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—— Abstract

A dynamic graph algorithm is a data structure that answers queries about a property of the current
graph while supporting graph modifications such as edge insertions and deletions. Prior work has
shown strong conditional lower bounds for general dynamic graphs, yet graph families that arise
in practice often exhibit structural properties that the existing lower bound constructions do not
possess. We study three specific graph families that are ubiquitous, namely constant-degree graphs,
power-law graphs, and expander graphs, and give the first conditional lower bounds for them. Our
results show that even when restricting our attention to one of these graph classes, any algorithm for
fundamental graph problems such as distance computation or approximation or maximum matching,
cannot simultaneously achieve a sub-polynomial update time and query time. For example, we show
that the same lower bounds as for general graphs hold for mazimum matching and (s,t)-distance in
constant-degree graphs, power-law graphs or expanders. Namely, in an m-edge graph, there exists no
dynamic algorithms with both O(ml/Qfé) update time and O(m!'~¢) query time, for any small € > 0.
Note that for (s, t)-distance the trivial dynamic algorithm achieves an almost matching upper bound
of constant update time and O(m) query time. We prove similar bounds for the other graph families
and for other fundamental problems such as densest subgraph detection and perfect matching.
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1 Introduction

A dynamic graph algorithm is a data structure that stores a graph and supports update
operations, usually consisting of edge insertions and deletions, as well as query operations that
ask about a specific property of the graph. The introduction of strong conditional lower bounds
based on widely-believed complexity assumptions [1, 12] has had a fundamental influence on
the field, pushing the design of new algorithms towards more specialized algorithms such

as partially-dynamic or even offline-dynamic algorithms or towards approximate solutions.

However, graphs arising in real-world applications often differ significantly from the very
specifically crafted graphs for which the lower bound results are shown. Frequently, real-world
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graphs have some special structure, such as having a power-law degree distribution, a constant
degree, or being planar. Expanders, on the other side, have recently been used to design
dynamic algorithms for general graphs. This naturally leads to the question of determining
the complexity of dynamic graph algorithms for these graph classes, and this is exactly the
question investigated in this paper.

While the complexity of dynamic graph algorithms for planar graphs has already been
studied quite extensively [20, 14, 18, 16, 3, 2, 1, 15, 5], the question is still widely open for
other families of graphs, including power-law graphs, constant-degree graphs, and expanders.
Certain problems become easier for these graph classes: As an N-node! constant-degree
graph has O(N) edges, computing all-pairs shortest paths (APSP) takes only time O(N?),
while the popular APSP conjecture postulates that for general graphs, there exists a small
constant ¢ > 0 such that any algorithm in the word RAM model with O(log N)-bit words
requires N3°(1) expected time to compute APSP. Moreover, some problems become trivial
in these graph classes, e.g., computing shortest paths with logarithmic additive error on
expander graphs is trivial, due to their low diameter.

In this paper we will concentrate on graph problems that have real-world applications
such as shortest-paths (which has applications in online navigation), matching (which has
applications in reconfigurable datacenters), and densest subgraphs (which has applications in
network analysis), yet we believe that our general approach can be applied to further graph
problems. For these three problems, the known conditional lower bounds construct graphs
that are far from being in the classes we consider: They have maximum degree Q(N) and
small cuts, and their degree distribution is unknown as it depends on the instance that is
postulated to be hard.

Constant-degree graphs. Various dynamic graph problems that admit strong lower bounds
in general graphs have very efficient algorithms on constant-degree graphs. Let A be the
maximum degree in the graph. For local problems, where the solution at a node v can be
computed by simply analyzing information stored at the neighbors of v such as maintaining
a maximal matching, a maximal independent set, or a (A 4 1)-vertex coloring, there exist
simple dynamic algorithms with O(A) update time and constant query time. Additionally,
for various problems that count or detect certain fixed subgraphs with ¢ nodes (such as
triangle counting for ¢ = 3) there exists dynamic algorithms with O(A¢~1) update time and
constant query time, even though they have polynomial conditional lower bounds in general
graphs (see Table 1). These efficient algorithms for local problems rule out the possibility of
any non-trivial lower bound in the constant-degree setting.

Furthermore, even for the non-local problem of maintaining a maximum matching Gupta
and Peng [11] designed a (1 4 ¢)-approximation algorithm for any small 6 > 0 that runs in

(0] (min {W, \M(t)|} 5‘2) amortized time per update, where M () denotes the maximum
cardinality matching after the ¢-th update operation. As in a graph with maximum degree
A it holds that |M(t)] > m/(2A), their algorithm achieves an amortized update time of
O(A672), which is O(672) in constant-degree graphs. This raises the question of how
efficiently other non-local dynamic graph problems such exact maximum matching, shortest
paths, and densest subgraph can be solved in dynamic constant-degree graphs and whether

it is possible to show (conditional) lower bounds for them.

! To avoid confusion with the parameters n and M used in the online-matrix-vector multiplication
conjecture, we use N to denote the number of vertices and m the number of edges in the dynamic
graphs.
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Table 1 Counting problems which admit polynomial conditional lower bounds on general graphs
(amortized) and on Erdés-Rényi graphs (average case), but have algorithms with constant update and
query times in constant-degree graphs. For the lower bounds above, there is no dynamic algorithm
with pre-processing time p(m, N), update time u(m, N), and query time g(m, N) unless the OMv
conjecture is false. When p(m, N) is unspecified, poly(N) pre-processing time is allowed.

Lower bounds Upper bounds
Problems General graphs [12] Erdds-Rényi avg-case [13] constant A (trivial)
u(m,N) | glm,N) | p(m,N) | u(m,N) | ¢g(lm,N) | u(m,N) | g(m,N)
Triangl
1ang e A 1
counting N3¢ /2 il
Cy4 sub h
4 SU g-rap ml/2—e ml—e A3 1
counting
5-length N2—e Nw—2—e 1 Al 1
(s,t)-path count

Expanders. Expander decompositions are increasingly becoming a central tool for designing
dynamic graph algorithms with improved running time bounds for various graph problems
such as connectivity, minimum spanning tree, shortest paths, conductance, edge-connectivity,
maximum flows, and minimum cuts [17, 9, 7, 6]. One of the central subproblems that these

algorithms have to handle is to solve a graph problem on a dynamically changing expander.

To understand the limitations of this approach it is crucial to understand which problems
can be solved efficiently on expanders, and which cannot. We present novel lower bounds for
dynamic problems on expanders, more specifically on constant-degree expanders.

Note that these results also have an interesting connection to the average-case hardness
of dynamic graph algorithms. Recently, lower bounds on the average-case hardness were
shown for various subgraph counting problems in dynamic Erdés-Rényi graphs (see Table 1
for some of them) [13]. As random graphs are usually expanders, giving lower bounds for a
problem on dynamic expanders gives an indication that this problem might also be hard in
the average case and can motivate further work in this direction.

Power-law graphs. Graphs are called power-law graphs if the fraction of nodes with degree
d is proportional to 1/d¢ for some constant ¢ > 0. Static and dynamic power-law graphs
arise surprisingly often in real-world networks, such as the Internet, the world-wide web, and
citation graphs, as well as in physics, linguistics, and economics. Even though the existence
of large dynamic power-law graphs was already pointed out in 2004 [10], no efficient dynamic
algorithms have been developed specifically for this class of graphs. This leads to the question
of whether sub-polynomial time dynamic algorithms are even possible for power-law graphs
or not. In fact, dynamic power-law graphs were not only never studied, they were not even
defined — removing even a single edge from a power-law graph changes the degree distribution
and thus violates the power-law distribution. Hence, we first present several definitions of
dynamic power-law graphs, where some slackness in the degree-distribution is allowed. Then
we prove lower bounds that hold for all of these dynamic power-law graph definitions.

1.1 Our Results

Throughout the paper we use the standard assumption that queries output one value, such
as the size, length or weight of the solution. Note that this makes it only more challenging
to prove lower bounds. All our results are conditioned on the popular OMv conjecture [12],
defined in Section 2, but to simplify the terminology we usually drop the word “conditional”.
Our results are also summarized in Table 2.
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1. Main results. We study the hardness of dynamic algorithms for (i) constant-degree

graphs, (ii) expanders, and (iii) power-law graphs, for the following graph problems:
Determining (a) the size of a maximum matching, (b) the length of the (s, t) shortest-path
(i.e. (s,t)-distance), and (c) the density of the densest subgraph. Specifically, we show
the following tradeoff between the update time uw and the query time ¢ in an m-edge
graph for maximum matching and (s, t)-distance: There is no dynamic algorithm which
achieves both u = O(m'/?7¢) and ¢ = O(m'~¢) for any small € > 0. Note that these
bounds match the bounds given for general graphs in [12] and that the lower bound for
(s,t)-distance is almost tight as the simple algorithm that only records the edge change
at update time and computes the solution from scratch at query time achieves u = O(1)
and ¢ = O(m). For densest subgraph we show that there is no dynamic algorithm which
achieves both u = O(N'Y/*=¢) and ¢ = O(N'/?~¢) for any small ¢ > 0, which is weaker
than the lower bound on general graphs (of u = O(N'/2=¢) and ¢ = O(N'~9)).
The only relevant prior work are conditional lower bounds for planar graphs [1], which
have constant degree: In unweighted graphs they show for all-pairs-shortest paths a
weaker tradeoff between update time v and query time g than we do, namely they prove
max(u? - q,u - ¢%) = Q(m'~°M). In weighted graphs they show for (s,t)-distance a
tradeoff of max(u,q) = Q(m!/27°M). Note that our result is stronger as it shows that in
unweighted graphs no algorithm with u = Q(m*%/190) and ¢ = Q(m?/1%) is possible.

2. Degree—lower bound trade-off. While the constant-degree lower bounds are equal to the
lower bounds for general graphs in terms of m, they are naturally quadratically lower
in terms of the number of nodes N. To understand the behaviour of the bounds also
with respect to IV, we extend our constant-degree lower bounds for maximum matching,
perfect matching, and (s, t)-distance to graphs with maximum degree O(N?), for any
0 <t < 1. We show the following result: There is no dynamic algorithm which achieves
both u = O(NI+9/2=¢) and ¢ = O(N'**¢) in a graph with maximum degree O(N?)
for any € > 0. These results hold even in bipartite graphs. Note that for ¢t = 1 these
results match exactly the bounds for general graphs in [12], and for ¢ = 0, they match
the aforementioned results for constant-degree graphs.

3. Approxzimation results. In constant-degree graphs we extend the lower bound to the

problem of approximating the (s,t)-distance within a factor of 3 — §, for any small
constant §. This naturally extends the (3 — d)-approximation lower bounds on general
graphs to the constant-degree case. In planar graphs, the (s,t)-distance lower bound
holds only for exact answers.
Note that a similar extension to approximation algorithms is not possible for maximum
cardinality matching and for densest subgraph: (a) For maximum matching, for any
small 6 > 0 the above-mentioned (1 + §)-approximation algorithm [11] achieves an
amortized update time of O(62), which is constant for a constant d, thereby precluding
any non-trivial lower bounds for approximate maximum matching in the constant-degree
setting. Stated differently, our work shows an interesting dichotomy for dynamic matching
matching in constant-degree graphs: For the exact setting there is no dynamic algorithm
which achieves both u = O(m!/?=¢) and ¢ = O(m'~¢) for any small ¢ > 0, while a
(1 + d)-approximation can be achieved in constant time, for any small § > 0. (b) The
same dichotomy arises for densest subgraph: For any small § > 0 there exists a (1 — ¢)-
approximation algorithm with polylogarithmic time per operation [19], while we show a
polynomial lower bound for the exact value.

4. Partially dynamic algorithms. We extend the constant-degree reductions for maximum
matching and (s, t)-distance also to the insertions-only and the deletions-only setting,
achieving the same lower bound as in the fully dynamic setting.
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Table 2 Our results for graphs on N nodes with m edges. For every u and ¢ stated above,
there is no algorithm for the corresponding problem with amortized O(u(m, N)) update time and
O(q(m, N)) query time simultaneously unless the OMv conjecture is false. The first three rows hold
also for perfect matching. All the lower bounds in the table except for densest subgraph match the
general OMv lower bounds.

Problem Class u(m, N) qg(m,N)
A <3
constant degree & expansion

m1/2—e ml*é

Maximum Matching power-law graphs

A < 3, partially dynamic
A< Nt N(1+t)/27€ N1+t7€

A<3
(3 — d)-approx, A <3
constant degree & expansion mt/?e m

(s, t)-distance

power-law graphs

A < 3, partially dynamic
A< Nt N(1+t)/27€ N1+t75
AL5
Densest Subgraph constant degree & expansion NY/A=e N1/2=e

power-law graphs

5. Perfect matching. A special case of maximum cardinality matching is determining whether
a perfect matching exists in a bipartite graph. For constant-degree graphs and expander
graphs we show the following lower bound: There is no dynamic algorithm which achieves
both u = O(m'/?~¢) and ¢ = O(m"'~¢) for any small € > 0. This can also be extended to
the varying-degree setting.

To summarize, our paper opens up the research field of dynamic graph algorithms for
more specific, practical graph classes, in contrast with previous work that concentrated on
general or planar graphs. We believe that our techniques can be extended to further classes of
dynamic graphs or even in other domains of theoretical computer science, such as distributed
graph algorithms or streaming algorithms. One further interesting implication of our work is
presenting the limitations of dynamic graph algorithms on expanders, thus complementing
recent algorithmic results that use expander decompositions in dynamic graphs.

1.2 Our Techniques

We prove lower bounds by reductions from the online matrix vector (OMv) conjecture [12].

In these reductions, the input of an online problem, which is an n x n matrix M and a
sequence of n pairs (u,v) of n-vectors, is translated into a dynamic graph. The reduction is
built so that there exists a pair (u,v) satisfying uMv = 1 if and only if the dynamic graph
has some desired property at some point of time. While we follow the general framework
of OMv lower bounds, the details are delicate, as the dynamic graphs we construct should
fall into specific graph classes at all times, while still maintaining the graph property under
consideration. We give a high-level overview of our reductions below.

One way to turn known OMv-to-dynamic graphs reductions into reductions that produce
bounded-degree graphs is by replacing high-degree nodes by bounded-degree trees. This
technique has a rather clear and straightforward effect on the distances in the graph, so it
is applicable when considering distance-related problems. This, however, is far from being
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the case when considering other problems, such as maximum matchings. Here, replacing a
high-degree node with a gadget could adversely affect the desired matching size, since the
gadget might create several augmenting paths that would not have existed when it was a
single high-degree node. To overcome this, we limit the possible maximum matching sizes,
by designing a reduction graph with bounded-degree gadgets composed of paths, where the
maximum matching is always either a perfect matching, or a near-perfect matching, i.e., the
matching size is either N/2 or N/2 — 1. This reduction thus involves a large matching and
a small gap between the uMv = 0 and uMwv = 1 cases, and hence cannot be extended to
achieve a lower bound for the approximation of the maximum matching size. While this
might seem as a limitation of our construction, recall that this is actually not the case: As
described above, for any small § > 0 there is a constant time (1 + §)-approximation dynamic
algorithm for the problem, and, thus, such a lower bound cannot exist.

An even more delicate reduction we present is for proving a lower bound on the densest-
subgraph problem. A straightforward reduction would change O(n) graph-edges for every
bit of the input, which will allow us to make sure that the density of the densest subgraph
changes by a significant amount when uMwv = 0 versus when uMv = 1. However, this
would involve O(n?) updates for each (u,v) input pair, and the reduction would fail to
yield any non-trivial lower bound. Thus, we are forced to change very few edges for each
input bit, which renders an almost negligible effect on the density, making it difficult to
control the exact density of the densest subgraph. Our reduction balances these two factors,
using a construction where each gadget is a sufficiently dense regular graph, while having
each bit of the input translate into the existence or nonexistence of merely two edges inside
specific gadgets. As in the case of matchings, our lower bounds cannot be extended to
approximations, as for any § > 0 there exists a fast algorithm with polylogarithmic update
time for computing (1 — §)-approximations to the densest subgraph.

We then extend these reductions from bounded-degree graphs to constant-degree constant-
expansion graphs. First, the standard lower bound reductions contain sparse cuts if the inputs
M, u or v are sparse, making a standard reduction graph far from being an expander. Thus,
we have to augment the graph with many more edges to make sure that it has no sparse cuts
regardless of M, u and v. We do this augmentation “inside a layer” to prevent the additional
edges from creating undesired short paths between s and ¢, or spurious augmenting paths in
the case of matchings. Sparse cuts also exist in parts of the graph that do not depend on M, u
or v, and to handle these, we add edges of a constant-degree expander between a well-chosen
set of nodes, thus guaranteeing the expansion without changing the required graph property.
Finally, in the case of distance-related problems, we note that expander graphs can have at
most logarithmic diameter, but the substitution of nodes by trees described above increases
the diameter to be at least logarithmic, leaving only a very small slack for our construction.

When studying densest subgraphs on expanders, adding edges in order to avoid sparse
cuts might change the location and structure of the densest subgraph in an undesired way.
In order to guarantee the expansion in this case, we add a copy of all the graph nodes, build
a constant-degree expander on the copies of the nodes, and then connect each node to its
copy by a matching.

In dynamic power-law graphs where the node degrees may depend on the inputs w, M, v
and change over time, we have to guarantee that the degree changes incurred by the processing
of different inputs do not cause a violation of the power-law distribution of degrees. As before,
all the changes must also be done without changing the graph property under consideration,
and without performing too many update operations. We address this problem by inserting
or deleting edges in an online fashion in other parts of the reduction graph, to compensate
for the changes incurred by processing the input vector pairs.
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Organisation. Section 2 has notation and definitions. Section 3 presents the dynamic
maximum matching lower bounds. The lower bounds for other problems, namely densest
subgraph detection and (s,t)-distance, are briefly discussed in Section 4, and so is the
partially dynamic setting. The full lower bounds, the results for partially dynamic graphs,
and the missing proofs all appear in the full version of the paper.

2 Preliminaries

Throughout the paper, we consider vectors and matrices that are boolean, and so a vector-
matrix-vector multiplication outputs a single bit. Henzinger et al. [12] define the Online
Matriz Vector (OMv) and the Online Vector Matriz Vector (OuMv) multiplication problems.

» Definition 1 (Online Matrix Vector Multiplication). Let M be a boolean n x n matric.

1

Preprocessing the matriz is allowed. Then, n vectors v',v2,...,v™ arrive one at a time, and

the task is to output the product Mv' before the next vector is revealed.

» Definition 2 (Online Vector Matrix Vector Multiplication). Let M be a boolean n x n matriz.
Preprocessing the matriz is allowed. Then, n vector pairs (ut,vl), (u?,v?),..., (u"™,v"™) arrive

one at a time, and the task is to output the bit u'Muv® before the next vector pair is revealed.

In their paper, they show that the OuMv problem can be reduced to the OMv problem, and
conjecture that there is no truly subcubic time algorithm for OMv.

» Conjecture 3 (OMv). There is no algorithm for the OMv (and hence the OuMv) problem
running in time O(n3~¢) for any constant € > 0.

We work with the OuMv problem for all the reductions in our paper. We denote the
length of our input vectors u?,v* by n, and thus the matrix M is of dimension n x n. We
use upper indices to indicate the vector’s location in the stream, but usually focus on one
pair (u,v) omitting these indices. We use lower indices for a location in the vector or matrix,
e.g., u; and M;;. We use IV to denote the number of nodes in our reduction graph.

» Definition 4 (Expansion). The expansion parameter of a graph G = (V, E) is defined as

p = min { 126.5) ] 0£sCV. IsI< vz
where E(S, S) is the number of edges from S to V'\ S. We call a graph with expansion h a
h-expander. Works on dynamic algorithms use a different definition of expansion parameter
I, called volume expansion. However, when considering constant-degree graphs with constant
expansion (as we do in this paper), both parameters are within a A factor of each other, so
we only consider the expansion parameter h in our proofs.

We study power-law graphs as introduced in [4], and only consider the setting where
B > 2. In the following definition, if the number of nodes IV in the graph is fixed, then we
get that a is roughly In V.

» Definition 5 (Power Law). A graph is said to follow an (o, B)-power law distribution if the
number Nq of nodes with degree d is inversely proportional to d° for some constant 3 > 0.
That s,

ve= )~ e )

where ((B) = >_i2, 1/iP is the Riemann Zeta function.
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Since dynamic graphs allow edge insertions and deletions, it is impossible to maintain
an exact degree distribution at all times. Hence, we introduce the notion of approximate
power-law distributions to afford some slack for dynamic changes. One natural relaxation is
to allow 8 to vary within an interval.

» Definition 6 (3-Varying Power Law). A graph is said to follow an (o, B1, B2)-varying power
law distribution if the number Ny of nodes with degree d satisfies

wn{ ey )| =0 = |y ) Lo )}

This relaxation of an exact power law, while being natural, is a global relaxation rather
than a local one. Thus we also define two locally approximate definitions below that allow
similar slack for all degrees.

» Definition 7 (Additively Approximate Power Law). A graph is said to follow an (o, B3, c)-
additively approximate power law distribution if the number Ny of nodes of degree d for a
realisable degree d satisfies

3| eshas | ) e

where we say that d is a realisable degree if there is a node of degree d in an («, B8)-power law
graph.

» Definition 8 (Multiplicatively Approximate Power Law). A graph is said to follow an (o, B, €)-
multiplicatively approximate power law distribution if the number Ny of nodes of degree d
satisfies

E N I ELCEL R oae

Our lower bounds contain at most four nodes that are one degree away from an exact
power-law distribution, and thus hold in all the models discussed above with any reasonable
parameter regime.

3 Lower Bounds for Dynamic Maximum Matching

The previous matching lower bounds on general graphs [12, 8] use reduction graphs that
contain nodes with degree (V). In this section, we construct a constant-degree reduction
graph with constant expansion.

Reduction gadgets

Our gadget construction starts by replacing each node of a dense reduction by a path; we
refer to each path as a “subgadget”.

Connecting every node of this new subgadget with nodes outside the subgadget might
create unwanted matchings of larger sizes, so instead we carefully choose a subset of the path
nodes to connect outside the subgadget. Figure 1 shows odd and even paths (“odd” and
“even” describe the number of nodes) with a “canonical” matching for each of them marked
in red. Next, we detail the connections outside the subgadgets.
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X[0]
X'11] L X[1] X'[0] Z X[0]

X'[1] X[1]

I X[i
X'[i] e——= XIi] X1l X1l
X'[n] X[n] X'[n] &——e X[n]

Figure 1 Odd and even sized paths used in the maximum matching lower bounds. The canonical
matchings are marked in red.

Consider an odd path on 2n + 1 vertices, and a bipartition of the vertices into (X', X)
with | X’| < |X|. Indexing the vertices as X[0] and X'[¢], X[i] for 1 < i < n, our canonical
matching matches X [i] with X”'[7], and leaves X [0] unmatched. We connect only the vertices
{X[i] | 1 <i < n} outside the subgadget, while vertices in X’ and X[0] only have edges
inside the subgadget. For an even path on 2n + 2 vertices indexed as above, our canonical
matching is perfect, and matches X[i] to X'[{]. Only vertex X’[0] and all the vertices in
X are connected outside the subgadget, and all vertices X'[i], 1 < i < n, only have edges
within the subgadget.

While this suffices for sparsification, we need additional constructions in order to guarantee
constant expansion. In particular, it turns out that adding edges inside a subgadget does
not suffice for constant expansion, and we are forced to add edges between subgadgets. Our
construction adds edges on the same side of the bipartition across subgadgets, and we show
that if the newly added edges take part in any augmenting path, then there also exists an
augmenting path in the subgraph devoid of any newly inserted edge.

The reduction graph consists of a left subgraph (L) and a right subgraph (R), connected
together by edges corresponding to the matrix M. Note that for constant expansion, we need
the number of edges of M to be a constant fraction of the sizes of L and R. While it would
be possible to construct a reduction graph with |L| and |R| that depend on the input matrix
M, we instead choose to augment the input matrix and vectors as it simplifies notation. We
thus augment the input beforehand to ensure that there are Q(n?) edges crossing from L to
R. To this end, we work with the vectors & = (u 0) and ¥ = (v 0) of dimension 2n, and the
matrix M = (M 1) of dimension 2n x 2n. It is easy to see that uMv =1 <= aMo = 1.

» Definition 9 (Reinforced gadget). A reinforced gadget with x subgadgets of size y consists
of © subgraphs, each of which is a path on y nodes. The nodes are bipartitioned into sets
(X', X)) with the larger side of the partition labelled as X in each subgadget. Thus |X'| < |X]|.
It is then augmented with the following edge-set: Consider a degree-d expander graph on
T - {%W nodes, choose an arbitrary bijection between the erxpander nodes and X, and add the
expander edges to these nodes accordingly. The resulting graph is the reinforced gadget.

Note that reinforced gadgets are not bipartite. Thus, while the constant-degree lower
bounds hold for bipartite matching, the expander result is for maximum matching on general
graphs. In what follows, we drop the hats from 4, M and o for simplicity, but continue our
analysis with their dimensions as 2n, 2n x 2n, 2n respectively.

Reduction Graph

We use the following reduction graph, composed of two odd-sized reinforced gadgets and two
even-sized reinforced gadgets.
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L,[0] R[0]

Lyli] o

o Ry[j]

Ly[n] o—— Ly[] Ry[n] &——e Ry[n]

Figure 2 The expander reduction graph for maximum matching. The red lines denote the
canonical matching, the blue lines denote the paths in each subgadget, the grey lines denote the
expander edges, and the green lines denote the input-dependent edges.

A reinforced gadget with one subgadget of size 4n + 1, on a set L U Ly. The nodes are
labelled Lq[i] for 1 <4 < 2n, and Ls[i] for 0 < ¢ < 2n. The path is from Ls[0] to Ls[2n],
and the expander is on Ls.

A reinforced gadget with 2n subgadgets of size 4n + 2, on a set Ls U Ly. The subgadgets
are labelled LG[i] for 1 < i < 2n, and the nodes of subgadget LG[i] are labelled Lsi, j]
or Lyfi,j] for 0 < j < 2n depending on whether the node is in L3 or Lys. The path in
each subgadget goes from Ls[i, 0] to L4[i, 2n], and the expander is on Ly.

A copy of the above structure, with node sets marked R; instead of L;, respectively.
For the matrix M, add the edge (L4t j], Ra[j,4]) if M;; = 1.

Given an input vector u, for each ¢ € [2n], add the edge (Lzl[i], L3[i,0]) if u; = 1, and
(L2li], L4[i, 0]) otherwise.

Given an input vector v, for each j € [2n], add the edge (R2[j], R3[j,0]) if v; = 1, and
add the edge (Rz[j], R4[4,0]) otherwise.

The total number of nodes in the reduction graph is N = 16n2 + 16n + 2 = O(n?).

Matchings in the Graph

We start by defining a base matching B on the graph, which is made up of the canonical
matchings on each of the gadgets. On the left side, B matches Ls[i, j] to L4[i, 7], and Lq[i]
to Lo[i] for all ¢, 7. The matching on the right side is similar. Note that this matching always
exists regardless of the input, and only L3[0] and R2[0] are unmatched in the entire graph.
Thus |B| = & — 1. We claim that this graph has a perfect matching if and only if uMwv = 1.
Let C denote the maximum cardinality matching.

» Lemma 10. If uMv =1, then |C| = &, and otherwise |C| = § — 1.
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Proof. Since B is always a matching of size % — 1 regardless of the input, the claim is
equivalent to showing that uMwv = 1 if and only if there is an augmenting path with respect
to the matching B.

(=) Suppose that uMv = 1, with u; = M;; = v; = 1. Consider the path P composed
of the following subpaths, of which all except P, start with an unmatched edge and end with
a matched edge, while P, both starts and ends with an unmatched edge.

Py = Ly[0], La [1], Lo(1], .. ., Loli]

P, = Ls[i], L3[i, 0], La[i, 0], . .., La[é, j]

P3 = Lyli, j], Ra[4, 1], R3[4, 1], . .., R3[4, 0]

P, = R3[4,0], Ra[j], R11j], - - -, R2[0]

Thus, P is an augmenting path to the base matching B, which gives us that the maximum
matching C has to have size > % — 1, implying that the maximum matching C' is a perfect
matching.

( <= ) Suppose now that there exists an augmenting path P to the base matching B
that starts at s = L2[0] and ends at ¢ = Rg[0].

Since (U;L;, U;j R;) is an (s, t)-cut, there is at least one crossing edge, say (La[i, j], Ra[j, 1]),

in P. Thus M;; = 1.

Since P leaves the subgadget LGJi] using (L4[i, j], R4[j,]), it should have entered the

subgadget at some previous instance. Since (Ly[i, j], R4[j,¢]) is an unmatched edge and

all the matching edges in LG[i] are within the subgadget, P should have entered the
subgadget using an unmatched edge. As all the matching edges in LG[i] are between Lg
and Ly, P cannot both enter and exit the subgadget through L. Thus P enters LG
through L3. However, the only possible unmatched edge from L3 leaving the subgadget
is the edge (Ls[i, 0], Lo[i]). Thus P uses the edge (Lsli, 0], L2[i]) to enter the subgadget
LGYJi], and so u; = 1.

The path P now enters the subgadget RG[j] through the unmatched edge (Ly4[4, j], Ra[j,4])-

As before, all the matched edges in RG|[j] are between R4 and Rg, and so P has to exit the
subgadget using an unmatched edge from R3. However, the only possible unmatched edge
from Rj3 leaving the subgadget is the edge (R3[4, 0], R2[j]). Thus the edge (Rs[j,0], R2[j])
is used by P, giving us that v; = 1.

This gives us that uMv =1 as required. |

Complexity of the Reduction

On the arrival of a new vector pair, we first add all the edges corresponding to the new input
(if they do not already exist), and then remove the previous vector pair’s edges, as opposed
to the usual convention of first deleting the previous edges and inserting the new ones. This
ensures that the graph remains an expander at all steps. The proof of constant expansion
is involved, and we defer it to the full version. Since number of edges in a constant-degree
graph is O(N), we get the following theorem for expanders.

» Theorem 11. For any constant € > 0, there is no dynamic algorithm maintaining a
mazximum matching or determining the existence of a perfect matching, on all N-node graphs
with constant degree and constant expansion, with amortized O(Nl/Q’C) update time and
O(N'=¢) query time, unless the OMv conjecture is false.

Proof. Consider the reduction graph above. It consists of N = 16n? + 16n + 2 = O(n?)
nodes. Every time we get a new (u,v) input vector pair, we update Ly X L3 and Ry X R3 as
detailed above. This takes O(n) updates in total. After that, we query once for the size of
the maximum matching in this new graph, and return 1 if and only if |C| = &.
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Thus for each pair of input vectors, we perform O(n) updates and O(1) query. In total,
checking n vector pairs takes us O(n?) updates and O(n) query. If there were an algorithm for
maximum matching on constant-degree graphs with update time O(N'/27¢) (i.e., O(n'~2¢))
and query time O(N'~¢) (i.e., O(n?72¢)), then we can decide if uMwv = 1 for all n pairs in
O(n3=2¢) time, contradicting the OMv conjecture. <

4 Other Lower Bounds

Dynamic Maximum Matching. All our lower bounds for the dynamic maximum matching
problem are summarized in Theorem 12. Note that m = O(N) for the first three graph
classes below.

» Theorem 12. For any constant € > 0, there is no dynamic algorithm for maintaining the
size of the maximum matching on the following graph classes, with the amortized update time
uw(N) = O(N'Y?=¢) and amortized query time q(N) = O(N'~¢),

1. A <3,

2. constant degree, constant expansion,

3. power-law graph,

4. A < O(N?) with u(N) = O(NI+D/2=¢) " gnd g(N) = O(N+t=),

unless the OMv conjecture is false.

Dynamic Densest Subgraph. Our lower bounds for the dynamic densest subgraph problem
are summarized in Theorem 13.

» Theorem 13. For any constant € > 0, there is no dynamic algorithm for maintaining the
density of the densest subgraph on the following graph classes, with the amortized update
time u(N) = O(NY4=¢) and amortized query time q(N) = O(N'/?~¢),

1. A<7,

2. constant degree, constant expansion,

3. power-law graph,

unless the OMv conjecture is false.

Dynamic (s, t)-distance. Our lower bounds for the dynamic (s, ¢)-shortest paths problem
are summarized in Theorem 14, and extend naturally to the SSSP and the APSP problems.
Note that m = O(N) for the first four classes below.

» Theorem 14. For any constant € > 0, there is no dynamic algorithm for maintaining
(s,t)-distance, SSSP, or APSP on the following graph classes, even for bipartite graphs, with
the amortized update time u(N) = O(NY27¢) and amortized query time q(N) = O(N'~¢)
(except for the last class), unless the OMv conjecture is false.

1. A <3,

(3 = &)-approzimation, A < 3,

constant degree, constant erpansion,

power law graph,

A < O(N?) with u(N) = O(NI+D/2=¢) "and q(N) = O(N1+t=¢),

LAl o

Partially Dynamic Algorithms. We summarize our lower bounds for partially dynamic
algorithms in Theorem 15.
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» Theorem 15. For any constant € > 0, there is no algorithm in either the insertions-only
or deletions-only setting maintaining (s,t)-distance or mazimum matching, on all N-node
graphs with maximum degree A < 3, with amortized O(N'/?~¢) update time and O(N*~¢)
query time, unless the OMv conjecture is false.
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