Problems

2.1 Greedy Algorithm
The GRASP framework needs a randomized greedy procedure that produces diverse initial
solutions.

2.2 Local Search

Algorithm 2 Local Search Procedure
1: procedure LocalSearch(G = (V, E, w), S, numIterations)
2: i← 1
3: S∗ ← S

4: while i ≤ numIterations do
5: Si ← {} ▷ Empty solution
6: while w(Si) < w(S) do ▷ Repeat until no improvement is found
7: Si ← S

8: S ← starOneMoves(G, S)
9: S ← AAPMoves(G, S)

10: S ← oneStarMoves(G, S)
11: if w(Si) < w(S) then break ▷ Solution improved
12: end if
13: S ← twoStarMoves(G, S)
14: end while
15: if w(S) > w(S∗) then
16: S∗ ← S

17: i← 1
18: else
19: S ← perturb(S)
20: end if
21: end while
22: return S∗

23: end procedure

The local search procedure, outlined in Algorithm 2, repeatedly performs local moves with
positive gain. We aim to find positive gain (improving) moves until we reach a local optimum,
and then we perform a random perturbation of the solution. If we find an improving move,
we apply it immediately. We use a subset of (x, y) moves and alternating augmenting path
moves (AAP-moves). While the (x, y) moves have been studied previously, the AAP moves
are new. We describe the moves at a high level in this section, and give a detailed description
in Section 3.

An (x, y) move removes x nodes from the solution and adds y nodes to it while maintaining
solution independence. We use ∗ instead of x or y to denote an arbitrary positive integer.
Note that the number of applicable moves increases significantly as x and y increase. Previous
algorithms used (x, y) moves for small values of x and y. In particular, the algorithm of [17]
uses (∗, 1) and (1, ∗) moves. Our algorithm uses (∗, 1), (1, ∗), and (2, ∗) moves. The number
of (2, ∗) moves is large. We use data structures and operation ordering that make improving
moves more likely, which makes our algorithm more efficient. If an (x, y) move renders S

non-maximal, we add nodes without a neighbor in S to the independent set in random
order until S becomes maximal. Note that through this update sequence, S remains an
independent set.
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A (∗, 1) move inserts a single node u into the current solution S and removes its neighbors
from S. Procedure starOneMoves(G, S) applies the (∗, 1) moves until these is no such
improving move.

A (1, ∗) move removes a node v from S and adds to S an independent subset I of the
nodes whose only neighbor in S before the removal is v. Usually one has multiple choices of
independent sets to add. A good heuristic is to add a maximum weight set of the neighbors
that maintains independence. This is done when the number of neighbors is small (at
most seven in our experiments). We use a naive recursive algorithm: Pick a node u in the
neighborhood and recursively solve two subproblems. The first subproblem results by adding
u to S and deleting its neighbors from the graph. We get the second subproblem by deleting u

without adding it to S. The better of the two corresponding solutions is returned. Procedure
oneStarMoves(G, S) applies the (1, ∗) moves until there is no such improving move.

A (2, ∗) move removes two nodes, u and v, from S and adds to S an independent subset
I of the nodes whose only neighbors in S before the removal is u, or v, or both u and v.
Generally, this set is significantly larger than the corresponding set for the (1, ∗) moves, and
the recursive operation used for the (1, ∗) moves is too expensive. One could use greedy
addition, but in our experiments a random addition, that adds to S a random node from
I that has no neighbors in S, was better. Procedure twoStarMoves(G, S) applies the (2, ∗)
moves until it finds an improving move or there is no improving (2, ∗) move. Note that unlike
the corresponding procedures for other moves, twoStarMoves exits as soon as it finds an
improving move.

Our idea for AAP moves comes from matching algorithms [5], although we use a somewhat
different definition. Given an independent set S, we define an AAP P as follows. Let I = S∩P

and O = P − S be nodes of P that are in and out of S, respectively.
1. if v ∈ I, then the neighbors of v on P are in O,
2. if v ∈ O, then the neighbors of v on P are in I,
3. if we flip the path, i.e., set S = S − I + O, S remains an independent set.
An AAP move finds an alternating augmenting path, flips it, and looks at the change in
w(S). If the change is positive, we accept the AAP move; otherwise we reject the move. For
efficiency, we apply a limited number of AAP moves. Procedure AAPMoves(G, S) applies
the AAP moves until there is no such improving move or we reach the limit on the number
of AAP moves.

During an execution of the algorithm, most local search moves do not improve solution
quality and thus do not change the solution. Note that complexity of evaluating (2, ∗)
moves is significantly higher than those for the other moves. Our local search repeatedly
applies starOneMoves, AAPMoves, and oneStarMoves procedures while these procedures find
improving moves. If we find an improving move, an immediate application of these procedures
may find additional improvements due to neighborhood changes, so we iterate. Only when
these procedures fail to find improving moves we call twoStarMoves. If twoStarMoves fails
to improve the solution, we perform a random perturbation.

The perturbation adds a small set of random nodes to S and removes their neighbors.
After perturbing, we resume local search. The local search algorithm terminates if there has
been no improvement to the best solution after a predefined number of iterations.

2.3 Using the Relaxed LP Solution
In our VR application, we use clique information and get a relaxed LP solution to the relaxed
problem. The solution assigns a value xv ∈ [0, 1] to each node v. We use these values to
bias random node selection in the perturbation step of the local search. When performing

ESA 2022



45:6 A Local Search Algorithm for Large Maximum Weight Independent Set Problems

a random perturbation in Algorithm 2, we add a node v to the solution with probability
proportional to xv + ϵ. Here ϵ is a positive value (set to ϵ = 0.005) that ensures that each
node can be picked, even if xv = 0. This guides the local search by biasing route selection
toward nodes with higher fractional relaxed solution value. Using prefix sums we can pick a
random node in time O(log |V |): We draw a random floating-point number z ∈ [0,

∑
v∈V xv)

and use binary search on the prefix sum array to pick a node such that the sum up to but
excluding the node is less than z, and the sum up to and including the node is greater or
equal to z.

2.4 Adaptive Path-relinking
Path-relinking is a technique for escaping local optima by generating intermediate solutions
along a path that connects two known high-quality solutions. We discuss this technique in the
context of MWIS and reversible local search moves. Define an undirected graph associated
with the search space MWIS, where the nodes correspond to feasible solutions and the edges
correspond to local search moves that transform the solution corresponding to the tail of
the edge to the solution corresponding to the head. A path in this graph corresponds to a
sequence of the moves that transform the solution at one end of the path into a solution
at the other end. Note that the moves need not improve the objective function value. The
underlying assumption of path-relinking is that if the end-points of a path correspond to high
quality solutions, then the path will contain previously undiscovered high-quality solutions.

For our local search, given two solutions S and T , we can transform S into T as follows.
Initialize S′ = S. At every step, we do either a (∗, 1) move or a (1, ∗) move. In the former
case, pick a node v ∈ T − S′, add v to S′, and remove neighbors of v from S′. In the latter
case, pick a node v ∈ S′, v ̸∈ T and remove v from S′. Let N(v) denote the set of neighbors
of v. Then we iterate over nodes u in N(v) ∩ T . If N(u) ∩ S′ = ∅, we add u to S′.

For large graphs, finding good solutions is expensive. Instead of combining two good
solutions, we apply path-relinking to combine the randomized greedy solution SG with the
current best solution S∗, which is locally optimal. While S∗ is a good solution, SG may not
be good, and the solutions on the path far from S∗ are usually not good either. We modify
path-relinking so that it examines only a prefix of the path close to S∗. The prefix is small
enough so that the solution quality remains good, yet big enough so that the subsequent local
search will not end up with a locally optimal solution equivalent to S∗. This an adaptive
variant of the truncated greedy path-relinking described in [19].

The first modification is to choose the node x to add to S or to remove from S greedily.
We pick a node that maximizes the weight of the solution we get after the move. A second
modification is to do a truncated path-relinking: we stop the process after a certain number
of steps, which we adjust adaptively. We start with a small limit on the number of steps and
increase the limit if the algorithm gets stuck in a local optimum of weight w(S∗).

3 Data Structures and Optimizations

For large graphs, the choice of data structures is important for the efficiency of the algorithm.
When making trade-offs between performance on sparse and dense graphs we favor the former
because our motivating application yields relatively sparse graphs.

Several of our data structures use sets of objects. We use a representation of sets based
on hashing. This representation allows constant time addition, deletion, and membership
query, and linear time iteration over all set elements. We also assume that if we add an
element to the set that already contains the element, the set does not change. Similarly, if
we delete an element not in the set, the set does not change.
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3.1 Input Graph

The input graph is static: it does not change throughout the execution. We assign to the
nodes of the graph integer IDs from [0, . . . , n− 1] and place them in an array, with node i in
position i. Each node has an array of edges incident to it. This places the edges incident to
a node in contiguous memory locations, assuring that a common operation of scanning an
edge list has a good memory locality. We sort edges by IDs of the head node. This allows us
to do neighborhood queries (e.g., “Is v in N(u)?”) in time logarithmic in the degree of u

using binary search.
Note that using sets to represent neighborhoods would give constant neighborhood queries

and linear time edge list scan. However, the constant factors, both in terms of running time
and memory consumption, associated with hashing are large. In addition, we lose the locality
in edge list scans. For graphs arising from our motivating application, the array-based
implementation is significantly faster than the one based on sets.

3.2 Interstate Graph

The interstate graph makes the local search operations more efficient. To describe this graph,
we need a few definitions.

For a node u ∈ S, (u, v) ∈ E, we say that v is a 1-tight neighbor of u if N(v) ∩ S = {u}
[1]. Note that if we remove u from S, we can add to S any 1-tight neighbor of u.

Two nodes u, v ∈ S are mates if for at least one node w ̸∈ S, w has exactly two neighbors
in S: N(w) ∩ S = {u, v}. We call the node w a 2-tight neighbor of u and v. We say that w

is a 2-tight neighbor of u if u has a mate v such that w is a 2-tight neighbor of u and v. If
we delete u and v from S, we can replace them by an independent set of the union of three
sets: the set of the 1-tight neighbors of u, the set of 1-tight neighbors of v, and the set of the
shared 2-tight neighbors of u and v.

Our main data structure is the interstate graph GIS = (V, EIS , w). For GIS , the nodes
and node weights are the same as in the input graph G. The edge set EIS is changed
dynamically depending on the nodes in the current independent set S. EIS has three types
of edges:
1. e = (u, v) ∈ E, where u ∈ S and v is a 1-tight neighbor of u;
2. e = (u, w) ∈ E, where u ∈ S and w is a 2-tight neighbor of u;
3. e = (u, v), where u, v ∈ S are mates.
We represent the three edge types separately.
1. For every u ∈ S, we represent its 1-tight neighbors as sets. For v ̸∈ S that is a 1-tight

neighbor of u we add the 1-tight edge (v, u).
2. For every pair of mates u and v, we maintain a set of 2-tight neighbors of u and v. For

every 2-tight neighbor w ̸∈ S, we add the pair of 2-tight edges (w, u) and (w, v).
3. For every node v in S, we maintain a set Mv of its mates. Every mate w ∈Mv corresponds

to a mate edge (v, w).

3.3 Efficient Implementation of (x, y) Moves

In this section we show how to efficiently implement (x, y) moves using the interstate graph
and two additional optimizations, one for the (1, ∗) moves and another for (∗, y) moves. We
discuss maintenance of the interstate graph in Section 3.2.

ESA 2022
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To implement (∗, 1) operations efficiently, we use an idea from [17]. For every u ̸∈ S, we
maintain a value

∆(u) = w(u)−
∑

v∈S∩N(u)

w(v)

to speed up the (∗, 1) moves. Such a move is an improving move when ∆(u) > 0. We keep
a set S+ of the nodes u with ∆(u) > 0. Note that for an efficient implementation of (∗, 1)
moves, we need to update the vector ∆(·) and the set S+. We do this as follows. Every
time we add a node u to S, we remove u from S+. Then for each v ∈ N(u), v ̸∈ S, we
set ∆(v) = ∆(v) − w(u). Every time we remove u from S, we scan the edge list of u and
compute ∆(u). If ∆(u) > 0, we add u to S+. Also during the scan, for every neighbor v of u

such that v ̸∈ S, we increase ∆(v) by w(u), and if ∆(v) becomes positive, we add v to S+.
We have an improving (∗, 1) move if and only if S+ is non-empty. In this case, we can pick a
node u from S+ and apply the (∗, 1) move to it.

Since for every u ∈ S we maintain a set of its 1-tight neighbors as a hash set, we can
efficiently run the recursive or the greedy algorithm described in Section 2 on this set.
Similarly, since for every u ∈ S we maintain the set of its mates, we can iterate over all
mates of u. Furthermore, for a pair of mates u and v, we have the set of the common 2-tight
neighbors, and we can apply the randomized algorithm to this set.

Next we describe an optimization that prunes (1, ∗) and (2, ∗) moves that are unlikely
to improve the solution. For the (1, ∗) move that removes u, we evaluate the move only
if the 1-tight neighborhood of u changed since the last time we evaluated the move but
failed to improve the solution. We say that the neighborhood changed if we add u to S and
u has a non-trivial 1-tight neighborhood. Since our implementation of the (1, ∗) move is
deterministic and depends only on the 1-tight neighborhood, we know that the move will fail.
We maintain the set S1 of nodes u ∈ S whose 1-tight neighborhood changed but is not empty.
We pick nodes for (1, ∗) moves from S1. While initializing GIN , we initialize S1 to include
all nodes with non-trivial 1-tight neighborhoods. When we update GIN , we also update S1
(see Section 3.5).

For the (2, ∗) move, we maintain a set S2 of mate pairs {u, v} which are eligible for the
move. We delete a pair from S2 and evaluate the move that removes this pair from S. We
add a pair {u, v} to S2 when they become 2-tight mates, or when {u, v} are 2-tight mates
and their 2-tight neighborhood changes, or when they are 2-tight mates and the 1-tight
neighborhood of either u or v changes. Our implementation of the (2, ∗) move depends
only on the 2-tight neighborhood of the mates. However, the implementation is randomized.
Although it is possible that one evaluation of the move succeeds and another fails when
the 2-tight neighborhood stays the same, we assume this is unlikely and prune the move.
We maintain the set S2 of mates whose 2-tight neighborhood changed. We pick mates for
(2, ∗) moves from S2. While initializing GIN , we initialize S2 to all pairs of mates. When we
update GIN , we update S2 as well.

3.4 AAP Moves
For efficiency, we only look for alternating augmenting paths (AAPs) in the interstate graph.
The only edges on any AAP are either edges from members of S to their 1-tight and 2-tight
neighbors (as edges between 2-tight mates would not yield an alternating path). To limit the
number of AAP move evaluations, we start a search for an AAP from a 1-tight neighbor of
v ∈ S1 (S1 was introduced in Section 3.3). This way we guarantee that the move will not
decrease the cardinality of S, making the move more likely to succeed. The alternating path
initially contains v and its single neighbor u ∈ S. We grow the path as follows. Let u ∈ S be
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the last node on the current AAP, and let U be the set of nodes on the AAP that are in S

and Ū be the set of nodes on the AAP that are not in S. We pick a mate w and a 2-tight
neighbor x of u such that

x is not a neighbor of any node of Ū in the input graph (so that the extended path will
be an AAP),
neither x nor w are already in AAP,
the gain of flipping the extended path is maximized.

If we succeed in finding such a {w, x} pair, we add w and x to the path. Then we redefine u

to be x and continue growing the path. To introduce additional randomness, we increase the
gain for every {w, x} pair by a random real number ϵ ∈ [−δ, δ] and maximize the perturbed
gains. We use δ = 50 in our experiments. We terminate the search if the length of the path
exceeds a threshold or the gain of flipping the path falls below a (negative) threshold. We
then perform the highest positive gain move that flips a prefix of the final path. If no positive
gain move is encountered, we do nothing (the move fails).

3.5 Maintaining the Interstate Graph
The vast majority of the local search moves we evaluate do not improve the solution and
GIN does not change. We need to update the graph only when a move succeeds, which
happens rarely. Our data structures speed up move evaluations and support move pruning.
The added overhead is in data structure initialization and updates. The update complexity
is non-trivial, but for sparse graphs the complexity is much smaller than the time we save
due to the improved move efficiency and pruning.

Let ρ(u) = |N(u) ∩ S| denote the number of the neighbors of u in S. Note that for nodes
u ∈ S, ρ(u) = 0. We maintain ρ(u) for all nodes u ∈ V .

Given an initial solution S, we build GIN , S1, and S2 as follows. We process all nodes
u ̸∈ S. For each u, we scan its edge list in G and initialize ρ(u). If ρ(u) = 1, we let
N(u)∩S = {v}, add the 1-tight edge (u, v) to the edge list of u in GIN , and add u to the set
of 1-tight neighbors of v. If ρ(u) = 2, we let N(u) ∩ S = {v, w}, add v to the set of mates of
w and add w to the set of mates of v. We also add the pair of 2-tight edges (u, v) and (u, w)
to GIN . Finally, we add u to the set of 2-tight neighbors of the mates {v, w}. We initialize
S1 to the set of all nodes u ∈ S with non-empty set of 1-tight neighbors. We initialize S2 to
the set of all mate pairs {u, v}. The initialization takes linear time.

Our algorithm updates S by removing a set of nodes S− and adding a set of nodes S+.
We break the update into a sequence of single-node updates: first we remove nodes of S−

one by one, then we add nodes of S+ one by one. We update GIN after each individual
update of S.

After removing a node u from S, we empty its set of 1-tight neighbors and remove u from
S1. For each mate v of u, we set the corresponding set of 2-tight neighbors to empty and
remove u from the set of mates of v. We also remove the pair {u, v} from S2. Afterwards,
we empty the set of mates of u. We then visit its neighbors v ∈ V \ S. For each neighbor v,
we decrement ρ(v). We need to update GIN if ρ(v) becomes zero, one, or two.

Cases for zero and two are simpler. If the value is zero, we set the 1-tight neighbor of v

to null. If the value is two, let N(v) ∩ S = {a, b}. We can find a and b by scanning the edge
list of v in G. We add a to the set of mates of b and vice versa. We also add v to the set of
2-tight neighbors of {a, b}. Finally, we add the 2-tight pair of edges (v, a) and (v, b) to GIN .

If the value is one, we have to update both the old 2-tight neighborhood and the new
1-tight neighborhood. For the latter, we set the 1-tight neighbor of v to the unique neighbor
w ∈ S, and add v to the 1-tight neighbor set of v. For the former update, note that v was a
2-tight neighbor for mates {v, w} for some w ∈ S before the removal of v. We remove v from
the set of 2-tight neighbors of w and delete the 2-tight edge pair (v, u) and (v, w) from GIN .
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Now consider the addition of a node u to S that maintains the independence of S. We
scan the edge list of u and for all neighbors v (guaranteed not to be in S) and increment
ρ(v). We need to update GIN if ρ(v) becomes one, two, or three.

Cases for one and three are simpler. If the value is one, we add the 1-tight edge (v, u) to
GIN , add v to the set of 1-tight neighbors of u, and add u to S1. If the value is three, v has
a pair of 2-tight edges (v, a) and (v, b), where a and b are mates. We delete (v, a) and (v, b)
from GIN . Then we remove v from the set of 2-tight neighbors of a and b. If the set becomes
empty, a and b are no longer mates, so we remove a from the set of mates of b, remove b

from the list of mates of a, and remove {a, b} from S2.
If the value is two, we have to update both the old 1-tight neighborhood and the new

2-tight neighborhood. For the former, let (v, w) be the 1-tight edge. We remove the edge
and remove v from the set of 1-tight neighbors of w. If the set becomes empty, we remove
w from S1. In the latter case, N(v) ∩ S = {v, w} for some w ∈ S. We add u to the set of
mates of w and vice versa. We also add v to the set of 2-tight neighbors of v and w. Finally,
we add {a, b} to S2.

Note that since when we add or remove u to or from S, we may need to scan edge lists of
multiple neighbors of u, updating GIN when G is dense may be expensive.

4 Experimental results

4.1 Algorithms and Computational Environment
We implemented our algorithm, which we call METAMIS, in Java because it is used in
a production system at Amazon and Java is a requirement. For the same reason, we use
doubles for node weights. Furthermore, due to licensing restrictions, we use only standard
Java libraries. We compiled our code using Java 8.

Although one can tune our algorithm for specific problem families, we use fixed parameter
settings in all experiments.

We compare our implementation to the ILSVND algorithm of [17]. The publicly available
code of [17] is implemented in C++ and represents weights using integers. We made one
modification to ILSVND: added the ability to warm start from an initial solution. Given a
solution in the input, we initialize the current solution of ILSVND to the input solution. We
compiled ILSVND using full optimization (-O3).

For a given instance, algorithm time-quality plots give a lot of information about relative
performance of the algorithms. For example, one algorithm may dominate another, or one
can converge to a better solution but take longer to converge, etc. The algorithms we
compare are stochastic and algorithm performance depends on the pseudo-random seed
we use. Furthermore, the algorithms we compare do not know if and when they reach an
optimal solution. Usually there is a chance that a solution may improve. However, the
algorithms converge in a sense that it may reach a point of diminishing returns when a
substantial improvement becomes unlikely. To compare the two algorithms, we put a time
limit T on their executions. For different problem families, the limit may be different. We
run each instance with five different pseudo-random seeds and report the best solution value
the algorithm finds. In many cases the algorithms converge. However, for harder problems
this may take too long, and the algorithms do not converge within the time limit.

For representative instances, we give the time-quality plots, but we have too many
instances to give all the plots. Therefore, we report solution quality at times T/10 and T/2.
In addition, we report the time t∗ defined as follows. For a given problem instance, consider
the set of final solution values over all algorithms and seed values. Let s be the smallest one
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of these values. For a given algorithm, consider the run producing the best final solution
value. For this algorithm, we define t∗ to be the earliest time this run reaches the value of s

or higher, Intuitively, we are comparing best runs of the algorithms being evaluated.
For graph algorithms, C++ is usually faster than Java by a factor from three to six. We

expect this to hold for our algorithm as well, especially since we make heavy use of standard
Java hash set library, which incurs significant overhead compared to C++. Although we do
not adjust the runtimes we report, one has to keep this in mind that if re-implemented in
C++, our algorithm would be faster.

We run our experiments on an AWS r3.4xlarge instance with 122GiB RAM and 16 virtual
CPUs on Intel Xeon Ivy Bridge processors.

4.2 Computational Results
Our full study [4] uses three benchmark families, but due to the page limit we focus on the
benchmark from our motivating application, vehicle routing [3]. In this application, the
MWIS problem comes up in several contexts, and we have several instances for each of these
contexts.

Tables and plots appear in the appendix. Table 1 lists the VR instances with their sizes.
The number of nodes in these instances ranges from 979 to 883,238; the number of edges
ranges from 3,140 to 389,304,424. The instances are moderately sparse, but the density tends
to grow with the problem size. The average degree is below 4 on some small instances and
over 400 on some large ones.

Table 1 has additional information: values for the initial solutions we use and upper
bounds on optimal solution values. We obtain the upper bounds by solving the corresponding
LP relaxation problems to optimality. The initial solution are good: their values are close to
the upper bound. Note that an optimal solution may not achieve the upper bound.

For VR instances, we have additional information: relaxed LP solutions and initial
solutions. We use this information in practice as it yields better results. In our experiments,
we give results both for runs with and runs without initial solutions. We also run our
algorithm with initial solutions but without the relaxed solutions to see how much a good
initial solution matters, and to have an apples to apples comparison with ILSVND, which
does not use this information.

In this section we discuss VR Instances [3], which motivated our work. Plot for 2-hour
runs of all algorithms on one of the largest instances, CR-S-L-4, given in Figure 1, provides
insight into relative algorithm performance. All codes converge, and METAMIS dominates
corresponding ILSVND runs. Without warm start, ILSVND solution is worse than the initial
solution while METAMIS finds a better solution. With warm start, both algorithms find
better solutions. Although plots for METAMIS with and without LP data look very close.
However, Table 3 shows that the best solution value with LP was 1% better than without
LP: 5, 775, 704 vs. 5, 715, 256.

Next we discuss performance of VR instances in detail. Here we set the time limit T =
3 600 seconds. Table 2 gives results for MWIS with no additional data. For each instance in
the table, column w10% shows the best solution value found at time point T/10, column w50%
shows the best solution value found at time point T/2, and column w shows the best solution
value found when the process is finished at time T . METAMIS finds better solutions than
ILSVND except for three instances. For two instances, MT-D-01 and MT-W-01, solution
quality is the same. On MW-W-01, the ILSVND solution is better, but only by 0.8%. All
three exceptions happen on smaller instances and both algorithms converge quickly. There is
no improvement after time T/10.
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An interesting observation is that on MT-D-01 and MT-W-01, solution values match the
corresponding upper bounds given in Table 1, so the solutions are optimal. Since the upper
bound need not be tight, it is possible that we solve other instances to optimality, but do
not have a proof.

On larger instances, METAMIS has better final values as well as better values at times
T/10 and T/2. On the problem with the highest number of nodes, CR-S-L-3, the difference
in the final values is 2.1%. Note that on large instances, neither algorithms converged in
time T .

Table 3 shows results for the VR instances for METAMIS+LP, METAMIS, and ILSVND.
Note that on three instances, MT-D-FN, MW-D-FN, and MW-W-FN, ILSVND fails to improve the
initial solution and t∗ is undefined. METAMIS improves the solution on these instances,
probably due to a more sophisticated set of local search operations. While both algorithms
allow a warm start from a given solution, the METAMIS+LP version of our algorithm uses
clique information to compute the relaxed LP solution, and uses it to guide local search., We
evaluate both versions of METAMIS to see how much the LP relaxation helps. As in the
case of no initial solution, the algorithms converge on most of the small instances and do not
converge on larger instances.

Recall that with no initial solution, we found optimal solutions for MT-D-01 and MT-
W-01. With the initial solution, METAMIS+LP finds an optimal solution for two more
instances, MT-W-FN and MR-W-FN. METAMIS finds an optimal solution for the latter
instance, but not for the former. ILSVND does not find any new optimal solutions.

Next we discuss the effect of a good initial solution, comparing results for METAMIS and
ILSVND from Tables 2 and 3. Comparing initial solution values from Table 1 with solutions
obtained by solving the problems from scratch, we see that in many cases, the initial solution
is better than the solution computed from scratch. In fact, for ILSVND, most solutions are
worse than the corresponding initial solution. This confirms that our initial solutions are
good.

With the warm start, both variants of our algorithm, METAMIS and METAMIS+LP,
dominate ILSVND, producing same or (in most cases) better quality solutions. ILSVND is
also slower on all instances except one.

To evaluate the benefit of using LP relaxation, we compare METAMIS+LP with
METAMIS. On most instances, METAMIS+LP dominates METAMIS. The latter never
finds a better solution. For about 1/3 of the instances, solution quality is the same, and for
the remaining 2/3, METAMIS+LP performs better. The same holds for intermediate times
T/10 and T/2 except for one instance at T/2 where METAMIS solution value is slightly
better.

5 Concluding remarks

We developed METAMIS for a real-world VR application for which even a small improvement
in solution quality yields substantial cost reduction. Our study is the first to include the
benchmark of VR instances [3]. We show that METAMIS works well on the VR instances.
We also observed that the VR instances have a structure that is different from that of
computer, road, and social network (CRS) instances [16]. The main result of Lamm [16]
are local transformations which reduce a MWIS problem to an equivalent problem that is
much smaller. On the VR instances, the transformations failed to reduce the problem size
significantly.
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Our full paper shows that METAMIS works well of the CRS instances. The algorithm of
Lamm [16] solves these instances to optimality. Instances of Lamm [16] are hard to reproduce
due to weight randomization. In the full paper, we define weights so that they are easy
to reproduce. It would be interesting to run the algorithm of Lamm [16] and compare the
results.

METAMIS uses a more sophisticated set of local search moves and introduces data
structures and lazy evaluation techniques that facilitate efficient implementation of these
moves. We also introduce a new variation of path-relinking tailored to large problems. In
addition, we show how to use a good relaxed solution to guide local search. These techniques
add to the metaheuristic design toolset. We hope that our ideas will lead to even more
efficient MWIS algorithms. The ideas may also prove useful in metaheuristic algorithms for
other problems.
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A Appendix: Tables and Plots

Table 1 VR instances.

Graph |V | |E| Initial Sol. LP bound
MT-D-01 979 3 841 228 874 404 238 166 485
MT-D-200 10 880 547 529 286 750 411 287 228 467
MT-D-FN 10 880 645 026 290 723 959 290 881 566
MT-W-01 1 006 3 140 299 132 358 312 121 568
MT-W-200 12 320 554 288 383 620 215 384 099 118
MT-W-FN 12 320 593 328 390 596 383 390 869 891
MW-D-01 3 988 19 522 465 730 126 477 563 775
MW-D-20 10 790 718 152 522 485 254 531 510 712
MW-D-40 33 563 2 169 909 533 938 531 543 396 252
MW-D-FN 47 504 4 577 834 542 182 073 549 872 520
MW-W-01 3 079 48 386 1 268 370 807 1 270 311 626
MW-W-05 10 790 789 733 1 328 552 109 1 334 413 294
MW-W-10 18 023 2 257 068 1 342 415 152 1 360 791 627
MW-W-FN 22 316 3 495 108 1 350 675 180 1 373 020 454
MR-D-01 14 058 60 738 1 664 446 852 1 695 332 636
MR-D-03 21 499 168 504 1 739 544 141 1 763 685 757
MR-D-05 27 621 295 700 1 775 123 794 1 796 703 313
MR-D-FN 30 467 367 408 1 794 070 793 1 809 854 459
MR-W-FN 15 639 267 908 5 386 472 651 5 386 842 781
CW-T-C-1 266 403 162 263 516 1 298 968 1 353 493
CW-T-C-2 194 413 125 379 039 933 792 957 291
CW-T-D-4 83 091 43 680 759 457 715 463 672
CW-T-D-6 83 758 44 702 150 457 605 463 946
CW-S-L-1 411 950 316 124 758 1 622 723 1 677 563
CW-S-L-2 443 404 350 841 894 1 692 255 1 759 158
CW-S-L-4 430 379 340 297 828 1 709 043 1 778 589
CW-S-L-6 267 698 191 469 063 1 159 946 1 192 899
CW-S-L-7 127 871 89 873 520 589 723 599 271
CR-T-C-1 602 472 216 862 225 4 605 156 4 801 515
CR-T-C-2 652 497 240 045 639 4 844 852 5 032 895
CR-T-D-4 651 861 245 316 530 4 789 561 4 977 981
CR-T-D-6 381 380 128 658 070 2 953 177 3 056 284
CR-T-D-7 163 809 49 945 719 1 451 562 1 469 259
CR-S-L-1 863 368 368 431 905 5 548 904 5 768 579
CR-S-L-2 880 974 380 666 488 5 617 351 5 867 579
CR-S-L-4 881 910 383 405 545 5 629 351 5 869 439
CR-S-L-6 578 244 245 739 404 3 841 538 3 990 563
CR-S-L-7 270 067 108 503 583 1 969 254 2 041 822
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Figure 1 Time-quality plot for CR-S-L-4.
Note that the plots for METAMIS+Init and
METAMIS+Init+LP are very close.
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Table 2 Results on VR instances with no additional information.

METAMIS ILSVND
Name w10% w50% w t∗[s] w10% w50% w t∗[s]
MT-D-01 238 166 485 238 166 485 238 166 485 0.948 238 166 485 238 166 485 238 166 485 1.290
MT-D-200 286 976 422 287 048 909 287 048 909 188.1 286 838 210 286 838 210 286 943 799 2 276
MT-D-FN 290 866 943 290 866 943 290 866 943 104.4 290 393 532 290 666 380 290 666 380 561.6
MT-W-01 312 121 568 312 121 568 312 121 568 0.278 312 121 568 312 121 568 312 121 568 0.080
MT-W-200 383 818 136 383 961 099 383 961 323 1 433 383 865 836 383 896 403 383 896 403 1 036
MT-W-FN 390 688 944 390 830 057 390 854 593 568.1 390 715 890 390 798 842 390 798 842 709.2
MW-D-01 476 099 262 476 164 209 476 334 711 267.9 475 653 439 475 906 790 475 906 790 1 173
MW-D-20 524 255 389 525 036 493 525 124 575 85.40 520 854 115 522 415 092 523 138 978 2 685
MW-D-40 533 934 442 535 707 479 536 520 199 81.36 530 227 261 532 272 896 532 400 878 1 830
MW-D-FN 539 754 400 541 372 345 541 918 916 98.34 532 663 872 537 238 784 537 674 129 2 466
MW-W-01 1 270 305 952 1 270 305 952 1 270 305 952 0.500 1 246 949 460 1 246 949 460 1 246 949 460 23.66
MW-W-05 1 328 958 047 1 328 958 047 1 328 958 047 19.96 1 327 687 399 1 328 707 787 1 328 707 787 984.8
MW-W-10 1 340 878 388 1 342 899 725 1 342 899 725 1 204 1 331 002 512 1 341 482 310 1 342 067 985 1 876
MW-W-FN 1 349 369 736 1 350 818 543 1 350 818 543 527.7 1 334 835 589 1 348 128 240 1 350 159 705 3 584
MR-D-01 1 689 074 331 1 689 520 690 1 689 781 114 15.52 1 683 529 331 1 686 091 786 1 687 842 856 2 906
MR-D-03 1 753 188 475 1 753 968 167 1 754 110 286 20.34 1 743 429 914 1 747 269 072 1 749 972 580 3 257
MR-D-05 1 784 519 403 1 785 664 042 1 786 342 921 19.56 1 770 832 093 1 774 407 092 1 777 876 780 3 595
MR-D-FN 1 795 912 642 1 797 284 091 1 797 573 192 22.65 1 779 897 201 1 785 545 729 1 788 331 878 3 388
MR-W-FN 5 357 026 363 5 358 386 615 5 358 386 615 1 442 5 352 347 338 5 370 471 580 5 371 649 721 461.6
CW-T-C-1 1 310 223 1 315 122 1 317 775 94.52 1 290 974 1 299 279 1 302 478 3 585
CW-T-C-2 924 664 929 626 931 802 189.7 914 736 921 021 922 858 3 599
CW-T-C-4 454 769 456 565 457 185 324.4 452 035 453 741 454 544 2 365
CW-T-D-6 455 823 457 382 457 790 70.48 452 366 454 254 454 254 1 582
CW-S-L-1 1 623 280 1 630 417 1 634 950 261.9 1 603 051 1 615 247 1 620 756 3 597
CW-S-L-2 1 695 131 1 704 424 1 708 820 225.3 1 670 836 1 685 870 1 690 536 3 596
CW-S-L-4 1 712 553 1 722 542 1 725 591 173.7 1 689 318 1 701 309 1 706 264 3 599
CW-S-L-6 1 150 229 1 156 916 1 158 925 138.4 1 136 356 1 142 720 1 145 694 3 086
CW-S-L-7 582 925 585 929 587 288 125.2 577 087 581 583 581 583 1 278
CR-T-C-1 4 617 204 4 644 635 4 654 419 58.16 4 508 901 4 558 780 4 576 695 3 598
CR-T-C-2 4 834 040 4 863 054 4 874 346 62.29 4 715 023 4 772 847 4 789 909 3 600
CR-T-D-4 4 778 868 4 808 490 4 817 281 56.91 4 663 588 4 716 258 4 734 674 3 598
CR-T-D-6 2 945 721 2 964 007 2 970 011 94.09 2 896 260 2 921 540 2 929 671 3 574
CR-T-D-7 1 431 915 1 438 896 1 440 281 148.4 1 411 061 1 423 279 1 426 400 3 581
CR-S-L-1 5 547 038 5 575 602 5 588 489 72.42 5 400 658 5 464 532 5 487 254 3 595
CR-S-L-2 5 652 928 5 680 688 5 691 892 57.91 5 491 814 5 561 766 5 586 973 3 580
CR-S-L-4 5 634 886 5 671 369 5 681 336 65.09 5 477 340 5 550 943 5 572 856 3 573
CR-S-L-6 3 833 391 3 851 432 3 859 513 92.45 3 751 019 3 793 995 3 808 314 3 599
CR-S-L-7 1 977 161 1 986 354 1 989 879 90.90 1 940 573 1 957 872 1 963 579 3 584
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