
Improved Polynomial-Time Approximations for
Clustering with Minimum Sum of Radii or
Diameters
Zachary Friggstad !

Department of Computing Science, University of Alberta, Edmonton, Canada

Mahya Jamshidian !

Department of Computing Science, University of Alberta, Edmonton, Canada

Abstract
We give an improved approximation algorithm for two related clustering problems. In the Minimum
Sum of Radii clustering problem (MSR), we are to select k balls in a metric space to cover all
points while minimizing the sum of the radii of these balls. In the Minimum Sum of Diameters
clustering problem (MSD), we are to simply partition the points of a metric space into k parts while
minimizing the sum of the diameters of these parts. We present a 3.389-approximation for MSR and
a 6.546-approximation for MSD, improving over their respective 3.504 and 7.008 approximations
developed by Charikar and Panigrahy (2001). In particular, our guarantee for MSD is better than
twice our guarantee for MSR.

Our approach refines a so-called bipoint rounding procedure of Charikar and Panigrahy’s
algorithm by considering centering balls at some points that were not necessarily centers in the bipoint
solution. This added versatility enables the analysis of our improved approximation guarantees.
We also provide an alternative approach to finding the bipoint solution using a straightforward LP
rounding procedure rather than a primal-dual algorithm.
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1 Introduction

Clustering, as one of the fundamental problems in information technology, has been studied in
computing science and several other fields to a great extent. Different methods of clustering
have been used significantly in data mining, bioinformatics, pattern recognition, computer
vision, etc. The goal of clustering is to partition a set of data points into partitions, called
clusters. Many of clustering problems involve finding k cluster centers and a mapping σ from
data points to the centers to minimize some objective function. One of the most studied such
objective functions is k-Center which minimizes the maximum diameter (or radius) [9, 18].
Another examples is the k-Median problem which aims to minimize sum of distances from
data points to their centers, as extensively studied in [5, 6, 19, 20, 21].

In this paper, we focus on a different objective function for clustering that is more
center-focused in that the cost of a cluster is the radius of the ball used to cover that cluster.
Specifically, we study the following problem.
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▶ Definition 1. In the Minimum Sum of Radii problem (MSR), we are given a set X of n

points in a metric space with distances d and a positive integer k. We are to select centers
C ⊆ X, |C| ≤ k and assign each i ∈ C a radius ri so that each j ∈ X lies within distance ri

of at least one i ∈ C (i.e. d(j, i) ≤ ri). The goal is to minimize the total radii, i.e.
∑

i∈C ri.

We also consider the related problem to minimize sum of diameters of the clusters chosen.
Note this variant is simply about partitioning the point set, there are no centers involved.

▶ Definition 2. In the Minimums Sum of Diameters problem (MSD), the input is the
same as in MSR and our goal is to partition the points into k clusters X1, X2, . . . , Xk to
minimize

∑k
i=1 maxj,j′∈Xi

d(j, j′), the sum of the diameters of the clusters.

It is easy to see that an α-approximation algorithm for MSR yields a 2α-approximation
algorithm for MSD. That is, if OPTR denotes the optimum MSR solution cost and OPTD

an optimum MSD solution cost, we have OPTR ≤ OPTD because in the optimum MSD
solution we could pick any point from each cluster to act as its center (with radius equal to
the diameter of the cluster). So if we have an MSR solution with cost at most α · OPTR,
then if we define clusters Xi by sending each point to some center whose ball covers that
point, the diameter of cluster i would be ≤ 2 · ri so the sum of diameters would then be at
most 2α ·OPTR ≤ 2α ·OPTD.

1.1 Our Contributions
Prior to this work, Charikar and Panigrahy presented a 3.504-approximation for MSR [7].
Since an α-approximation for MSR yields a 2α-approximation for MSD, this also yields a
7.008-approximation for MSD. These were the best polynomial-time approximations for these
problems in general metrics.

In this paper, we first present an improved polynomial-time approximation algorithm for
MSR. Specifically, we prove the following.

▶ Theorem 3. There is a polynomial-time 3.389-approximation for MSR.

We obtain this primarily by refining a so-called bipoint rounding step from [7]. That is,
our improvement for MSR mainly focuses in the last phase of the algorithm in [7] which
combines two subsets of balls that, together, open an average of k centers and whose average
cost is low. Their algorithm focuses on selecting k of the centers from these two subsets. We
expand the set of possible centers to choose and consider some that may not be centers in
the averaging of the two subsets.

While not our main result, we also present an alternative way to obtain these two
subsets of balls in that we consider a straightforward rounding of a linear programming (LP)
relaxation, the Lagrangian relaxation of the problem obtained by relaxing the constraint that
at most k centers are chosen, rather than a primal-dual technique as in [7]. Our rounding
algorithm is incredibly simple and we employ fairly generic arguments to convert it to a
bipoint solution for a single Lagrangian multiplier λ. This may be of independent interest
as it should be easy to adapt to other settings where one wants to get a bipoint solution
where both points are obtained from a common Lagrangian value λ, as long as the LMP
approximation is from direct LP rounding. We emphasize this is only an alternative approach:
we could work directly with their primal-dual approach.

Our second result is an improved MSD approximation that does not just use our MSR
approximation as a black box.

▶ Theorem 4. There is a polynomial-time 6.546-approximation for MSD.

In particular, notice the guarantee is better than twice our approximation guarantee for
MSR. This is obtained through a variation of our new ideas behind our MSR approximation.
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We emphasize this is the first improvement to the approximation guarantee from
polynomial-time algorithms for these problems in over 20 years.

1.2 Related Work
Gibson et al. show MSR is NP-hard even in metrics with constant doubling dimension
or shortest-path metrics of edge-weighted planar graphs [10]. In polynomial time, the best
approximation algorithm is the stated 3.504 approximation by Charikar and Panigrahy [7].
Interestingly, [10] show that MSR can be solved exactly in nO(log n·log Γ) where Γ is the
aspect ratio of the metric (maximum distance divided by minimum nonzero distance). By
standard techniques, this yields a quasi-PTAS for MSR: i.e. a (1 + ϵ)-approximation with
running time nO(log 1/ϵ+log2 n). A major open problem is to design a PTAS for MSR, or
perhaps to demonstrate there is no PTAS for MSR under some strong lower bound (eg.
the exponential-time hypothesis). For now, it is of interest to get improved constant-factor
approximations for MSR. By way of analogy, the unsplittable flow problem was known to
admit a quasi-PTAS [1, 2] yet improved constant-factor approximations were subsequently
produced [15, 13, 14], that is until a PTAS was finally found by Grandoni et al. [12].

On the other hand MSD is hard to approximate: Doddi et al. show that unless P = NP,
there is no (2− ϵ)-approximation for MSD for any ϵ > 0 even if the metric is the shortest
path metric of an unweighted graph [8]. Prior to our work, the best approximation for MSD
is simply twice the best polynomial-time approximation for MSR, i.e. 2 · 3.504 = 7.008 using
the approximation for MSR from [7].

MSR and MSD have been studied in special cases as well. In constant-dimensional
Euclidean metrics, MSR can be solved exactly in polynomial time [11]. This is particularly
interesting in light of the fact that MSR is hard in doubling metrics. For MSD in constant-
dimensional Euclidean metrics, if k is also regarded as a constant then MSD can be solved
exactly [4]. In general metrics with k = 2, MSD can be solved exactly by observing that if
we are given the diameters of the two clusters, we can use 2SAT to determine if we can place
the points in these clusters while respecting the diameters [16]. However, MSD is NP-hard
for even k = 3 as it captures the problem of determining if an unweighted graph can be
partitioned into 3 cliques. Finally, if one does not allow balls with radius 0 in the solution,
MSR can be solved in polynomial time in shortest path metrics of unweighted graphs [3, 17].

1.3 Organization
Our MSR approximation is given in Section 2. Our algorithm follows the same general
structure as the algorithm in [7] so we defer the details behind one significant step (obtaining
the “bipoint” solution) and focus on our new ideas. Our MSD approximation is then given
in Section 3. Finally, our new approach to obtaining a clean bipoint solution is summarized
in Section 4. For the sake of space, many proofs in Section 4 are deferred to the full version.
Brief concluding remarks are given in Section 5.

2 Minimum Sum of Radii

2.1 Preliminaries
Throughout, n = |X|. We assume d(i, i′) > 0 for distinct i, i′ ∈ X (i.e. there are no
collocated points), clearly this is without loss of generality since we could restrict X to
contain only one point from each group of collocated points. A ball in X is a set of the form
B(i, r) = {j ∈ X : d(i, j) ≤ r} for some point i ∈ X and radius r ≥ 0. We sometimes also
call a pair (i, r) a ball with the understanding it is referring to the set B(i, r). One can view
a solution to MSR as being a collection of balls.

ESA 2022
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In some places in our algorithm, we need to guess balls from the optimal solution or use
LP variables corresponding to balls that may appear in the optimal solution: in these steps
we only need to consider balls B(i, r) where r = d(i, j) for some j ∈ X because it is clear
that an optimal MSR solution will set each radius as to be the furthest point that is covered
by that ball. So there are only O(|X|2) different balls to consider. We view a solution as a
collection B of pairs (i, r), i ∈ X, r ≥ 0 describing the centers and radii of balls. For such a
subset, we let cost(B) =

∑
(i,r)∈B r be the total radii of these balls.

Fix some small constant ϵ > 0 such that 1/ϵ is an integer. Smaller ϵ lead to better
guarantees with increased (but still polynomial) running times. Since the bound in the
statement of Theorem 3 is just a rounded up version of the actual approximation guarantee,
we will ultimately pick ϵ to be small enough to hide it in the approximation guarantee, which
is why it does not appear in the statement. We assume k > 1/ϵ, otherwise we can simply
use brute force to find the optimum solution in nO(1/ϵ) time.

Our algorithm for MSR is summarized in Algorithm 1 at the end of this section, though it
makes reference to a fundamental subroutine to find our “bipoint” solution that we describe
in Section 4. By bipoint, we simply mean two subsets of balls B1,B2 with |B1| ≥ k ≥ |B2| so,
in a sense to be described later, some averaging of these sets looks like a feasible fractional
solution using exactly k balls.

2.2 Step 1: Guessing the Largest Balls
Let B∗ denote some fixed optimum solution with OPT := cost(B∗). Among all optimal
solutions, we assume B∗ has the fewest balls. Thus, for distinct (i, r), (i′, r′) ∈ B∗ we have
that i′ /∈ B(i, r) since, otherwise, B∗ − {(i, r), (i′, r′)}) ∪ {(i, r + r′)} is another optimal
solution with even fewer balls.

Similar to [7], we guess the 1/ϵ largest balls in B∗ by trying each subset B′ of 1/ϵ balls
and proceeding with the algorithm we describe in the rest of this paper. Let Rm be the
minimum radius of a ball in B′ and note Rm ≤ ϵ ·OPT . We also let k′ := k − 1/ϵ, which is
an upper bound on the number of balls in B∗ − B′.

We now restrict ourselves to the instance with points X ′ := X − ∪(i,r)∈B′B(i, r) to be
covered. Since no center of a ball in B∗ is contained within another ball from B∗, the
remaining balls in B∗ − B′ are also centered in X ′. We will let OPT ′ = OPT − ∪(i,r)∈B′r

denote the optimal solution value to this restricted instance. The solution B∗ − B′ for this
instance satisfies r ≤ Rm ≤ ϵ · OPT for any (i, r) ∈ B∗ − B′. We also assume |X ′| > k′,
otherwise we just open zero-radius ball at each point in X ′.

Before proceeding to the main part of the algorithm, we perform a “precheck” for this
guess as follows: run a standard 2-approximation for the k′-Median instance on the metric
restricted to X ′ (eg. [18]). If the solution returned has radius > 2 ·Rm, then we reject this
guess B′. This is valid because we know for a correct guess that the remaining points can
each be covered using at most k′ balls each with with radius at most Rm. From now on, we
let A denote the k′ centers returned by this approximation: so each j ∈ X ′ lies in at least
one ball of the form B(i, 2 ·Rm) for some i ∈ A.

Summary. After guessing B′ we have restricted ourselves to an MSR instance with points
X ′, a bound k′ on the number of balls to choose (where k′ < |X ′|), and a bound Rm. For
a correct guess of B′, there is an optimal solution that uses balls with radius at most Rm.
Furthermore, A is a set of k′ centers such that every j ∈ X ′ has d(j,A) ≤ 2 ·Rm balls.

When analyzing the rest of the algorithm, will assume that B′ is guessed correctly, i.e.
B′ ⊆ B∗ and all (i, r) ∈ B∗ − B′ have r ≤ Rm. Our final solution will be the minimum-cost
solution found over all guesses B′ that were not rejected, so it will be at most the cost of the
solution found when B′ was guessed correctly.
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2.3 Step 2: Getting a Bipoint Solution

The output from this step is similar to [7], except we obtain it with a different algorithm.
We note that their approach would suffice for our purposes, our reasons for considering this
different approach are described after the statement of Theorem 6 below. Some details are
deferred to Section 4 and some to the full version of this paper, here we explain what is
required to understand our ideas that lead to the improved approximation guarantee.

For a value λ ≥ 0, LP(λ) is the linear program that results by considering the Lagrangian
relaxation of MSR. That is, the LP has variables for each possible ball we may add except
instead of restricting the number of balls to be at most k′, we simply pay λ for each ball.

Note. Terms of the LP that consider pairs (i, r) corresponding to balls with i ∈ X ′ and
r of the form d(i, j) for some j ∈ X ′ but only for those where r ≤ Rm. Thus, the LP has
O(|X|2) variables.

min
∑

(i,r)(r + λ) · xi,r

s.t.
∑

(i,r):j∈B(i,r) xi,r ≥ 1 ∀ j ∈ X ′

x ≥ 0
(LP(λ))

The following is standard and follows by considering the natural integer solution corresponding
to the balls in B∗ − B′.

▶ Lemma 5. For any λ ≥ 0, let OPTLP(λ) denote the optimum value of LP(λ). Then
OPTLP (λ) − λ · k′ ≤ OPT ′.

We summarize the main properties of a bipoint solution that is required by our algorithm.
The proof of the following is the subject of Section 4.

▶ Theorem 6. There is a polynomial-time algorithm that will compute a single value λ ≥ 0
and two sets of balls B1,B2 having respective sizes k1, k2 where k1 ≥ k′ ≥ k2. Furthermore,
for every (i, r) ∈ B1, there is some (i′, r′) ∈ B2 such that B(i, r) ∩B(i′, r′) ̸= ∅. Finally, for
both ℓ = 1 and ℓ = 2 we have the following properties:

for each (i, r) ∈ Bℓ, we have r ≤ 3 ·Rm,
tripling the radii of each (i, r) ∈ Bℓ will cover X ′, i.e. for each j ∈ X ′ there is some
(i, r) ∈ Bℓ such that j ∈ B(i, 3 · r), and
cost(Bℓ) + λ · kℓ ≤ OPTLP(λ)

Again, we note that essentially the same result is found in [7], except it is slightly more
technical to state since the two sets B1 and B2 are obtained through a LMP algorithm
applied to different (but very close) values λ1 and λ2 which leads to an additional ϵ-loss in
the approximation guarantee. Qualitatively speaking, the theorem statement itself is not new
and the reader who is not interested in seeing a new technique can skip reading its proof.

As an easy warmup, notice that if k1 = k′ then by Lemma 5 we have

cost(B1) ≤ OPTLP(λ) − λ · k′ ≤ OPT ′.

In this case, tripling the radii of all balls in B1 covers all of X ′ with cost at most 3 ·OPT ′.
Together with B′, this is a feasible MSR solution with cost at most 3 · OPT . A similar
approximation follows if k2 = k. However, we do not distinguish these case in our full analysis
below.

ESA 2022
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2.4 Step 3: Combining Bipoint Solutions
Let λ,B1,B2 be the bipoint solution from Theorem 6. For brevity, let C1 = cost(B1) and
C2 = cost(B2). Since k1 ≥ k′ ≥ k2, there are values a, b ≥ 0 with a+b = 1 and a·k1+b·k2 = k′.
We fix these values throughout this section.

The following shows the average cost C1 and C2 is bounded by OPT ′, the first inequality
is by the last property listed in Theorem 6 and the second by Lemma 5.

a·C1 +b·C2 ≤ a·(OPTLP(λ)−λ·k1)+b·(OPTLP(λ)−λ·k2) = OPTLP(λ)−λ·k ≤ OPT ′ (1)

The rest of our algorithm and analysis considers how to convert the two solutions B1,B2 to
produce a feasible solution whose value is within a constant-factor of this averaging of C1, C2.
First, note tripling the radii in all balls in B2 will produce a feasible solution as k2 ≤ k′, but
it may be too expensive. So we will consider two different solutions and take the better of
the two. The first solution is what we just described: formally it is {(i, 3r) : (i, r) ∈ B2},
which is a feasible solution with cost 3 · C2.

Constructing the second solution is our main deviation from the work in [7]. Intuitively,
we want to cover all points by using balls (i, 3 · r) for (i, r) ∈ B1. The cheaper of this and the
first solution can easily be shown to have cost at most 3 ·OPT ′. The problem is that this
could open more than k′ centers (if k1 > k′). As in [7], we consolidate some of these balls
into a single group based on their common intersection with some (i′, r′) ∈ B2. We will select
some groups and merge their balls into a single ball so the number of balls is at most k′. Our
improved approximation is enabled by considering different ways to cover balls in a group
using a single ball, [7] only considered one possible way to cover a group with a single ball.

We now form groups. For each (i, r) ∈ B2, we create a group Gi,r ⊆ B1 as follows:
for each (i′, r′) ∈ B1, consider any single (i, r) ∈ B2 such that B(i, r) ∩ B(i′, r′) ̸= ∅ and
add (i′, r′) to Gi,r. If multiple (i, r) ∈ B2 satisfy this criteria, pick one arbitrarily. Let
G = {Gi,r : (i, r) ∈ B2 s.t. Gi,r ̸= ∅} be the collection of all nonempty groups formed this
way, note G is a partitioning of B1.

Covering a group with a single ball
From here, the approach in [7] would describe how to merge the balls in a group Gi,r ∈ G
simply by centering a new ball at i, and making its radius sufficiently large to cover all points
covered by the tripled balls B(i′, 3r′) for (i′, r′) ∈ Gi,r. We consider choosing a different
center when we consolidate the B1 balls in a group. In fact, it suffices to simply pick the
minimum-radius ball that covers the union of the tripled balls in a group. This ball can be
centered at any point in X ′.

To analyze this, we describe a few candidate balls and argue that the cheapest of these
has cost at most 11

8 · r + 3 · cost(Gi,r) for each Gi,r ∈ G. The exact choice of ball we use
for the analysis depends on the composition of the group, namely the total and maximum
radii of balls in Gi,r versus the radius r itself. In [7], the ball they select has cost at most
r + 4 · cost(Gi,r). While our analysis has a higher dependence on r, when considered as an
alternative solution to the one that just triples all balls in B2 we end up with a better overall
solution.

For now, fix a single group Gi,r ∈ G. Let R1 denote r, R2 be the maximum radius of a
ball in Gi,r and R3 be the maximum radius among all other balls in Gi,r apart from the one
defining R2. If Gi,r has only one ball, then let R3 = 0. That is, 0 ≤ R3 ≤ R2 but it could be
that R3 = R2, i.e. there could be more than one ball from Gi,r with maximum radius. We
also let i1 denote i, i2 be the center of any particular ball with maximum radius in Gi,r, and
i3 be any single point in B(i1, R1) ∩B(i2, R2). There is at least one since each ball in Gi,r

intersects B(i, r) by construction of the groups.
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i1
i2

i3

i
′

i
′′

j

R1

R2

≤ R3

Figure 1 A depiction of a group Gi1,R1 . The solid ball is B(i1, R1) and the dashed balls are
those in Gi1,R1 . Point j is covered by tripling the ball centered at i′. The dashed path depicts the
way we bound d(j, i2) in the second part of the case Centering at i2.

Next we describe the radius of a ball that would be required if we centered it at one of
i1, i2 or i3. Consider any j ∈ Yi,r with, say, j ∈ B(i′, 3r′) for some (i′, r′) ∈ Gi,r. Let i′′ be
any point in B(i1, r) ∩B(i′, r′). We bound the distance of j from each of i1, i2 and i3 to see
what radius would suffice for each of these three possible centers. Figure 1 depicts this group
and one case of the analysis below.

Centering at i1. Simply put,

d(j, i1) ≤ d(j, i′) + d(i′, i′′) + d(i′′, i1)
≤ 3 ·R2 + R2 + R1

= R1 + 4 ·R2.

So radius C(1) := R1 + 4 ·R2 suffices if we choose i1 as the center.
Centering at i2. If (i′, r′) = (i2, R2) then d(j, i2) ≤ 3 ·R2. Otherwise, r′ ≤ R3 and

d(j, i2) ≤ d(j, i′) + d(i′, i′′) + d(i′′, i1) + d(i1, i3) + d(i3, i2)
≤ 3 ·R3 + R3 + R1 + R1 + R2

= 2 ·R1 + R2 + 4 ·R3.

So radius C(2) := max{3 ·R2, 2 ·R1 + R2 + 4 ·R3} suffices if we choose i2 as the center.
Centering at i3. If (i′, r′) = (i2, R2) then d(j, i3) ≤ d(j, i2)+d(i2, i3) ≤ 3·R2+R2 = 4·R2.
Otherwise, r′ ≤ R3 and we see

d(j, i3) ≤ d(j, i′) + d(i′, i′′) + d(i′′, i1) + d(i1, i3)
≤ 3 ·R3 + R3 + R1 + R1

= 2 ·R1 + 4 ·R3.

So radius C(3) := max{4 ·R2, 2 ·R1 + 4 ·R3} suffices if we choose i3 as the center.

ESA 2022
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With these bounds, we now describe how to choose a single ball covering the points
covered by tripled balls in Gi,r in a way that gives a good bound on the minimum-radius
ball covering these points. The following cases employ particular constants to decide which
center should be used, these have been optimized for our approach. The final bounds are
stated to be of the form 3 · Ci,r plus some multiple of r. Let Ci,r =

∑
(i′,r′)∈Gi,r

r be the
total radii of all balls in Gi,r. So

∑
Gi,r∈G Ci,r = cost(B1) = C1.

Case: R3 > R2/3.
Then the ball B′

i,r is selected to be B(i1, C(1)). Note 4/3 · R2 < R2 + R3 ≤ Ci,r so
C(1) ≤ r + 3 · Ci,r.
Case: R3 ≤ R2/3 and R2 ≥ 6

5 ·R1.
The ball B′

i,r is selected to be B(i2, C(2)). Note C(2) ≤ 6
5 · ·R1 + 3 ·R2 ≤ 6

5 · ·r + 3 · Ci,r.
Case: R3 ≤ R2/3 and 6

5 ·R1 > R2 ≥ 3
8 ·R1.

The ball B′
i,r is selected to be B(i3, C(3)). Note C(3) ≤ 11

8 ·R1 + 3 ·R2 ≤ 11
8 · r + 3 · Ci,r.

Case: R3 ≤ R2/3 and 3
8 ·R1 > R2.

The ball B′
i,r is selected to be B(i1, C(1)). Note C(1) ≤ 11

8 ·R1 + 3 ·R2 ≤ 11
8 · r + 3 · Ci,r.

In any case, we see that by selecting B′
i,r optimally, the radius is at most 11

8 · r + 3 · Ci,r.
Also, since R1, R2, R3 ≤ 3 ·Rm by Theorem 6, then the radius of B′

i,r is also seen to be at
most, say, 21 ·Rm.

Choosing which groups to merge
For each group Gi,r ∈ G, we consider two options. Either we select all balls in Gi,r with triple
their original radii (thus, with total cost 3 · Ci,r), or we select the single ball B′

i,r described
in the previous section. We want to do this to minimize the resulting cost while ensuring the
number of centers open is at most k′. To help with this, we consider the following linear
program. For each Gi,r ∈ G we have a variable zi,r where zi,r = 0 corresponds to selecting
the |Gi,r| balls with triple their original radius and zi,r = 1 corresponds to selecting the
single ball B′

i,r. As noted in the previous section, the radius of B′
i,r is at most 11

8 · r + 3 ·Ci,r

and also at most 21 ·Rm.

minimize :
∑

Gi,r∈G(1− zi,r) · 3 · Ci,r + zi,r · cost({B′
i,r})

subject to :
∑

Gi,r∈G ((1− zi,r) · |Gi,r|+ zi,r) ≤ k′

zi,r ∈ [0, 1] ∀ Gi,r ∈ G
(LP-Choose)

To consolidate the groups, compute an optimal extreme point to LP-Choose. Since
all but one constraint are [0, 1] box constraints, there is at most one variable zi,r that
does not take an integer value. Since |Gi,r| ≥ 1, then setting zi,r to 1 yields a feasible
solution whose cost increases by at most the radius of B′

i,r, which was observed to be at
most 21 ·Rm ≤ 21 · ϵ ·OPT .

Recall that a, b are such that a, b ≥ 0, a + b = 1 and a · k1 + b · k2 = k′. Setting zi,r = a

for each Gi,r = 1 is feasible since 1− zi,r = b,
∑

Gi,r∈G |Gi,r| = k2, and there are at most k′
1

terms in this sum. The value of this solution is∑
Gi,r∈G

(3 · b + 3 · a) · Ci,r + 11
8 · b · r = 3 · C2 + 11

8 · b · C1

so the optimum solution to LP-Choose has value at most this as well. Summarizing,



Z. Friggstad and M. Jamshidian 56:9

▶ Lemma 7. In polynomial time, we can compute a set of at most k′ balls with total radius
at most 11

8 · b · C
′
1 + 3 · C2 + 21 · ϵ ·OPT which cover all points in X ′.

Finally, we can complete our analysis. Recall our simple solution of tripling the balls in
B′

1 has cost at most 3 · C ′
1 and the more involved solution jut described has cost at most

3 · C1 + 11
8 · a · C2 + 21 · ϵ ·OPT . Now,

min
{

3 · C2, 3 · C1 + 11
8 · b · C2

}
≤ (1− d) · 3 · C2 + d ·

(
b · 11

8 · C2 + 3 · C1

)

holds for any 0 ≤ d ≤ 1. To maximize the latter, we set d = 3(1−b)
11
8 ·b2− 11

8 ·b+3 and see the
minimum of these two terms is at most(

9
11
8 · b2 − 11

8 · b + 3

)
· (aC1 + bC2) ≤

(
9

11
8 · b2 − 11

8 · b + 3

)
·OPT ′

where we have used bound 1 for the last step.
The worst case occurs at b = 1

2 , at which the bound becomes 85/288 ·OPT ′. Thus, the
cost of the solution is at most 288

85 ·OPT ′ + 21 · ϵ ·OPT . Adding the balls B′ we guessed to
also cover the points in X −X ′, we get get a solution covering all of X with total radii at
most

cost(B′) + 288
85 ·OPT ′ + 21 · ϵ = OPT −OPT ′ + 288

85 ·OPT ′ + 21 · ϵ ·OPT ≤ 3.389 ·OPT

for sufficiently small ϵ.

Algorithm Summary

The entire algorithm for MSR that we have just presented is summarized in Algorithm 1.

Algorithm 1 MSR Approximation.

S ← ∅ {The set of all solutions seen over all guesses}
for each subset B′

j of 1/ϵ balls do
let X ′, Rm be as described in Section 2.2
(A, R)← k-Median 2-approximation on X ′

if R > 2 ·Rm then
reject this guess B′ and continue with the next

let B1,B2, λ be the bipoint solution described in Theorem 6
let G be the groups (a partitioning of B1) described in Section 2.4
for each Gi,r ∈ G, let B′

i,r be the cheapest ball covering ∪(i′,r′)∈Gi,r
B(i′, 3 · r′)

let z′ be an optimal extreme point to LP-Choose
B(1) ← {B′

i,r : z′
i,r > 0} ∪

⋃
z′

i,r
=0{(i′, 3 · r′) : (i′, r′) ∈ Gi,r}

B(2) ← {(i, 3 · r) : (i, r) ∈ B2}
let B be {(i, 3 · r) : (i, r) ∈ B′} plus the cheaper of the two sets B(1) and B(2)

S ← S ∪ {B}
return the cheapest solution from S
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3 Minimum Sum of Diameters

Here, we observe that a slight modification to the MSR approximation in fact yields a
6.546-approximation for MSD. Note that for any Y ⊆ X with diameter, say, diam(Y ),
for any i ∈ Y we have Y ⊆ B(i, diam(Y )) and diam(B(i, diam(Y )) ≤ 2 · diam(Y ). So
while it is difficult to guess any single cluster from the optimum MSD solution, we can
guess the 1/ϵ largest diameters (the values) and guess balls B′ with these radii that cover
these largest-diameter clusters. Let OPT ′

D denote the total diameter of the remaining
clusters from the optimum solution, k′ = k − 1

ϵ , X ′ be the remaining points to cluster, and
Rm = min{r : (i, r) ∈ B′} ≤ ϵ ·OPTD.

For any λ ≥ 0, note OPTLP(λ) + λ · k′ ≤ OPT ′
D as picking any single center from each

cluster in optimum solution on X ′ yields an MSR solution with cost at most OPT ′
D. We

then use Theorem 6 to get a bipoint solution B1,B2, λ.
If we triple the balls in B2 and output those clusters, we get a solution with total diameter

≤ 6 · cost(B2). For the other case, we again form groups G. Instead of picking a ball B′
i,r for

each group Gi,r ∈ G, we simply let B′
i,r be the set of points covered by the tripled balls in

Gi,r. We claim diam(B′
i,r) ≤ 2 · r + 6 · Ci,r.

To see this, consider any two points j′, j′′ covered by ∪(i′,r′)∈Gi,r
B(i′, 3 · r′), say (i′, r′)

and (i′′, r′′) are the balls in Gi,r which, when tripled, cover j′ and j′′, respectively. If
(i′, r′) = (i′′, r′′) (i.e. it is the same tripled ball from Gi,r that covers both j′, j′′) then
d(j′, j′′) ≤ 6 · r′ ≤ 6 · Ci,r. Otherwise, we have r′ + r′′ ≤ Ci,r and

d(j′, j′′) ≤ d(j′, i′) + d(i′, i) + d(i, i′′) + d(i′′, j′′) ≤ 4 · r′ + r + r + 4 · r′′ ≤ 2 · r + 4 · Ci,r.

In either case, we can upper bound d(j′, j′′) ≤ 2 · r + 6 · Ci,r, so diam(B′
i,r) is bounded by

the same. We use an LP similar to LP-Choose except with the modified objective function
to reflect the diameter costs of the corresponding choices.

minimize :
∑

Gi,r∈G(1− zi,r) · 6 · Ci,r + zi,r · diam(B′
i,r)

subject to :
∑

Gi,r∈G ((1− zi,r) · |Gi,r|+ zi,r) ≤ k′

zi,r ∈ [0, 1] ∀ Gi,r ∈ G
(LP-Choose MSD)

For a, b ≥ 0, we let a + b = 1 and a · k1 + b · k2 = k′, similar to MSR. Setting zi,r = a

shows the optimum LP solution value is at most∑
Gi,r∈G

(6 · b + 6 · a) · Ci,r + 2 · b · r = 6 · C2 + 2 · b · C1.

In an optimal extreme point, at most one variable in LP-Choose MSD that is fractional
so we set it to 1 we pick to corresponding group to be covered by a single ball. The final
cost is min {6 · C2, 6 · C1 + 2 · b · C2 + O(ϵ) ·OPTD} ≤ (1− d) · 6 ·C2 + d · (b · 2 · C2 + 6 · C1)
for any d ∈ [0, 1]. Let At d = 6(1−b)

2·b2−2·b+6 the worst case for the final bound is at b = 1/2 at
which we see the cost is at most 72

11 ·OPT ′
D + O(ϵ) ·OPTD. Adding this to the 1/ϵ balls we

guessed (whose diameters are at most twice their radius) and choosing ϵ sufficiently small
shows we get a solution with an approximation guarantee of 6.546 for MSD, which is better
than two times the MSR guarantee.
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4 Getting the Bipoint Solution: Proof of Theorem 6

We again emphasize that one can slightly adapt the algorithm and analysis in [7] to prove a
slightly weaker version of Theorem 6 that would still suffice for our approximation guarantees.
The main difference is that the averaging of the bipoint solution costs as given in bound
(1) from Section 2.4 would be bounded by (1 + ϵ′) ·OPT for some ϵ′ > 0 (the running time
depends linearly on log 1/ϵ).

We give an alternative approach that uses simple LP rounding. This may be of independent
interest since our method of getting a single λ rather than two “close” values λ1, λ2 is simple
in principle and may apply to other Lagrangian multipler preserving (LMP) approximations
that use direct LP rounding. That is, we give a recipe to find a single λ and two corresponding
solutions B1,B2 that uses very generic properties of the rounding algorithm.

The proof of Theorem 6 proceeds through the usual approach of using a binary search
using an LMP algorithm. We begin by describing our LMP algorithm followed by a simple
consolidation step which is used in some parts of the binary search. Our direct LP rounding
procedure is presented here as is an outline of the binary search routine. For the sake of
space, full details of how our binary search works with the rounding procedure are deferred
to full version.

4.1 A Simple LMP Algorithm via Direct LP Rounding

Algorithm 2 describes our rounding procedure. Note it only depends on x′ and not on λ

itself.

Algorithm 2 ROUND(x′).

B ← ∅
for (i, r) with x′

i,r > 0 in non-increasing order of r do
if B(i, r) ∩B(i′, r′) = ∅ for each (i′, r′) ∈ B then
B ← B ∪ {(i, r)}

return B

To analyze the performance of this algorithm, we also consider the dual of LP(λ).

max
∑

j∈X′ yj

s.t.
∑

j∈B(i,r)∩X′ yj ≤ r + λ ∀ (i, r), r ≤ Rm

y ≥ 0
(DUAL(λ))

▶ Theorem 8. Let λ ≥ 0. Let x′ be an optimal solution for LP(λ) and y′ be an optimal
dual solution for LP(λ). Let B denote the set returned by ROUND(x′). The balls in B are
pairwise-disjoint and for each (i, r) ∈ B we have r ≤ Rm and r + λ =

∑
j∈B(i,r) y′

j.

Proof. Disjointedness follows by construction. Each ball B has radius at most Rm since
each ball is from the support of x′ and LP(λ) only has variable for balls with radius ≤ Rm.
Again, since each (i, r) ∈ B lies in the support of x′ then complementary slackness shows
r + λ =

∑
j∈B(i,r) y′

j . ◀

Note the last condition shows cost(B) + λ · |B| ≤
∑

j∈X′ y′
j = OPTLP(λ). Thus, we call

this a “Langrangian multipler preserving” algorithm because if B′′ is obtained by tripling
the radii of the balls returned by ROUND(x′), then cost(B′′) + 3 · λ · |B′′| ≤ 3 ·OPTLP(λ).
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4.2 Sketch of the Binary Search
While it is fairly easy to see that using λ = 0 will have an optimal LP solution be rounded
to |X ′| > k′ balls, we need to ensure that for large enough λ that our rounding proced-
ure produces ≤ k′ balls in order to begin our binary search. Thus, we consider another
step CONSOLIDATE(B, λ,A, Rm) that tries to consolidate some of the balls output by
ROUND(x′) using the balls from the k-Median approximation A. Roughly speaking, if the
single radius 3 ·Rm-ball centered at some i′ ∈ A′ is cheaper than the balls of B it covers, we
replace them with this single ball.

Algorithm 3 CONSOLIDATE(B, λ, A, Rm).

Bc ← ∅
for each i′ ∈ A do

Let Ni′ = {(i, r) ∈ B : i ∈ B(i′, 2 ·Rm)}
if 3 ·Rm + λ ≤

∑
(i,r)∈Ni′ (r + λ) then

Bc ← Bc ∪ {(i′, 3 ·Rm)}
B ← B −Ni′

Bc ← Bc ∪ B
return Bc

We the following show in the full version.

▶ Lemma 9. Let B = ROUND(x′) for some optimal solution x′ for LP(λ) and Bc =
CONSOLIDATE(B, λ,A, Rm).
1. If λ ≥ 4 ·Rm, then |Bc| ≤ k′,
2. r ≤ 3 ·Rm for each (i, r) ∈ Bc

3. for each (i, r) ∈ Bc there is some Xi,r ⊆ B(i, r) such that r + λ ≤
∑

j∈Xi,r
·y′

j where y′ is
an optimal solution to DUAL(λ),

4. for different (i, r), (i′, r′) ∈ Bc we have Xi,r ∩Xi′,r′ = ∅, and
5. for each j ∈ X ′ we have j ∈ B(i, 3 · r) for some (i, r) ∈ Bc.

In particular, the total (r + λ)-cost of Bc is still at most OPTLP(λ) since properties 3 and
4 show each ball can be paid for some variables in the optimal dual solution and no variable
in the dual is charged more than once this way.

In this way, we can start the binary search with λ1 = 0 (for which ROUND will return
exactly k′ balls) and λ2 = 4 ·Rm (for which consolidating the rounded solution will produce
≤ k′ balls). During the binary search, if at any step the optimal LP solution x1 to LP(λ1) is
also an optimal LP solution to LP(λ2) (here [λ1, λ2] is the current interval enclosed by the
binary search) or if |B| ≥ k′ ≥ |Bc| where B is obtained by rounding an optimal solution to
LP(λ) and Bc is obtained by consolidating it, it is easy to find the bipoint solution satisfying
Theorem 6.

So we focus on break points λ which, intuitively, are values λ where the set of optimal
extreme points to LP(λ) changes. In the full version, we prove there is sufficiently-large
distance between distinct breakpoints. So after a polynomial number of iterations, if the
search did not terminate for one of the reasons mentioned above, then the window [λ1, λ2]
encloses exactly one break point.

We also show how to compute the largest λ such that x1 remains optimal for LP(λ) by
solving yet another a linear program that exploits complementary slackness. After computing
the only breakpoint in our final binary search window, it is easy to construct the bipoint
solution satisfying the requirements of Theorem 6. We note that whenever we return a
bipoint solution from this binary search, we consider a post-processing routine to ensure
each ball in B1 will intersect at least one ball in B2 to fulfill the requirements of Theorem 6.
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5 Concluding Remarks

It may be possible to improve our analysis further by considering an even more involved
approach to analyzing how to optimally cover a group using a single ball, though such
an approach seems likely to produce approximations that are still a constant-factor worse
than 3. What is more interesting is an observation about our new approach to finding the
bipoint solution. If we ever encounter a λ such that |B| ≥ k′ ≥ |Bc| where B is the output of
ROUND and Bc is the output of CONSOLIDATE (using B), then Check 1 will terminate
the search with bipoint solution B,Bc. If we refine the CONSOLIDATE step to perform
the consolidations for B one at a time and stop when the number of clusters first becomes
≤ k′, one can show that tripling the radii of these ≤ k′ balls is a solution with cost at most
(3 + O(ϵ)) ·OPT ′. But this is just for one case in our binary search. In general, is there a
refinement of our binary search routine (or some other approach) that would always produce
a (3 + ϵ)-approximation?
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