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Abstract
We consider the maximum weight b-matching problem in the random-order semi-streaming model.
Assuming all weights are small integers drawn from [1, W ], we present a 2 − 1

2W
+ ε approximation

algorithm, using a memory of O(max(|MG|, n) · poly(log(m), W, 1/ε)), where |MG| denotes the
cardinality of the optimal matching. Our result generalizes that of Bernstein [3], which achieves
a 3/2 + ε approximation for the maximum cardinality simple matching. When W is small, our
result also improves upon that of Gamlath et al. [11], which obtains a 2 − δ approximation (for some
small constant δ ∼ 10−17) for the maximum weight simple matching. In particular, for the weighted
b-matching problem, ours is the first result beating the approximation ratio of 2. Our technique
hinges on a generalized weighted version of edge-degree constrained subgraphs, originally developed
by Bernstein and Stein [5]. Such a subgraph has bounded vertex degree (hence uses only a small
number of edges), and can be easily computed. The fact that it contains a 2 − 1

2W
+ ε approximation

of the maximum weight matching is proved using the classical Kőnig-Egerváry’s duality theorem.
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1 Introduction

The maximum weight (b-)matching problem is a classical problem in combinatorial optimiza-
tion. In this paper we will study a sparsifier for that problem and use it in order to design a
streaming algorithm for randomly-ordered streams of edges.

Our main tool is a generalized weighted version of the edge-degree constrained subgraph
(EDCS), a graph sparsifier originally designed for the maximum matching problem by
Bernstein and Stein [5]. Let us first recall the definition an EDCS H of a graph G [5].

▶ Definition 1 (from [5]). Let G = (V, E) be a graph, and H a subgraph of G. Given any
integer parameters β ≥ 2 and β− ≤ β − 1, we say that H is a (β, β−)-EDCS of G if H

satisfies the following properties:
(i) For any edge (u, v) ∈ H, degH(u) + degH(v) ≤ β

(ii) For any edge (u, v) ∈ G\H, degH(u) + degH(v) ≥ β−.
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68:2 Maximum Weight b-Matchings in Random-Order Streams

An EDCS has a size that can be easily controlled by the parameter β and it somehow
“balances” the vertex degrees in the graph. A very nice property of this sparsifier is that, for
well-chosen values of β and β−, it always contains a 3/2 + ε approximation of the maximum
cardinality matching [2, 6]:

▶ Theorem 2 (from the recent work of Assadi and Bernstein [2]). Let 0 < ε < 1/2. Set λ = ε
32 .

Let β ≥ β− + 1 be integers such that β ≥ 8λ−2 log(1/λ) and β− ≥ (1 − λ) · β. Then any
(β, β−)-EDCS H of a graph G contains a matching MH such that

( 3
2 + ε

)
· |MH | ≥ |MG|

where MG denotes the maximum cardinality matching.

In our paper, we generalize the EDCS in two ways:
we handle (small) integer-weighted edges;
we handle the more general case of b-matchings.

To describe our generalization, first let us introduce some notation. A weighted multi-
graph G = (V, E) is defined by its set of vertices V and its multi-set of weighted edges E

drawn from V × V × {1, 2, . . . , W} (i.e., e = (u, v, k) represents an edge between u and v

of weight w(e) = k). We emphasize that E is a multi-set: not only can there be multiple
edges between two vertices, but also some of these edges can have the same weight. We
assume that the multi-graph does not contain any self-loop. For a given vertex v ∈ V and a
given subgraph H of G, δH(v) denotes the multi-set of incident edges to v in H, degH(v)
the degree of v in the multi-graph H and wdegH(v) its weighted degree

∑
(u,v,w)∈δH (v) w in

H. Given a weighted multi-graph G = (V, E) and a set of capacities bv ∈ Z+ associated to
each vertex v ∈ V , a multi-set of weighted edges M is called a b-matching if for all v ∈ V

the number of edges incident to v in M is smaller than or equal to bv. For a given subgraph
H of G, we denote by MH an arbitrary maximum weight b-matching included in H. The
concept of b-matching encompasses that of matching and allows us to tackle a larger variety
of real situations where the vertices have different capacities, e.g. [20]. In this paper we will
assume that the number of edges between any two vertices u and v is at most min(bu, bv).1

▶ Definition 3. Let G = (V, E) be a weighted multi-graph, where E is a multiset of edges
drawn from V ×V ×{1, 2, . . . , W}, {bv}v∈V be a set of constraints, and H be a subgraph of G.
Given any integer parameters β ≥ 3 and β− ≤ β − 2, we say that H is a (β, β−)-w-b-EDCS
of G if H satisfies the following properties:

(i) For any edge (u, v, wuv) ∈ H, wdegH (u)
bu

+ wdegH (v)
bv

≤ β · wuv

(ii) For any edge (u, v, wuv) ∈ G\H, wdegH (u)
bu

+ wdegH (v)
bv

≥ β− · wuv.

An EDCS is a special case of a weighted b-EDCS when all the bvs and all the weights are
equal to 1. We can show that such w-b-EDCSes as described in Definition 3 always exist.
Moreover, we can also prove that it uses only a reasonable number of edges (up to 2β · |MG|)
and it contains a relatively large weighted b-matching:

▶ Theorem 4. Let 0 < ε < 1/2 and let W be an integer parameter. Set λ = ε
100W . Let

β ≥ β− + 2 be integers such that β+6W
log(β+6W ) ≥ 2W 2λ−2 and β− − 6W ≥ (1− λ) · (β + 6W ).

Then any (β, β−)-w-b-EDCS H of a weighted multi-graph G with integer edge weights bounded
by W contains a b-matching MH such that

(
2− 1

2W + ε
)
· w(MH) ≥ w(MG).

1 This is actually a reasonable assumption as the maximum number of edges that are relevant between
two given vertices u and v to construct a b-matching is at most min(bu, bv). This assumption is more
debatable in the streaming setting, and this is why we explain how to handle this case in the full version
of this paper.
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In the full version of this paper, we give a whole class of tight examples reaching the
bound of Theorem 4. Compared with the previous results of [2, 6] (Theorem 2) when W = 1,
we can observe that the approximation ratio is the same, even though the constraints on β

and β− are a bit stricter here. Nonetheless, we can deal with b-matchings as well, even when
W > 1. As a side note, we note that to satisfy the conditions stated in Theorem 4, it suffices
that β is of order poly(W, 1/ε) for some polynomial.

The semi-streaming model of computation [10] has been motivated by the recent rise of
massive graphs, where we cannot afford to store the entire input in memory. Given that
the graph is made of |V | = n vertices and |E| = m edges, in the semi-streaming model the
graph is presented to the algorithm as a stream of edges e1, . . . , em. The algorithm is allowed
to make a single pass over that stream and can use a memory roughly proportional to the
output size (up to a poly-logarithmic factor).

We note that in the most general model where an adversary decides the order of the
elements, even for the maximum cardinality simple matching, it is still unclear whether it is
possible to beat the approximation ratio of 2.

Our focus here is on the random-order streaming model, where the permutation of
the edges in the stream is assumed to be chosen uniformly at random. This is a quite
reasonable assumption as real-world data have little reason of being ordered in an adversarial
way. In fact, as mentioned in [17], the random-order streaming model might better explain
why certain algorithms perform better in practice than their theoretical bounds under an
adversary model. It is noteworthy that under the random-order streaming model, there are
already quite a few evidences to show that it is possible to beat the approximation factor of
2 [1, 3, 11, 17], at least for the simple matching.

Using an adaptation of EDCS, Bernstein [3] obtained a 3/2 + ε approximation in the
random-order semi-streaming framework (with probability 1− 2n−3 and using O(n · log(n) ·
poly(1/ε)) memory). Similarly, we can adapt our w-b-EDCSes to design a semi-streaming
algorithm for randomly-ordered streams of weighted edges:

▶ Theorem 5. Let 0 < ε < 1
2 and let W be an integer parameter. There exists an

algorithm that can extract with high probability (at least 1− 2m−3) from a randomly-ordered
stream of weighted edges having integer weights in {1, . . . , W} a weighted b-matching with an
approximation ratio of 2− 1

2W + ε, using O(max(|MG|, n) · poly(log(m), W, 1/ε)) memory.

Theorem 5 is the first result for the maximum (integer-weighted) b-matching problem
in the random-order semi-streaming framework. For the special case of simple matching,
when W = 1, we essentially re-capture the result of Bernstein [3] (albeit using slightly
more memory). When W > 1, we note that prior to our work, Gamlath et al. [11] have
obtained an approximation ratio of 2− δ for some small δ ∼ 10−17. Our result gives a better
approximation when W is reasonably small (but using a memory depending polynomially in
W ) and we believe that our approach is significantly simpler.
▶ Remark 6. Another generalization of EDCS has been developed by Bernstein et al. [4] to
maintain a 3/2 + ε approximation of the optimal weighted matching in a dynamic graph.
However it is still unknown if their construction can actually lead to an algorithm in the
random-order one-pass semi-streaming model [4], or applied to b-matchings.

Technical Overview

To generalize the EDCS to the weighted case, a natural first idea is to build multiple EDCSes,
one for each edge-weight from 1 to W , and then take their union. We show in the full version
of this paper that such an idea does not lead to a subgraph containing a matching that is
better than a 2 approximation.

ESA 2022



68:4 Maximum Weight b-Matchings in Random-Order Streams

Our approach is a proper generalization of EDCS, as defined in Definition 3. In Theorem 4,
we show that such a w-b-EDCS contains a matching of good approximation ratio. The proof
of this theorem is technically the most innovative part of the present work. In order to
handle integer-weighted matchings (see Section 2) we make use of Kőnig-Egerváry’s duality
theorem [7] and a specially-constructed auxiliary graph. The fact that the weights of the
edges are integers is critical to get an approximation ratio better than 2 (especially for
Claim 13). Then, to handle b-matchings (see Section 3), we build a reduction to simple
matchings and show that by doing so we do not lose too much in the approximation ratio.

Regarding Theorem 5, when we design a semi-streaming algorithm to extract a b-matching
there is an additional challenge: we do not know in advance the actual size of MG, which
cannot be bounded by n (for instance |MG| could be of size n1.2 or even larger), but we still
want to use as little memory as possible, i.e., O(max(|MG|, n) · poly(log(m), W, 1/ε)). We
tackle this issue by using a guessing strategy in the early phase of the stream (see Section 4).

Related Work

In the adversarial semi-steaming setting, for the unweighted case, the simple greedy algorithm
building a maximal matching provides a 2 approximation, which is the best known approxim-
ation ratio. Knowing whether it is possible to achieve a better approximation ratio is a major
open question in the field of streaming algorithms. For weighted matchings an approximation
ratio of 2 + ε can be achieved [12, 18, 19]. For weighted b-matchings the approximation ratio
2 + ε can also be attained [14]. On the hardness side, we know that an approximation ratio
better than 1 + ln 2 ≈ 1.69 cannot be achieved [15].

In contrast, for the random-order stream, a first result was obtained by Konrad, Magniez,
and Mathieu [17] with an approximation ratio strictly below 2 for unweighted simple
matchings. The approximation ratio was then improved in a sequence of papers [11, 16, 9, 3].
Currently the best result is due to Assadi and Behnezhad [1], who obtained the ratio of
3/2− δ for some small constant δ ∼ 10−14. Regarding weighted simple matchings, Gamlath
et al. [11] obtained an approximation ratio of 2 − δ for some small constant δ ∼ 10−17.
Regarding b-matchings, to our knowledge the only result is an approximation ratio of 2− δ

in expectation for random-order online matroid intersection by Guruganesh and Singla [13]
(hence it applies for unweighted bipartite b-matchings).

2 EDCS for Weighted Matchings

In this section we consider the problem of finding a maximum weight matching in an
edge-weighted graph G = (V, E) where the edges have integer weights in [1, W ]. For ease
of presentation, we will use simplified notations for simple graphs in this section. Here
w(u, v) denotes edge weight between vertices u and v. For a subgraph H of G and a vertex
u ∈ V , we denote by NH(v) the set of vertices adjacent to v in H, by degH(v) the degree
of v in H, i.e., degH(v) = |NH(v)|, and by wdegH(v) the weighted degree of v in H, i.e.,
wdegH(v) =

∑
u∈NH (v) w(u, v). For a subgraph H of G, we will denote by MH an arbitrary

maximum weight matching in H. Then we define the notion of edge-degree constrained
subgraphs for weighted graphs (w-EDCS), which in fact is just Definition 3 specialized to
the setting in this section.

▶ Definition 7. Let G = (V, E) be a graph with weighted edges, and H be a subgraph of G.
Given any integer parameters β ≥ 3 and β− ≤ β − 2, we say that H is a (β, β−)-w-EDCS of
G if H satisfies the following properties:

(i) For any edge (u, v) ∈ H, wdegH(u) + wdegH(v) ≤ β · w(u, v)
(ii) For any edge (u, v) ∈ G\H, wdegH(u) + wdegH(v) ≥ β− · w(u, v).
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Here is a first simple proposition on (β, β−)-w-EDCS (coming from Property (i)).

▶ Proposition 8. Let H be a (β, β−)-w-EDCS of a given graph G. Then, for all v ∈ V , we
have degH(v) ≤ β.

Proof. Let v ∈ V . If NH(v) = ∅, the stated property is trivial. Otherwise, pick a vertex
u such that w(u, v) = minu′∈NH (v) w(u′, v). Then, by Property (i), β · w(u, v) ≥ wdegH(v).
Therefore, degH(v) ≤ wdegH (v)

w(u,v) ≤ β, as any edge incident to v in H has a weight larger than
or equal to w(u, v). ◀

We show the existence of w-EDCSes by construction, using a local search algorithm. The
following proof closely follows the argument of [2].

▶ Proposition 9. Any graph G = (V, E) with weighted edges contains a (β, β−)-w-EDCS
for any parameters β ≥ β− + 2. Such a (β, β−)-w-EDCS can be found in O(β2W 2 · n) local
search steps.

Proof. Start with an empty subgraph H. Then try the following local improvements of H,
until it is no longer possible. If there is an edge in H violating Property (i) of Definition 7,
then fix that edge by removing it from H. Otherwise, if there is an edge in G\H violating
Property (ii), then fix that edge by inserting it in H.

Observe that we give the priority to the correction of violations of Property (i), so that at
each step of the algorithm all the vertices have degrees bounded by β + 1 (as after inserting
an edge, Proposition 8 may be violated). To prove that this algorithm terminates in finite
time and to show the existence of a w-EDCS, we introduce a potential function:

Φ(H) = (2β − 2)
∑

(u,v)∈H

w(u, v)2 −
∑
u∈V

(wdegH(u))2.

As the vertices have degrees bounded by β + 1 and the edges have weights bounded by W ,
the value of that potential function is bounded by 2β2W 2 · n. Then we can show that after
each local improvement step, the value of Φ(H) increases at least by 2 (see the full version
of this paper for details). Therefore, the algorithm terminates in O(β2W 2 · n) steps. ◀

We also introduce the notion of w-vertex-cover of the edge-weighted graph.

▶ Definition 10. We say that the non-negative integer variables (αv)v∈V represent a w-
vertex-cover of a subgraph H of G if for all (u, v) ∈ H, we have w(u, v) ≤ αu + αv. The sum∑

v∈V αv is called the weight of the w-vertex-cover.

To use this data structure for the maximum weight problem, we will use the theorem of
Kőnig-Egerváry [7], which is a classic duality theorem.

▶ Theorem 11 (Kőnig-Egerváry). In any edge-weighted bipartite subgraph H of G, the
maximum weight of a matching equals the smallest weight of a w-vertex-cover.

This theorem allows us to prove the following lemma, which is technically the most
important part of the present work.

▶ Lemma 12. Let 0 < ε < 1/2 and W be an integer parameter. For β ≥ β− + 2 integers
such that β

β− ≤ 1 + ε
5W and β− ≥ 4W

ε , we have that any (β, β−)-w-EDCS H of a bipartite
graph G (with integer edge weights bounded by W ) contains a matching MH such that(
2− 1

2W + ε
)
· w(MH) ≥ w(MG).

ESA 2022



68:6 Maximum Weight b-Matchings in Random-Order Streams

Proof. Using Kőnig-Egerváry’s theorem in the bipartite graph H, we know that there exist
integers (αv)v∈V such that:∑

v∈V αv = w(MH)
for all (u, v) ∈ H, w(u, v) ≤ αu + αv

Now consider the optimal matching MG in G. The first idea is to use the duality theorem to
relate w(MG) to w(MH), with a leftover term that will be analyzed in the second part of
the proof. We introduce the notion of good and bad edges:

the edges (u, v) ∈MG such that β− ·w(u, v) ≤ β · (αu + αv), which are called good edges;
the set of good edges is denoted as Mgood;
the edges (u, v) ∈MG such that β− · w(u, v) > β · (αu + αv), which are called bad edges;
the set of bad edges is denoted as Mbad.

A key observation is that the edges in MG ∩ H are necessarily good edges by the
definition of the w-vertex-cover (αv)v∈V and the fact that β− < β. Therefore, the bad
edges (u, v) are in G\H and as a consequence they satisfy Property (ii) of Definition 7, i.e.,
β− · w(u, v) ≤ wdegH(u) + wdegH(v).

Hence we can write the following:

β− · w(MG) =
∑

(u,v)∈Mgood

β− · w(u, v) +
∑

(u,v)∈Mbad

β− · w(u, v)

≤
∑

(u,v)∈Mgood

β · (αu + αv) +
∑

(u,v)∈Mbad

(wdegH(u) + wdegH(v))

=
∑

(u,v)∈MG

β · (αu + αv) +
∑

(u,v)∈Mbad

(wdegH(u) + wdegH(v)− β · (αu + αv))

≤ β · w(MH) +
∑

(u,v)∈Mbad

((wdegH(u)− β · αu)+ + (wdegH(v)− β · αv)+),

where (x)+ denotes the non-negative part max(x, 0). In the last inequality we also used the
fact that

∑
(u,v)∈MG

(αu + αv) ≤
∑

v∈V αv = w(MH), as each vertex of V is counted at most
once in that sum. Now, denoting by Vbad the set of vertices which are the endpoints of a bad
edge and such that wdegH(u)− β · αu > 0, we get

β− · w(MG) ≤ β · w(MH) +
∑

v∈Vbad

(wdegH(v)− β · αv). (1)

Naturally, we want to upper-bound the value of
∑

v∈Vbad
(wdegH(v)−β ·αv) and we will do

so via a specially-constructed graph. Before we describe this graph, we can first easily observe
that for any v ∈ Vbad, for any u ∈ NH(v), we have w(u, v) ≥ wdegH (v)

β > αv (by Property (i)
of Definition 7 and the definition of Vbad); moreover, as (αv)v∈V is a w-vertex-cover of H,
we obtain that αu > 0. These observations will be useful in the following.

The new graph is Hbad = (Vbad ∪ Ṽ , Ẽ). The vertices in Hbad are the vertices of Vbad

as well as copies of the vertices of V such that αv > 0, i.e., Ṽ = {ṽ : v ∈ V, αv > 0}. We
build the set of edges Ẽ as follows. For each v ∈ Vbad, for each u ∈ NH(v), we create in Ẽ

an edge (v, ũ) such that w(v, ũ) = w(v, u) − αv (note that if u is also in Vbad, then Ẽ will
also contain another edge (u, ṽ) such that w(u, ṽ) = w(u, v)− αu). Note that w(v, ũ) ∈ Z>0,
since w(u, v) > αv as observed above. Therefore the graph Hbad still has non-negative
integer-valued edge weights. We next remove some edges from Ẽ: while there exists a
vertex v ∈ Vbad such that wdegHbad

(v) > wdegH(v)− β · αv + W , we pick an arbitrary edge
(v, ũ) ∈ Ẽ incident to v and remove it from Hbad. This process guarantees the following
property:
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∀v ∈ Vbad, wdegH(v)− β · αv ≤ wdegHbad
(v) ≤ wdegH(v)− β · αv + W. (2)

This finishes the description of the graph Hbad. By (2), for any (v, ũ) ∈ Ẽ we have:

β · w(v, ũ) + W = β · (w(v, u)− αv) + W ≥ wdegH(v)− β · αv + W + wdegH(u)
≥ wdegHbad

(v) + wdegHbad
(ũ).

Summing this inequality over all the edges in Ẽ we obtain:

β · w(Ẽ) + W · |Ẽ| ≥
∑

(v,ũ)∈Ẽ

(wdegHbad
(v) + wdegHbad

(ũ))

=
∑

v∈Vbad

degHbad
(v) ·wdegHbad

(v) +
∑
ũ∈Ṽ

degHbad
(ũ) ·wdegHbad

(ũ)

≥
∑

v∈Vbad

wdegHbad
(v)

W
·wdegHbad

(v) +
∑
ũ∈Ṽ

wdegHbad
(ũ)

αu
·wdegHbad

(ũ)

=
∑

v∈Vbad

(wdegHbad
(v))2

W
+

∑
ũ∈Ṽ

(wdegHbad
(ũ))2

αu

≥
∑

v∈Vbad

1
W
·
(

w(Ẽ)
|Vbad|

)2

+
∑
ũ∈Ṽ

1
αu
·
(

w(Ẽ) · αu∑
ũ′∈Ṽ αu′

)2

= w(Ẽ)2

W · |Vbad|
+ w(Ẽ)2∑

ũ′∈Ṽ αu′
.

The second inequality comes from the fact that the degree of a vertex can be lower-bounded
by the weighted degree of that vertex divided by the weight of the largest edge incident to it
(for v ∈ Vbad this weight is W , and for ũ ∈ Ṽ it is αu, as w(v, ũ) = w(v, u)− αv ≤ αu for v

adjacent to ũ in Hbad). The third inequality comes from the minimization of the function
over the constraints

∑
v∈Vbad

wdegHbad
(v) =

∑
ũ∈Ṽ wdegHbad

(ũ) = w(Ẽ). Now observing
that |Ẽ| ≤ w(Ẽ), we derive the following:

β + W ≥ w(Ẽ)
W · |Vbad|

+ w(Ẽ)∑
ũ∈Ṽ αu

. (3)

The following claim will help us lower bound the average weighted degree of the vertices
of Vbad in Hbad, namely, w(Ẽ)/|Vbad|. For this part it is crucial that the weights are integers.

▷ Claim 13. For all (u, v) ∈Mbad, (wdegH(u)− β · αu)+ + (wdegH(v)− β · αv)+ ≥ β−

1+ε/4

Proof. We proceed by contradiction. Suppose that there exists (u, v) ∈ Mbad such that
(wdegH(u) − β · αu)+ + (wdegH(v) − β · αv)+ < β−

1+ε/4 . Then, as β− · w(u, v) ≤ β · (αu +
αv) + (wdegH(u)− β · αu)+ + (wdegH(v)− β · αv)+, it means that

β · (αu + αv) < β− · w(u, v) < β · (αu + αv) + β−

1 + ε/4 ,

and therefore by dividing by β− we obtain

β

β− · (αu + αv) < w(u, v) <
β

β− · (αu + αv) + 1
1 + ε/4 .

ESA 2022
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As (αu + αv) ∈ {0, 1, . . . , W} (recall that (u, v) is a bad edge) and because β
β− ≤ 1 + ε

5W <

1 + ε
4W ·(1+ε/4) , there cannot be any integer in the open interval]

β

β− · (αu + αv), β

β− · (αu + αv) + 1
1 + ε/4

[
,

implying that w(u, v), which is an integer, cannot exist. The proof follows. ◁

Recall that u of (u, v) ∈ Mbad is part of Vbad only if wdegH(u) − β · αu > 0. Claim 13
then implies that given (u, v) ∈ Mbad, if both u and v are in Vbad, then wdegHbad

(u) +
wdegHbad

(v) ≥ β−

1+ε/4 ; if only u is in Vbad, then wdegHbad
(u) ≥ β−

1+ε/4 . We can thus infer that
w(Ẽ)
|Vbad| ≥

β−

2·(1+ε/4) and we can rewrite (3) as β + W ≥ β−

2W ·(1+ε/4) + w(Ẽ)∑
ũ∈Ṽ

αu
, and therefore

(
β + W − β−

2W · (1 + ε/4)

)
·

∑
ũ∈Ṽ

αu ≥ w(Ẽ). (4)

We now can rebound the expression of (1) as follows:

β− · w(MG) ≤ β · w(MH) +
∑

v∈Vbad

(wdegH(v)− β · αv)

≤β · w(MH) +
∑

v∈Vbad

wdegHbad
(v) by (2)

≤β · w(MH) + w(Ẽ)

≤
(

2β + W − β−

2W · (1 + ε/4)

)
· w(MH). by (4) and

∑
ũ∈Ṽ

αu ≤ w(MH)

Re-arranging,(
2 β

β− + W

β− −
1

2W · (1 + ε/4)

)
· w(MH) ≥ w(MG).

As β
β− ≤ 1 + ε/4 and β− ≥ 4W

ε we obtain the desired result. ◀

Then we can generalize this result to non-bipartite graphs.

▶ Theorem 14. Let 0 < ε < 1/2 and W be an integer parameter. Set λ = ε
100W . For

β ≥ β− + 2 integers such that β
log(β) ≥ 2W 2λ−2 and β− ≥ (1 − λ) · β, we have that any

(β, β−)-w-EDCS H of a graph G (with integer edge weights bounded by W ) contains a
matching MH such that

(
2− 1

2W + ε
)
· w(MH) ≥ w(MG).

Proof. The proof of this theorem relies on Lemma 12 and on the same construction as the
one in [2], using the probabilistic method and Lovasz Local Lemma [8]. We provide the
details of the proof in the full version of this paper. ◀

3 EDCS for Weighted b-Matchings

From now on we consider the problem of finding a maximum weight b-matching in an
edge-weighted multi-graph G = (V, E). Hence we will use the notations described in the
introduction. Here we recall the generalization of edge-degree constrained subgraphs (EDCS)
to an edge-weighted multi-graph G = (V, E) in the context of the b-matching problem.
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▶ Definition 15. Let G = (V, E) be a weighted multi-graph, where E is a multiset of edges
drawn from V ×V ×{1, 2, . . . , W}, {bv}v∈V be a set of constraints, and H be a subgraph of G.
Given any integer parameters β ≥ 3 and β− ≤ β − 2, we say that H is a (β, β−)-w-b-EDCS
of G if H satisfies the following properties:

(i) For any edge (u, v, wuv) ∈ H, wdegH (u)
bu

+ wdegH (v)
bv

≤ β · wuv

(ii) For any edge (u, v, wuv) ∈ G\H, wdegH (u)
bu

+ wdegH (v)
bv

≥ β− · wuv.

As for a w-EDCS (Proposition 8), we can bound the degree of a vertex in a w-b-EDCS
H (with almost the same proof as that of Proposition 8).

▶ Proposition 16. Let H be a (β, β−)-w-b-EDCS of a given graph G. Then, for all v ∈ V ,
we have degH(v) ≤ β · bv.

▶ Proposition 17. Let H be a (β, β−)-w-b-EDCS of a given graph G. Then H contains at
most 2β · |MG| edges.

Proof. A vertex v ∈ V is called saturated by MG if |δG(v) ∩MG| = bv. We denote by Vsat

the set of vertices saturated by MG. As MG is a maximal matching in G, it means that for
all (u, v, wuv) ∈ G\MG, either u or v is in Vsat. We denote by Msat ⊆ MG the subset of
edges in MG that are incident to a vertex of Vsat. By this definition, we get:

|H| = |H ∩ (MG\Msat)|+ |H\(MG\Msat)| ≤ |MG| − |Msat|+
∑

v∈Vsat

degH(v)

≤ |MG| − |Msat|+
∑

v∈Vsat

β · bv ≤ |MG| − |Msat|+ 2 · |Msat| · β ≤ 2β · |MG|,

as for all v ∈ V , degH(v) ≤ β · bv and
∑

v∈Vsat
bv ≤ 2 · |Msat|. ◀

We can also show that such w-b-EDCSes always exist.

▶ Proposition 18. Any multi-graph G = (V, E), along with a set of constraints {bv}v∈V ,
contains a (β, β−)-w-b-EDCS for any parameters β ≥ β− + 2. Such a (β, β−)-w-b-EDCS
can also be found in O(β2W 2 · |MG|) local search steps.

Proof. As in the proof of Proposition 9, we follow closely the argument of [2]. We use the
same local-search algorithm as the one in Proposition 9, except that the properties violated
are those of Definition 15. Here we also give the priority to the correction of violations of
Property (i), so that the at each step of the algorithm all the vertices v ∈ V have degrees
bounded by β · bv + 1. To prove that this algorithm terminates and show the existence of a
w-b-EDCS, we introduce the following potential function:

Φ(H) = (2β − 2)
∑

(u,v,wuv)∈H

w2
uv −

∑
u∈V

(wdegH(u))2

bu
.

Observe that because of Proposition 17, the value of Φ(H) is bounded by 2βW 2 · 2β · |MG|.
We can also show that after each local improvement, the value of Φ(H) increases by at
least 3/2 (see full version for details). Hence the algorithm terminates in O(β2W 2 · |MG|)
steps. ◀

The main interest of these w-b-EDCSes is that they contain an (almost) 2− 1
2W approx-

imation, as in the case of w-EDCSes in simple graphs (Theorem 14).
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▶ Theorem 4. Let 0 < ε < 1/2 and let W be an integer parameter. Set λ = ε
100W . Let

β ≥ β− + 2 be integers such that β+6W
log(β+6W ) ≥ 2W 2λ−2 and β− − 6W ≥ (1− λ) · (β + 6W ).

Then any (β, β−)-w-b-EDCS H of a weighted multi-graph G with integer edge weights bounded
by W contains a b-matching MH such that

(
2− 1

2W + ε
)
· w(MH) ≥ w(MG).

Proof. Consider a maximum weight b-matching MG. We will build from H and MG two
simple graphs G′ = (V ′, E′) and H ′ = (V ′, E′

H). The set of vertices V ′ contains, for each
vertex v ∈ V , bv vertices v1, . . . , vbv

, so that V ′ contains
∑

v∈V bv vertices in total. To
construct E′, for each v ∈ V , we will distribute the edges of δ(v) ∩ (H ∪MG) among the bv

vertices v1, . . . , vbv
in such a way so that the following three properties hold:

(i) each vi has a most one edge of MG incident to it;
(ii) G′ is a simple graph;
(iii) each vi has a weighted degree in the interval

[
wdegH (v)

bv
− 2W, wdegH (v)

bv
+ 3W

]
.

The existence of such a distribution is achieved by a greedy procedure (see the full version
of this paper for a proof of this fact). For Property (ii), it is crucial that the graph G has
at most min(bu, bv) edges between any vertices u and v. This property is important in the
proof of Theorem 14 (where negative association is used). Then, for H ′, we just consider
the restriction of G′ to the edges corresponding to H (ignoring those from MG\H in the
preceding construction).

Observe that MG corresponds a simple matching in G′, and that any simple matching in
H ′ corresponds to a b-matching in H. Next we show that H ′ is a (β + 6W, β− − 6W )-EDCS
for simple graph G′. Consider an edge (ui, vj) ∈ H ′. It corresponds to an edge (u, v, wuv) of
H so wdegH′(ui) + wdegH′(vj) ≤ wdegH (u)

bu
+ wdegH (v)

bv
+ 6W ≤ (β + 6W ) ·wuv, so Property

(i) of Definition 7 holds. Consider next an edge (ui, vj) ∈ G′\H ′. It corresponds to an edge
(u, v, wuv) of MG\H, so wdegH′(ui)+wdegH′(vj) ≥ wdegH (u)

bu
+ degH (v)

bv
−6W ≥ (β−−6W ) ·

wuv (as there can be a difference of at most W between the weighted degree of u in G′ and in
H ′). Thus Property (ii) of Definition 7 holds as well. To conclude, H ′ is a (β +6W, β−−6W )-
w-EDCS of G′, so by Theorem 14 we have that (2− 1

2W + ε) ·w(MH′) ≥ w(MG′) = w(MG).
As w(MH) ≥ w(MH′) (because any matching in H ′ corresponds to a b-matching of the same
weight in H), completing the proof. ◀

4 Application to b-Matchings in Random-Order Streams

In this section we consider the random-order semi-streaming model and we show how our
results in the preceding section can be adapted to get a 2− 1

2W + ε approximation.
As our algorithm builds on that of Bernstein [3] for the unweighted simple matching,

let us briefly summarize his approach. In the first phase of the streaming, he constructs a
subgraph that satisfies only a weaker definition of EDCS in Definition 1 (only Property (i)
holds). In the second phase of the streaming, he collects the “underfull” edges, which are
those edges that violate Property (ii). He shows that in the end, the union of the subgraph
built in the first phrase and the underfull edges collected in the second phase, with high
probability, contains a 3/2 + ε approximation and that the total memory used is in the
order of O(n · log n). As we will show below, this approach can be adapted to our context
of edge-weighted b-matching. Our main technical challenge lies in the fact that unlike the
simple matching, the size of MG can vary a lot. We need a “guessing” strategy to ensure
that the required memory is proportional to |MG|.

▶ Definition 19. We say that a graph H has bounded weighted edge-degree β if for every
edge (u, v, wuv) ∈ H, wdegH (u)

bu
+ wdegH (v)

bv
≤ β · wuv.
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▶ Definition 20. Let G be a edge-weighted multi-graph, and let H be a subgraph of G with
bounded weighted edge-degree β. For any parameter β−, we say that an edge (u, v, wuv) ∈ G\H
is (H, β, β−)-underfull if wdegH (u)

bu
+ wdegH (v)

bv
< β− · wuv.

▶ Lemma 21. Let 0 < ε < 1/2 be any parameter and W be an integer parameter. Set
λ = ε

100W . Suppose that β− and β ≥ β− + 2 are integers so that β+8W
log(β+8W ) ≥ 2W 2λ−2 and

β− − 6W ≥ (1− λ) · (β + 8W ). Given an edge-weighted multi-graph G with integer weights
in 1, . . . , W , and a subgraph H with bounded weighted edge-degree β, if X contains all edges
in G\H that are (H, β, β−)-underfull, then (2− 1

2W + ε) · w(MH∪X) ≥ w(MG).

Proof. First, observe that H∪X is not necessarily a w-b-EDCS of G. Thereby we use another
argument from [3]. Let MG be a maximum weight b-matching in G, let MH

G = MG ∩H and
M

G\H
G = MG∩(G\H). Let XM = X∩M

G\H
G . We can observe that w(MG) = w(M

H∪M
G\H

G

).

Then we can show that H ∪XM is a (β + 2W, β−)-w-b-EDCS of H ∪M
G\H
G (see the full

version of this paper). As a result, Theorem 4 can be applied in this case and we get that(
2− 1

2W + ε
)
· w (MH∪XM ) ≥ w

(
M

H∪M
G\H

G

)
= w(MG), thus concluding the proof. ◀

▶ Remark 22. One can easily notice that there exist integers β and β− that are O(poly(W, 1/ε))
satisfying the conditions of Lemma 21. From now on, we will use the parameters λ, β, and
β− satisfying the conditions of Lemma 21 and they are of values O(poly(W, 1/ε)).

Algorithm 1 Main algorithm computing a weighted b-matching for a random-order stream.

1: H ← ∅
2: ∀ 0 ≤ i ≤ log2 m, αi ←

⌊
ε·m

log2(m)·(2i+2β2W 2+1)

⌋
3: for i = 0 . . . log2 m do
4: ProcessStopped← False
5: for 2i+2β2W 2 + 1 iterations do
6: FoundUnderfull← False
7: for αi iterations do
8: let (u, v, wuv) be the next edge in the stream
9: if wdegH (u)

bu
+ wdegH (v)

bv
< β− · wuv then

10: add edge (u, v, wuv) to H

11: FoundUnderfull← True
12: while there exists (u′, v′, wu′v′) ∈ H : wdegH (u′)

bu′
+ wdegH (v′)

bv′
> β ·wu′v′ do

13: remove (u′, v′, wu′v′) from H

14: if FoundUnderfull = False then
15: ProcessStopped← True
16: break from the loop
17: if ProcessStopped = True then
18: break from the loop
19: X ← ∅
20: for each (u, v, wuv) remaining edge in the stream do
21: if wdegH (u)

bu
+ wdegH (v)

bv
< β− · wuv then

22: add edge (u, v, wuv) to X

23: return the maximum weight b-matching in H ∪X

The algorithm, formally described in Algorithm 1, consists of two phases. The first phase,
corresponding to Lines 3-18, constructs a subgraph H of bounded weighted edge-degree β

using only a ε fraction of the stream Eearly. In the second phase, the algorithm collects the

ESA 2022



68:12 Maximum Weight b-Matchings in Random-Order Streams

underfull edges in the remaining part of the stream Elate. As in [3] we use the idea that if no
underfull edge was found in an interval of size α (see Lines 6-13), with high probability the
number of underfull edges remaining in the stream is bounded by some value γ = 4 log(m) m

α .
The issue is therefore to choose the right size of interval α, because we do not know the order
of magnitude of |MG| in the b-matching problem: if we do as in [3] by choosing only one
fixed size of intervals α, then if α is too small, the value of γ will be too big compared to
|MG|, whereas if the value of α is too large we will not be able to terminate the first phase
of the algorithm within the early fraction of size εm. Therefore, the idea in the first phase of
the algorithm is to “guess” the value of log2 |MG| by trying successively larger and larger
values of i (see Line 3). In fact, by setting i0 = ⌈log2 |MG|⌉, we know that the number of
operations that can be performed on a w-b-EDCS is bounded by 2i0+2β2W 2 (see the proof
of Proposition 18). As a result we know that the first phase should always stop at a time
where i is smaller than or equal to i0, and therefore at a time when αi ≥ αi0 . Then we can
prove that with high probability the number of remaining underfull edges in the stream is at
most γi = 4 log(m) m

αi
.

Algorithm 1 works when MG is neither too small nor too big. Here we will first argue
that the other border cases can be handled anyway. We first have this easy lemma (its proof
is very similar to that of Proposition 17, see the full version of this paper).

▶ Lemma 23. We have the inequality |G| ≤ 2n · |MG|.

Then we use it to handle the case of small b-matchings.

▷ Claim 24. We can assume that w(MG) ≥ 3W 2

2ε2 log(m).

Proof. In fact, if w(MG) < 3W 2

2ε2 log(m), then |MG| < 3W 2

2ε2 log(m) and by Lemma 23 the
graph has only m = O(n · 3W 2

2ε2 · log(m)) edges, so the whole graph can be stored only using
O(n · poly(log(m), W, 1/ε)) memory, implying that we can compute an exact solution. ◁

▷ Claim 25. Assuming Claim 24, with probability at least 1 −m−3 the late part of the
steam Elate contains at least a (1− 2ε) fraction of the optimal b-matching.

Proof. Consider a maximum weight b-matching MG = {f1, . . . , f|MG|}. We define the
random variables Xi = 1fi∈Eearly · w(fi). Hence we have E[

∑
Xi] = ε · w(MG). Moreover,

the random variables Xi are negatively associated, so we can use Hoeffding’s inequality to
get P

[∑|MG|
i=1 Xi ≥ 2ε · w(MG)

]
≤ exp

(
− 2·ε2·w(MG)2

|MG|·W 2

)
≤ exp

(
− 2·ε2·w(MG)

W 2

)
≤ m−3, as we

now assume that w(MG) ≥ 3W 2

2ε2 log(m) (see Claim 24). ◁

Recall that we defined i0 = ⌈log2 |MG|⌉.

▷ Claim 26. We can assume that ε·m
log2(m)·(2i0+2β2W 2+1) ≥ 1.

Proof. If this is not the case, then we can just store all the edges of G as the number
of edges m is bounded by log2(m)·(2i0+2β2W 2+1)

ε = O(|MG| · poly(log(m), W, 1/ε)) (as β is
O(poly(W, 1/ε)), see Remark 22). As a result, if at some point of the first phase we have
not stopped and we have αi = 0, then we store all the remaining edges of Elate and we will
be able to get a (1− 2ε) approximation with high probability (because of Claim 25) using
O(|MG| · poly(log(m), W, 1/ε)) memory. ◁

Then we can move on to our main algorithm. The following lemma is very similar to the
one used in [3] (see the proof in the full version of this paper). It can then be combined with
previous lemmas and claims to prove that a 2− 1

2W + ε approximation can be achieved with
high probability.
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▶ Lemma 27. The first phase of Algorithm 1 uses O(β · |MG|) memory and constructs a
subgraph H of G, satisfying the following properties:
1. The first phase terminates within the first εm edges of the stream.
2. When the first phase terminates after processing some edge, we have:

a. H has bounded weighted edge degree β, and contains at most O(β · |MG|) edges.
b. With probability at least 1−m−3, the total number of (H, β, β−)-underfull edges in the

remaining part of the stream is at most γ = O(|MG| · (log(m))2 · β2W 2 · 1/ε).

▶ Theorem 28. Let ε > 0. Using Algorithm 1, with probability 1− 2m−3, one can extract
from a randomly-ordered stream of edges a weighted b-matching with an approximation ratio
of 2− 1

2W + ε, using O(max(|MG|, n) · poly(log(m), W, 1/ε)) memory.

Proof. Applying Lemma 21 to the graph H ∪Glate we can get, choosing the right values β

and β− (which are O(poly(W, 1/ε))), H∪X contains a (1−2ε)−1 ·(2− 1
2W +ε) approximation

of the optimal b-matching (with probability at least 1 −m−3, see Claim 25), and with a
memory consumption of O(|MG| · poly(log(m), W, 1/ε)) (with probability at least 1−m−3,
see Lemma 27), with probability at least 1− 2m−3 (union bound). Hence the proof. ◀
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