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Abstract
Despite a surge of interest in submodular maximization in the data stream model, there remain
significant gaps in our knowledge about what can be achieved in this setting, especially when
dealing with multiple constraints. In this work, we nearly close several basic gaps in submodular
maximization subject to k matroid constraints in the data stream model. We present a new hardness
result showing that super polynomial memory in k is needed to obtain an o(k/log k)-approximation.
This implies near optimality of prior algorithms. For the same setting, we show that one can
nevertheless obtain a constant-factor approximation by maintaining a set of elements whose size is
independent of the stream size. Finally, for bipartite matching constraints, a well-known special
case of matroid intersection, we present a new technique to obtain hardness bounds that are
significantly stronger than those obtained with prior approaches. Prior results left it open whether
a 2-approximation may exist in this setting, and only a complexity-theoretic hardness of 1.91 was
known. We prove an unconditional hardness of 2.69.
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1 Introduction

A set function f : 2N → R over a ground set N is submodular if

f(u | A) ≥ f(u | B) for all A ⊆ B ⊆ N and u ∈ N \ B ,

where, for a subset S ⊆ N and an element u ∈ N , we denote by f(u | S) := f(S ∪{u})−f(S)
the marginal contribution of u with respect to S. We say that f is monotone if f(A) ≤ f(B)
for any A ⊆ B ⊆ N .

© Moran Feldman, Ashkan Norouzi-Fard, Ola Svensson, and Rico Zenklusen;
licensed under Creative Commons License CC-BY 4.0

30th Annual European Symposium on Algorithms (ESA 2022).
Editors: Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman; Article No. 52; pp. 52:1–52:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:moranfe@cs.haifa.ac.il
mailto:ashkannorouzi@google.com
mailto:ola.svensson@epfl.ch
mailto:ricoz@ethz.ch
https://orcid.org/0000-0002-7148-9304
https://doi.org/10.4230/LIPIcs.ESA.2022.52
https://arxiv.org/pdf/2204.05154.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de
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The definition of submodular functions captures the natural property of diminishing
returns, and the study of these functions has a rich history in optimization with numerous
applications (see, e.g., the book [28]). Already in 1978, Nemhauser, Wolsey, and Fisher
showed that a natural greedy algorithm achieves a tight approximation guarantee of e

e−1 for
selecting the most valuable subset S ⊆ N of cardinality at most ρ (see [26] for the algorithm’s
analysis and [8, 25] for matching hardness results). Since then, significant work has been
devoted to extending their result to more general constraints.

A natural generalization of a cardinality constraint is the class of matroid constraints.
While matroid constraints are much more expressive than cardinality constraints, both
constraints often enjoy the same (or similar) algorithmic guarantees. Indeed, for the problem
of maximizing a monotone submodular function subject to a single matroid constraint,
Călinescu, Chekuri, Pál, and Vondrák [3] developed the continuous greedy method, and
showed that it extends the e

e−1 -approximation guarantee to this more general setting.
Moreover, for the maximization of a monotone submodular function subject to k ≥ 2 matroid
constraints, there is a (k+1)-approximation guarantee by Fisher, Nemhauser and, Wolsey [11],
which was improved to k + ε by Lee, Sviridenko, and Vondrák [22] when the number k of
matroid constraints is considered to be a constant.

While these algorithms are efficient in the traditional sense, i.e., they run in polynomial
time in the offline “RAM” model, recent applications in data science and machine learning [21]
with very large-scale problem instances have motivated the need for very space-efficient
algorithms. In particular, it is interesting to study algorithms whose memory footprint is
independent of the ground set size.1 The task of designing such algorithms for (monotone)
submodular function maximization has become a very active research area, especially in
the context of the popular data stream computational model. Recent progress has resulted
in a tight understanding of data stream algorithms2 for maximizing monotone submodular
functions with a single cardinality constraint: one can obtain a 2-approximation for this
problem using a simple “threshold”-based algorithm that requires only Õ(ρ) memory [2, 19],
where ρ is the maximum number of elements allowed in the solution, and this is essentially
optimal unless one is willing to have a space complexity that is linear in the size of the ground
set [9]. However, our understanding of data stream algorithms for more general constraint
families is currently much more limited. Closing this gap for natural settings of multiple
matroid constraints is the motivation for our work.

Formally, we term the problem that we study Submodular Maximization subject to
k Matroid Constraints (SMkM). In this problem, we are given k ≥ 2 matroids M1 =
(N , I1), M2 = (N , I2), . . . , Mk = (N , Ik) sharing a common ground set N , and a non-
negative submodular function f : 2N → R≥0.3 Our goal is to find a common independent set
S ⊆ N (i.e., S is independent in all the matroids) that maximizes f(S). In the data stream

1 Technically, a logarithmic dependence on the ground set size is unavoidable because, at the very least,
the algorithm has to store the indices of the elements in its solution. However, we wish to have a
space complexity whose dependence on the ground set size is limited to this unavoidable logarithmic
dependence.

2 Data stream algorithms are sometimes called “streaming algorithms”; however, in this paper we reserve
the term “streaming algorithms” to data streaming algorithms whose space complexity is poly-logarithmic
in the natural parameters of the problem.

3 We recall that a matroid M = (N , I) is a tuple consisting of a finite ground set N and a nonempty
family I ⊆ 2N of subsets thereof fulfilling (i) if I ∈ I and J ⊆ I, then J ∈ I, and (ii) if I, J ∈ I with
|I| < |J |, then there is an element e ∈ J \ I such that I ∪ {e} ∈ I. Moreover, a function f : 2N → R≥0,
where N is a finite set, is submodular if f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B). This is well-known to be
equivalent to the diminishing returns property, which states that for A ⊆ B ⊆ N and e ∈ N \ B, we
have f(A ∪ {e}) − f(A) ≥ f(B ∪ {e}) − f(B).
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version of this problem, the elements of the ground set N appear one by one on a stream,
and the algorithm should make a single pass over this stream and construct its output set
S. (Some papers allow also algorithms that can do a few sequential passes over the stream;
however, we consider the more practical and fundamental single-pass setting.)

The above high-level description of SMkM hides some important technical details regarding
the way in which the objective function f and the matroid constraints are accessed. In the
literature about matroids, it is customary to assume that the access of an algorithm to a
matroid is done via an independence oracle that, given a set S ⊆ N , indicates whether S is
independent in the matroid. This notion can be extended to the intersection of k matroids
in two natural ways: (i) having a single common independence oracle, which indicates
whether S is independent in this intersection (i.e., in all the matroids), or (ii) having k

independence oracles, one per matroid. Let us first consider the model with weaker access to
the matroids, i.e., the one with a common independence oracle. This model already allows
the implementation of a simple algorithm that greedily adds to its solution every element
that does not violate feasibility. This natural greedy algorithm is a k-approximation for the
special case of SMkM in which f is simply the cardinality function (i.e., f(S) = |S|) [17, 20]
using a space complexity of Õ(ρ), where ρ is the common rank of the k matroids, i.e., the
cardinality of a maximum cardinality common independent set in the k matroids of the SMkM
instance.4 We can show that this simple algorithm is almost best possible when access to
the matroid is restricted to calls to a common independence oracle, unless one is willing to
have a space complexity that is linear in n := |N |.

▶ Theorem 1. A data stream algorithm for SMkM, whose only access to the matroids is via
the common independence oracle, and with expected approximation ratio k − ε (for some
ε ∈ [0, k − 1)), must use Ω(εn/k5 log k) memory. This holds even when the task is to find a
maximum size common independent set in k partition matroids, and the common rank of
these matroids is k.

The proof of Theorem 1 is based on carefully defining k matroids such that stream prefixes
lead to restricted matroids with many indistinguishable elements. This allows for hiding a
large optimal solution. See the full version for details.

Given this inapproximability result, we turn our focus to the model in which we have access
to a separate independence oracle for every matroid. A 4k-approximation algorithm with
space complexity Õ(ρ) was given for SMkM in this model by Chakrabarti and Kale [5] when
the objective function f is guaranteed to be monotone, and O(k)-approximation algorithms
with similar space complexities were later obtained for the general case by Chekuri et al. [6]
and Feldman et al. [10]. Our first main result shows that improving over the approximation
guarantees of these algorithms by more than a logarithmic factor requires super polynomial
space in k. Specifically, we prove the following theorem.

▶ Theorem 2. Any data stream algorithm for SMkM that finds an α-approximate solution with
probability at least 2/3 uses memory at least Ω

(
ek/(8α)/k2)

assuming α ≤ k/(32 ln k). This
holds even when the task is to find a maximum size common independent set in k partition
matroids, and the common rank of these matroids is O(α) = O(k/ log k).

The technique to prove Theorem 2 is discussed in Section 3. Interestingly, this technique
also implies that any (even preemptive) online algorithm for SMkM must also have an approxi-
mation ratio of Ω(k/log k). We remark that this lower bound is asymptotically the same as

4 For general SMkM, the state-of-the-art algorithm with a space complexity of Õ(ρ) obtains a slightly worse
approximation ratio of O(k log k) with a common independence oracle [12]. Moreover, this algorithm is
applicable even to the more general class of k-extendible constraints.

ESA 2022
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the well-known approximation hardness for k-dimensional matching [13], which is a special
case of the intersection of k matroids. However, note that this hardness does not carry over
to our setting as our model has no restriction on computational power but only on memory.

In light of Theorem 2, it is arguably surprising that one can get essentially a 2-
approximation for SMkM with space complexity independent of n.5

▶ Theorem 3. For every ε ∈ (0, 1/7), there exists a (2 + O(ε))-approximation data stream
algorithm for SMkM with space complexity poly(kρ2k, ε−ρ).

For monotone objective functions, Theorem 3 is based on merging ideas that appeared
in recent papers by Huang et al. [14] and Huang and Ward [16] (see the full version for
details). However, to obtain the same guarantee for non-monotone functions requires an
interesting novel guessing scheme. Moreover, this theorem cannot be improved by much.
The exponential dependence on k is necessary by Theorem 2, and the approximation ratio
cannot be improved, even for a cardinality constraint, without using a linear in n memory
because of the inapproximability result of [9]. It is open (even for a single partition matroid
constraint) whether the exponential dependence on ρ in Theorem 3 is necessary.

Up to this point, our inapproximability results concentrated on the asymptotic approx-
imation ratio obtainable as a function of k, which is more relevant for large values of k.
Small values of k have also been considered extensively in the literature. For example, as
aforementioned, the approximation ratio that can be obtained by a data streaming algorithm
for a cardinality constraint, which is a special case of SMkM with k = 1, was the subject of a
long line of research [1, 2, 9, 14, 19, 24] and is now essentially settled. Maximizing a monotone
submodular function subject to a bipartite matching constraint is another important special
case of SMkM, this time for k = 2.

Since ρ is usually polynomially related to n in bipartite matching constraints, the class of
algorithms considered interesting for the last problem is more restricted than for general SMkM.
Specifically, people are interested in algorithms that use Õ(ρ) memory. That is, the algorithm
does not use more memory (up to logarithmic factors) than what is required to simply store
a solution. Such algorithms are known as semi-streaming algorithms. Recently, Levin and
Wajc [23] described a semi-streaming algorithm for maximizing a monotone submodular
function subject to a bipartite matching constraint which improves over the state-of-the-art
for general SMkM with a monotone objective function. They also proved, conditioned on some
complexity-theoretic assumption, a lower bound of 1.914 on the approximation ratio that
can be obtained by a semi-streaming algorithm for the problem. Our final result improves
over this upper bound and is independent of any complexity-theoretic assumption, but does
assume that the graph can contain parallel edges (which are distinct elements from the point
of view of the submodular objective function); the hardness of [23] applies even when this is
not the case.

▶ Theorem 4. No semi-streaming algorithm can obtain, with probability at least 2/3, an
approximation ratio of 2.692 for maximizing a non-negative monotone submodular function
subject to a bipartite matching constraint.

The last result is obtained by combining known hardness results for semi-streaming
algorithms for the maximum cardinality matching problem [18] and submodular function
maximization subject to a cardinality constraint [9] in a non-trivial way so that the obtained

5 For simplicity, the space complexity stated in Theorem 3 assumes that every element of the ground set
can be stored in O(1) space. Without this assumption, we get the unavoidable logarithmic dependence
of the space complexity on n. Similarly, we also make the standard assumption that the value of f(S)
can be stored in constant space for every set S ⊆ N .
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hardness is stronger than what is known for any one of the two problems individually.
Moreover, the reduction is general, and another consequence of it is the following: any
semi-streaming algorithm for maximizing a monotone submodular function subject to a
bipartite matching constraint that has an approximation guarantee better than 3 would
yield an improved semi-streaming algorithm for the maximum cardinality bipartite matching
problem, which is a longstanding notorious open problem. We refer to reader to the full
version for further detail.

2 Preliminaries

In this section we give some additional technical details that are necessary for proving the
results stated in Section 1. In Section 2.1 we discuss in more detail the oracles used to access
the objective function and constraint matroids; and in Section 2.2 we present a known hard
problem from which we often reduce to prove our inapproximability results.

2.1 More details about the access oracles
As mentioned above, the matroid constraints are accessed via either a common independence
oracle or k distinct independence oracles, one per matroid. We also need to specify the
method used to access the objective function f . In the submodular optimization literature,
submodular objective functions such as f are usually accessed via a value oracle that, given a
set S ⊆ N , returns f(S). In the context of data stream and online algorithms, it is important
that the independence and value oracles do not leak information in a way that contradicts
our expectations from such algorithms. Accordingly, our algorithms query the oracles only
on sets of elements that are explicitly stored in their memory.

The above information leakage issue often makes proving inapproximability results more
complicated because such results have to formalize in some way the types of queries that
are allowed (i.e., queries that are not considered “leaky”). All our inapproximability results
apply to the model used by our algorithmic results; namely, when the algorithm is allowed to
query the oracles only on sets of elements that are explicitly stored in its memory – see [15]
for a formal statement of this natural model. However, we strive to weaken this assumption,
and prove most of our inapproximability results even for algorithms that enjoy a less limited
access to the oracles. For example, the proof of Theorem 2 manages to avoid this issue
completely using the following technique. The algorithm is given upfront a “super ground
set” and fully known objective function and matroids over this super ground set. The real
ground set is then chosen as some subset of this super ground set, and only the elements of
this real ground set appear in the input stream of the algorithm. Since the challenge that
the algorithm has to overcome in this case is to remember which elements belong to the real
ground set, the oracles cannot leak important information to the algorithm, and therefore,
we allow the algorithm unrestricted access to them.

The situation for Theorem 1 is a bit more involved because of the following observation.
If the algorithm is allowed unrestricted access to the common independence oracle, then it
can construct k matroids M1, M2, . . . , Mk that are consistent with this oracle, which makes
the distinction between a single common independence oracle and k independence oracles
mute. Therefore, some restriction on the access to the common independence oracle must
be used. The (arguably) simplest and most natural restriction of this kind is to allow the
algorithm to query the common independence oracle only on subsets that do not include
any elements that did not appear in the stream so far; and it turns out that this simple
restriction suffices for the proof of Theorem 1 to go through.

ESA 2022
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It remains to consider our last inapproximability result, namely Theorem 4. Here the
elements of the ground set are edges, and the algorithm is given each edge in the form of its
two endpoints. Therefore, there is no need for independence oracles. (Formally, this situation
is equivalent to the case mentioned above in which there is a “super ground set” that is given
upfront to the algorithm, and only part of this super ground set appears in the stream.)
Unfortunately, preventing information leakage via the value oracle is more involved. For
simplicity, the proof that we give in the full version assumes the same model that we use in
our algorithmic results. However, our proof can be extended also to algorithms with a more
powerful way to access the objective function f , such as the p-players model described in [9].

2.2 The CHAINp(n) problem
Many of our inapproximability results use reductions to a (hard) problem named CHAINp(n),
introduced by Cormode, Dark, and Konrad [7], which is closely related to the Pointer Jumping
problem (see [4]). In this problem, there are p players P1, . . . , Pp. For every 1 ≤ i < p, player
Pi is given a bit string xi ∈ {0, 1}n of length n, and, for every 2 ≤ i ≤ p, player Pi (also) has
as input an index ti ∈ {1, 2, . . . , n}. (Note that the convention in this terminology is that the
superscript of a string/index indicates the player receiving it.) Furthermore, it is promised
that either xi

ti+1 = 0 for all 1 ≤ i < p or xi
ti+1 = 1 for all these i values. We refer to these

cases as the 0-case and 1-case, respectively. The objective of the players in CHAINp(n) is to
decide whether the input instance belongs to the 0-case or the 1-case. The first player, based
on the input bit string x1, sends a message M1 to the second player. Any player 2 ≤ i < p ,
based on the message it receives from the previous player (i.e., M i−1), the input bit string
xi and index ti, sends message M i to the next player. The last player, based on Mp−1 and
tp, decides if we are in the 0-case or 1-case. Each player has unbounded computational
power and can use any (potentially randomized) algorithm. We refer to the collections of
the algorithms used by all the players as a protocol. The success probability of a protocol is
the probability that its decision is correct, and the communication complexity of a protocol
is the size of the maximum message sent (i.e., maximum size of M1, . . . , Mp−1). In [9], the
following lower bound was shown for the CHAINp(n) problem, which is very similar to the
lower bounds previously proved by [7].

▶ Theorem 5 (Theorem 3.3 in [9]). For any positive integers n and p ≥ 2, any (potentially
randomized) protocol for CHAINp(n) with success probability of at least 2/3 must have a
communication complexity of at least n/36p2. Furthermore, this holds even when instances are
drawn from a known distribution D(p, n).

The distribution D(p, n) referred to by Theorem 5 is simply the uniform distribution over
all 0-case and 1-case instances (see the definition of Dp in Appendix C of [9]).

3 Inapproximability for Multiple Independence Oracles

In this section, we prove Theorem 2, which gives a strong inapproximability result for data
stream algorithms as a function of the number k of matroids, even in the case when the
objective function f is a linear function (unlike in the previous section, here we allow access
to the independence oracles of the individual matroids).

▶ Theorem 2. Any data stream algorithm for SMkM that finds an α-approximate solution with
probability at least 2/3 uses memory at least Ω

(
ek/(8α)/k2)

assuming α ≤ k/(32 ln k). This
holds even when the task is to find a maximum size common independent set in k partition
matroids, and the common rank of these matroids is O(α) = O(k/ log k).
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Note that the above result implies that (i) any data stream algorithm with an approxima-
tion guarantee o(k/ log k) requires super polynomial memory in k, and (ii) any data stream
algorithm with constant approximation guarantee requires exponential memory in k.

The techniques we use also readily imply hardness for the (preemptive) online version
of this problem. In this version, the elements of the ground set N arrive online, and upon
receiving each element the algorithm has to decide either to add this element to the solution
it maintains, or to reject the element. If the algorithm accepts an element to its solution, it
may remove this element from the solution at a later point; however, a decision to reject an
element (or remove it from the solution at a later time) is irrevocable. The algorithm is also
required to keep its solution feasible at all times. We have the following hardness in this
model.

▶ Theorem 6. For k ≥ 2, the competitive ratio of any online algorithm for SMkM against an
oblivious adversary is at least k

81 ln k . This holds even when the task is to find a maximum
size common independent set in k partition matroids, and the common rank of these matroids
is O(k/ log k).

The key building block for both (streaming and online) hardness results is a “hard”
distribution of instances described in Section 3.1. This distribution is then used to prove
Theorems 2 and 6 in Sections 3.2 and 3.3, respectively, in a similar way to the proof of
Theorem 1.

3.1 Description of hard distribution
Let p be a non-negative integer parameter of the construction. Our instances are subsets
of the set N = [p]k, where we allow multiple elements with the same coordinates (i.e.,
“multi-subsets”). A set S ⊆ N is independent in the matroid Mi (for any integer i ∈ [k])
if and only if no two elements of S share the same value in coordinate number i (in other
words, ui ̸= vi for every two distinct elements u, v ∈ S). One can observe that this definition
makes Mi a partition matroid. We recall that S ⊆ N is a common independent set if it
is independent in all matroids; otherwise, we will refer to it as dependent. Note that the
common rank of the k matroids M1, . . . , Mk is p.

In Algorithm 1 we describe a procedure for sampling p−1 many subsets S1, S2, . . . , Sp−1 ⊆
[p]k and p − 1 “hidden” optimal elements o(1) ∈ S1, o(2) ∈ S2, . . . , o(p−1) ∈ Sp−1. In every
iteration r = 1, . . . , p − 1, the algorithm first forms Sr by sampling m elements independently
and uniformly from those elements that form a common independent set with {o1, . . . , or−1}.
That is, Sr contains m uniformly random samples with replacements from

{u ∈ N | ∀1≤i<r,1≤j≤k o
(i)
j ̸= uj} .

Then, after the selection of Sr, the algorithm samples o(r) uniformly at random among the
m elements in Sr.

We remark that the algorithm with small probability may sample the same element
more than once when forming the set Sr. When this happens, we consider these samples
to be unique elements on the stream (that are dependent). This allows us to simplify the
notation in the following as each set Sr is now guaranteed to contain exactly m elements.
Formally, this corresponds to extending the ground set N by making m copies u1, . . . , um of
each element u ∈ N , and whenever an element u is sampled i times, we include the copies
u1, . . . , ui.

ESA 2022
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Algorithm 1 Hard Instance Generation (p, m).

1: for r = 1 to p − 1 do
2: Obtain Sr by sampling m elements uniformly and with replacement from

{u ∈ N | ∀1≤i<r,1≤j≤k o
(i)
j ̸= uj} .

3: Select o(r) from Sr uniformly at random.
4: Output S1, . . . , Sp−1 and o(1), . . . , o(p−1).

We refer to Algorithm 1 as “Hard Instance Generation” as it is the basic building
block of our hardness results in both the online and streaming models. More specifically,
our hardness result for the online model is based on the (random) stream obtained by first
feeding the elements in S1 (in any order), then S2 (in any order), and so on until Sp−1 is
fed. The intuition is that when the algorithm has only seen the elements in S1, . . . , Si, it has
no information about the selection of o(i) and so any online algorithm is unlikely to have
saved the element o(i). In addition, while {o(1), . . . , o(p−1)} is a common independent set by
construction, we prove (see Lemma 8 below) that any other two elements are likely to be
dependent. This creates the “gap” between the values of the solution {o(1), o(2), . . . , o(p−1)}
and a solution with any other elements, which in turn yields the desired hardness result. For
our hardness in the data stream model, we forward a subset of the above-mentioned stream,
and the difficulty for a low-space streaming algorithm is to “remember” whether the special
elements o(1), o(2), . . . , o(p−1) appeared in the stream. This is formalized in the next sections.

We complete this section by proving that, with good probability, any large solution must
contain the hidden elements o(1), . . . , o(p−1).

▶ Definition 7. We say that the output of Algorithm 1 is successful if any two elements
e, f ∈ S1 ∪ S2 ∪ · · · ∪ Sp−1 \ {o1, . . . , op−1} are dependent, i.e., there is a coordinate i ∈ [k]
such that ei = fi.

▶ Lemma 8. The output of Algorithm 1 is successful with probability at least 1 −
(

pm
2

)
e−k/p.

Proof. Consider two elements u ∈ Sr1 \ {or1} and v ∈ Sr2 with r1 ≤ r2. As u ̸= or1 , each
coordinate of u equals that of v with probability at least 1/(p − r1 + 1) ≥ 1/p. Now, as there
are k coordinates, and each coordinate of u is sampled independently at random,

Pr[{u, v} is a common independent set] ≤ (1 − 1/p)k ≤ e−k/p .

The lemma now follows by taking the union bound over all possible pairs u, v; the number of
such pairs is upper bounded by

((p−1)m
2

)
. ◀

3.2 Hardness for online algorithms
Let p = ⌈k/(27 ln k)⌉ + 1 and m = k3. We will prove that the competitive ratio of any online
algorithm is at least k/(81 ln k). We assume throughout that k is such that k/(81 ln k) > 1.
This is without loss of generality since the statement is trivial if k/(81 ln k) ≤ 1. We shall
consider the following distribution of instances. Run Algorithm 1 with the parameters p and
m to obtain sets S1, . . . , Sp−1 (and hidden elements o(1), . . . , o(p−1)), and construct an input
stream in which the elements of S1 appear first (in any order) followed by those in S2 and so
on until the elements in Sp−1 appear. We will show that any deterministic online algorithm
ALG cannot be ((p − 1)/3)-competitive on this distribution of instances. Theorem 6 then
follows via Yao’s principle.
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To analyze the competitive ratio of ALG, let O be the event that the output of ALG
contains some element of {o(1), o(2), . . . , o(p−1)}, and let S be the event that the instance is
successful. Then, if we use |ALG| to denote the size of the independent set outputted by
ALG,

E[|ALG|] ≤ (1 − Pr[¬O, S]) · k + 1 ,

where the inequality holds because any solution has size at most k, and if the algorithm fails
to identify any element in {o(1), . . . , o(p−1)}, then it can produce solution of size at most 1
for a successful instance.

Note that since k/(81 ln k) > 1 we have that p ≤ 3 · k/(27 ln k) = k/(9 ln k). Now, by
Lemma 8 and the selection of p and m, we have

Pr[S] ≥ 1 −
(

pm

2

)
e−k/p ≥ 1 − k8 · e−9 ln k = 1 − 1/k .

To bound Pr[¬O], note that the set Sr contains no information about o(r) because o(r)

is selected uniformly at random from Sr. Moreover, when all m elements of Sr have been
inspected in the stream, ALG keeps at most p independent elements. Any one of these
elements is o(r) with probability at most p/m. In other words, the algorithm selects o(r) with
probability at most p/m. Hence, by the union bound, the algorithm has selected any of the
p − 1 elements {o(1), . . . , o(p−1)} with probability at most p/m · (p − 1) ≤ 1/k. We thus have
Pr[¬O] ≥ 1 − 1/k, and together with the above proved inequality Pr[S] ≥ 1 − 1/k, we get
via the union bound

E[|ALG|] ≤ (1 − Pr[¬O, S]) · k + 1 ≤ (2/k) · k + 1 = 3 .

Since the stream contains a solution {o(1), . . . , o(p−1)} of size p − 1, this implies that ALG is
not better than ((p − 1)/3)-competitive, which in turn implies Theorem 6.

3.3 Hardness for streaming algorithms
Let ALG be a data stream algorithm for finding a set of maximum cardinality subject to k

partition matroid constraints. Further suppose that ALG has the following properties:
ALG uses memory M ;
ALG outputs an α-approximate solution with probability at least 2/3, where α ≤ k

32 ln k

(note that α is also lower bounded by 1 since it is an approximation ratio).

Select p = ⌈3 · α⌉, and let m be the smallest power of two such that m ≥ ek/(8α). Note
that this selection satisfies

p ∈ [3 · α, 4 · α] , m ∈ [ek/(8α), 2ek/(8α)] , and 8 · p ≤ k ≤ m .

We will use ALG to devise a protocol for the CHAINp(m) problem that succeeds with
probability at least 2/3 and has communication complexity at most M +p log2 m. Combining
this reduction with Theorem 5 then yields Theorem 2, i.e., that any such algorithm ALG

must have a memory footprint M that is at least Ω
(
ek/(8α)/k2)

.

3.3.1 Description of protocol
We use ALG to obtain Protocol 2 for CHAINp(m). The protocol consists of two phases:
a precomputation phase that is independent of the CHAINp(m) instance, followed by a
description of the messages of the players.
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T

T1 T2 T3

T1,1 T1,2 T1,3 T2,1 T2,2 T2,3 T3,1 T3,2 T3,3

Figure 1 A tree representation of the sets computed during precomputation for m = p = 3.

3.3.1.1 Precomputation phase

In the precomputation phase, the players use shared random coins6 to generate instances
from the same distribution produced by Algorithm 1 for all possible values of t2, . . . , tp ∈ [m]
in an instance of CHAINp(m). Specifically, first a set T is sampled from the same distribution
as the set S1 produced by Algorithm 1. The elements of T are then randomly permuted. For
j ∈ [m], we let T (j) denote the j-th element in the the obtained ordered set. The reason that
the elements in T are randomly permuted is to make sure that for any fixed t2 ∈ [m], the
element T (t2) is uniformly random, and thus, has the same distribution as o(1) in Algorithm 1.
Following the choice of S1 = T and o(1) ∈ S1, Algorithm 1 proceeds to sample S2 to be m

random elements that are independent with respect to o(1). In the precomputation phase
we do so for each possible element in T , i.e., we sample sets T1, T2, . . . , Tm, one for each
possible choice of t2 ∈ [m]. Then, for each such Tt2 we sample m sets Tt2,1, Tt2,2, . . . , Tt2,m

for all possible choices of t3 ∈ [m] and so on. The sets constructed in the precomputation
phase can thus naturally be represented by a tree, where each path from the root T to a leaf
corresponds to a particular choice of t2, t3, . . . , tp ∈ [m]. For m = 3 and p = 3, this tree is
depicted in Figure 1. The thick path corresponds to the case of t2 = 2 and t3 = 3.

As described above, we randomly permute the sets so as to make sure that, for fixed
t2, t3, . . . tr ∈ [m], the distribution of o(1) is the same as that of T (t2) and, in general, the
distribution of o(i) is the same as that of Tt2,...,ti(ti+1). This gives us the following observation.

▶ Observation 9. Fix t2, t3, . . . , tr ∈ [m]. Over the randomness of the precomputation phase,
the elements o(1) = T (t2), o(2) = Tt2(t3), . . . , o(r−1) = Tt2,...,tr−1(tr) and the sets S1 = T, S2 =
Tt2 , . . . , Sr−1 = Tt2,...,tr−1 have the same distribution as the output of Algorithm 1.

The reason the players do this precomputation is that, after they have commonly agreed
on the tree-structure of sets (which can be generated using the public coins), it requires
little communication to decide on a “hard” instance generated from the same distribution as
Algorithm 1. Indeed, Player r only needs to know t2, . . . , tr (r log2 m bits of information)
in-order to know the set Tt2,...,tr .

6 We note that the hardness result of CHAINp(m) (Theorem 5) holds when the players have access to
public coins, i.e., shared randomness. This is proved, e.g., in Theorem 3.3 of [9]. In general, Newman’s
theorem [27] says that we can turn any public coin protocol into a private coin protocol with little
(logarithmic) increase in communication.
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Protocol 2 Reduction from CHAINp(m) to SMkM.
Precomputation

1: Let T be a uniformly random subset of N = [p]k of size m.
2: Order the elements of T randomly, and let T (j) denote the j-th element.
3: for r = 2, . . . , p − 1 and t2, . . . , tr ∈ [m] do
4: Identify o(1) = T (t2), o(2) = Tt2(t3), . . . , o(r−1) = Tt2,...,tr−1(tr).
5: Let Tt2,...,tr be a uniformly random subset of {u ∈ N | ∀1≤i<r,1≤j≤k o

(i)
j ̸= uj} of size

m.
6: Order the elements of Tt2,...,tr randomly, and let Tt2,...,tr (j) denote the j-th element.

Player Pr’s Algorithm for r = 1, . . . , p − 1
1: Initialize ALG with the received memory state (or initial state if first player).
2: Simulate ALG on the elements Tr = {Tt2,...,tr (j) | j ∈ [n] with xt

j = 1} given in any
order.

3: Send to Pr+1 the values t2, t3, . . . , tr and the memory state of ALG.
Player Pp’s Algorithm

1: If ALG with the received memory state returns an independent set of size at least 2,
output “1-case”; otherwise, output “0-case”.

3.3.1.2 The messages of the players

After generating the (common) sets in the precomputation phase using the public coins, the
players now proceed as follows. The first player receives as input x1 and simulates ALG on
the subset {T (j) | x1

j = 1} of T corresponding to the 1-bits. These elements are given to
ALG as a stream in any order. Player 1 then sends to Player 2 the message containing the
state of ALG after processing this stream of elements.

The second player receives input x2, t2 and initializes ALG with the state received from
the first player. Then, the elements {Tt2(j) | x2

j = 1} of Tt2 that correspond to 1-bits of x2

are streamed to ALG in any order. Player 2 sends to Player 3 a message containing the
state of ALG after processing these elements and the index t2. Player r, for r = 3, . . . , p − 1,
proceeds similarly to Player 2: given input xr, tr, ALG is first initialized with the state
received from the previous player, and then the elements {Tt2,...,tr (j) | xr

j = 1} are streamed
to ALG in any order. Notice that Player r knows t2, . . . , tr−1 from the message of the
previous player, tr, xr from the input, and Tt2,...,tr from the precompuation phase, and so
the set {Tt2,...,tr (j) | xr

j = 1} can be computed. Finally, Player r sends to Player r + 1 a
message consisting of the indices t2, . . . , tr and the memory state of ALG.

The final player initializes ALG with the received state and asks ALG to return an
independent set. If the independent set consists of at least two elements, Player p outputs
“1-case”, and otherwise, the output is “0-case”.

3.3.2 Analysis
The messages sent by the players contain the memory state of ALG and at most p − 2 indices
t2, . . . , tp−1 ∈ [m]. The memory state of ALG is at most M bits by assumption, and each
index requires log2 m bits. The communication complexity of the protocol is, therefore, upper
bounded by M + p log2 m.

To analyze the success probability of the protocol, we have the following lemma.

▶ Lemma 10. The instance that the players stream to ALG satisfies the following:
In the 1-case, the stream contains p − 1 independent elements.
In the 0-case, with probability at least 2/3, any two elements in the stream are dependent.
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Proof. In the 1-case, we have x1
t2 = x2

t3 = . . . = xp−1
tp = 1 and so the elements T (t2),

Tt2(t3), . . . , Tt2,...,tp−1(tp) are part of the stream. By definition, they form an independent
set consisting of p − 1 elements.

In the 0-case, we have that x1
t2 = x2

t3 = . . . = xp−1
tp = 0 and so any two elements e, f in the

stream belong to the set S1 ∪ S2 . . . , Sp−1 \ {o(1), o(2), . . . , o(p−1)}, where S1 = T, o(1) = T (t2)
and Sj = Tt2,...,tj , o(j) = Tt2,...,tj (tj+1) for j = 2, . . . , p − 1. By Observation 9, we can apply
Lemma 8 to obtain that, with probability at least 1 −

(
pm
2

)
e−k/p, any two elements in the

stream are dependent. The statement now follows since the selection of our parameters p, m

and k implies(
pm

2

)
e−k/p ≤ m4e−k/p ≤ 16ek/(8α) · e−k/(4α) = 16e−k/(8α) ≤ 1/3 ,

where for the first inequality we used p ≤ m, and for the second inequality we used that
p ≤ 4 · α and m ≤ 2ek/(8α). The last inequality holds for k ≥ 3 (the case of k = 2 can be
ignored because it implies k/(32 ln k) < 1, which makes Theorem 2 trivial). ◀

We now argue how the above lemma implies that Protocol 2 has a success probability of
2/3 in both the 0-case and 1-case. For 0-case instances, we have with probability 2/3 that
any two elements are dependent. Hence, with that probability, there is no way for ALG
to return an independent set with more than one element. Thus, the output of Player p is
correct with probability at least 2/3 in the 0-case. In the 1-case, the stream always contains
a solution of value p − 1. By the assumption that ALG returns an α-approximate solution
with probability at least 2/3, ALG returns an independent set of size at least (p − 1)/α with
probability at least 2/3. This implies that Player p is correct in this case with probability
2/3 since

(p − 1)/α ≥ (3 · α − 1)/α ≥ 2 .

Using ALG we have, thus, devised a protocol for CHAINp(m) that is correct with probability
2/3 and has a communication complexity that is upper bounded by M + p log2 m. By
Theorem 5, we thus must have (M + p log2 m) ≥ m/(36p2). Now using that p ≤ k/8 and
ek/(8α) ≤ m, we get

M ≥ m

36p2 − p log2 n ≥ 64
36

m

k2 − k2 ≥ 64
36

ek/(8α)

k2 − k2 ,

which is Ω
(
ek/(8α)/k2)

since by assumption on α we have ek/(8α) ≥ k4. We have thus proved
that the memory usage M of ALG must be at least Ω

(
ek/(8α)/k2)

as required by Theorem 2.
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