
Scheduling Kernels via Configuration LP
Dušan Knop #

Department of Theoretical Computer Science, Faculty of Information Technology,
Czech Technical University in Prague, Czech Republic

Martin Koutecký #

Computer Science Institute of Charles University, Prague, Czech Republic

Abstract

Makespan minimization (on parallel identical or unrelated machines) is arguably the most natural
and studied scheduling problem. A common approach in practical algorithm design is to reduce
the size of a given instance by a fast preprocessing step while being able to recover key information
even after this reduction. This notion is formally studied as kernelization (or simply, kernel) – a
polynomial time procedure which yields an equivalent instance whose size is bounded in terms of
some given parameter. It follows from known results that makespan minimization parameterized by
the longest job processing time pmax has a kernelization yielding a reduced instance whose size is
exponential in pmax. Can this be reduced to polynomial in pmax?

We answer this affirmatively not only for makespan minimization, but also for the (more
complicated) objective of minimizing the weighted sum of completion times, also in the setting of
unrelated machines when the number of machine kinds is a parameter.

Our algorithm first solves the Configuration LP and based on its solution constructs a solution of
an intermediate problem, called huge N -fold integer programming. This solution is further reduced
in size by a series of steps, until its encoding length is polynomial in the parameters. Then, we
show that huge N -fold IP is in NP, which implies that there is a polynomial reduction back to our
scheduling problem, yielding a kernel.

Our technique is highly novel in the context of kernelization, and our structural theorem about
the Configuration LP is of independent interest. Moreover, we show a polynomial kernel for huge
N -fold IP conditional on whether the so-called separation subproblem can be solved in polynomial
time. Considering that integer programming does not admit polynomial kernels except for quite
restricted cases, our “conditional kernel” provides new insight.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability; Theory
of computation → Integer programming

Keywords and phrases Scheduling, Kernelization

Digital Object Identifier 10.4230/LIPIcs.ESA.2022.73

Related Version Full Version: https://arxiv.org/abs/2003.02187

Funding Dušan Knop: Supported by the OP VVV MEYS funded project “Research Center for
Informatics” (nr. CZ.02.1.01/0.0/0.0/16_019/0000765).
Martin Koutecký: Partially supported by Charles University project UNCE/SCI/004, by the Czech
Science Foundation (GA ČR) project 19-27871X, and by the Israel Science Foundation grant 308/18.

Acknowledgements Authors wish to thank the Lorentz Center for making it possible to organize the
workshop Scheduling Meets Fixed-Parameter Tractability, which output resulted in this paper. The
contribution of the Lorentz Center in stimulating suggestions, giving feedback and taking care of all
practicalities, helped us to focus on our research and to organize a meeting of high scientific quality.
Furthermore, the authors thank Stefan Kratsch for bringing Proposition 5 to their attention.

© Dušan Knop and Martin Koutecký;
licensed under Creative Commons License CC-BY 4.0

30th Annual European Symposium on Algorithms (ESA 2022).
Editors: Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman; Article No. 73; pp. 73:1–73:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dusan.knop@fit.cvut.cz
mailto:koutecky@iuuk.mff.cuni.cz
https://doi.org/10.4230/LIPIcs.ESA.2022.73
https://arxiv.org/abs/2003.02187
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

73:2 Scheduling Kernels via Configuration LP

1 Introduction

Kernelization, data reduction, or preprocessing: all of these refer to the goal of simplifying and
reducing (the size of) the input in order to speed up computation of challenging tasks. Many
heuristic techniques are applied in practice, however, we seek a theoretical understanding
in the form of a procedure with guaranteed bounds on the sizes of the reduced data. We
use the notion of kernelization from parameterized complexity (cf. [39, 9]), where along with
an input instance I we get a positive integer k expressing the parameter value, which may
be the size of the sought solution or some structural limitation of the input. A kernel is
an algorithm running in time poly(|I| + k) which returns a reduced instance I ′ of the same
problem of size bounded in terms of k; we sometimes also refer to I ′ as the kernel.

It is well known [6] that a problem admits a kernel if and only if it has an algorithm
running in time f(k) poly(|I|) for some computable function f (i.e., if it is fixed-parameter
tractable, or FPT, parameterized by k). The “catch” is that this kernel may be very large
(exponential or worse) in terms of k, while for many problems, kernels of size polynomial
in k are known. This raises a fundamental question for any FPT problem: does it have a
polynomial kernel? Answering this question typically provides deep insights into a problem
and the structure of its solutions.

Parameterized complexity has historically focused primarily on graph problems, but
it has been increasingly branching out into other areas. Kernelization, as arguably the
most important subfield of parameterized complexity (cf. a recent monograph [15]), follows
suit. Scheduling is a fundamental area in combinatorial optimization, with results from
parameterized complexity going back to 1995 [3]. Probably the most central problem in
scheduling is makespan minimization on identical machines, denoted as P ||Cmax, which we
shall define soon. It took until the seminal paper of Goemans and Rothvoß [20] to get an
FPT algorithm for P ||Cmax parameterized by the number of job types (hence also by the
largest job). Yet, the existence of a polynomial kernel for P ||Cmax remained open, despite
being raised by Mnich and Wiese in 2013 [38] and reiterated by van Bevern1. Here, we give
an affirmative answer for this problem:

▶ Corollary 1. There is a polynomial kernel for P ||Cmax when parameterized by the longest
processing time pmax.

Let us now introduce and define the scheduling problems P ||Cmax and P ||
∑

wjCj . There are
n jobs and m identical machines, and the goal is to find a schedule minimizing an objective.
For each job j ∈ [n], a processing time pj ∈ N is given and a weight wj are given; in the
case of P ||Cmax the weights play no role and can be assumed to be all zero. A schedule is
a mapping which to each job j ∈ [n] assigns some machine i ∈ [m] and a closed interval of
length pj , such that the intervals assigned to each machine do not overlap except for their
endpoints. For each job j ∈ [n], denote by Cj its completion time, which is the time when it
finishes, i.e., the right end point of the interval assigned to j in the schedule. In the makespan
minimization (Cmax) problem, the goal is to find a schedule minimizing the time when the
last job finishes Cmax = maxj∈[n] Cj , called the makespan. In the minimization of sum of
weighted completion times (

∑
wjCj), the goal is to minimize

∑
wjCj . (In the rest of the

paper we formally deal with decision versions of these problems, where the task is to decide
whether there exists a schedule with objective value at most k. This is a necessary approach
when speaking of kernels and complexity classes like NP and FPT.)

1 The question was asked at the workshop “Scheduling & FPT” at the Lorentz Center, Leiden, in February
2019, as a part of the opening talk for the open problem session.

D. Knop and M. Koutecký 73:3

In fact, our techniques imply results stronger in three ways, where we handle:
1. the much more complicated

∑
wjCj objective function involving possibly large job

weights,
2. the unrelated machines setting (denoted R||Cmax and R||

∑
wjCj), and

3. allowing the number of jobs and machines to be very large, known as the high-multiplicity
setting.

For this, we need further notation to allow for different kinds of machines. For each machine
i ∈ [m] and job j ∈ [n], a processing time pi

j ∈ N is given. For a given scheduling instance,
say that two jobs j, j′ ∈ [n] are of the same type if pi

j = pi
j′ for all i ∈ [m] and wj = wj′ , and

say that two machines i, i′ ∈ [m] are of the same kind if pi
j = pi′

j for all jobs j ∈ [n]. We
denote by τ ∈ N and κ ∈ N the number of job types and machine kinds, respectively, call
this type of encoding the high-multiplicity encoding, and denote the corresponding problems
R|HM |Cmax and R|HM |

∑
wjCj .

Our approach is indirect: taking an instance I of scheduling, we produce a small equivalent
instance I ′ of a the so-called huge N-fold integer programming problem with a quadratic
objective function (see more details below). This is known as compression, i.e., a polynomial
time algorithm producing from I a small equivalent instance of a different problem:

▶ Theorem 2. The problems R|HM |Cmax and R|HM |
∑

wjCj parameterized by the number
of job types τ , the longest processing time pmax, and the number of machine kinds κ admit a
polynomial compression to quadratic huge N -fold IP parameterized by the number of block
types τ̄ , the block dimension t, and the largest coefficient ∥E∥∞.

If we can then find a polynomial reduction from quadratic huge N -fold IP to our scheduling
problems, we are finished. For this, it suffices to show NP membership, as we do in Lemma 13.

Configuration LP. Besides giving polynomial kernels for some of the most fundamental
scheduling problems, we wish to highlight the technique behind this result, because it is quite
unlike most techniques used in kernelization and is of independent interest. Our algorithm
essentially works by solving the natural Configuration LP of P ||Cmax (and other problems),
which can be done in polynomial time when pmax is polynomially bounded, and then using
powerful structural insights to reduce the scheduling instance based on the Configuration
LP solution. The Configuration LP is a fundamental tool in combinatorial optimization
which goes back to the work of Gilmore and Gomory in 1961 [18]. It is known to provide
high-quality results in practice, in fact, the “modified integer round-up property (MIRUP)”
conjecture states that the natural Bin Packing Configuration LP always attains a value x

such that the integer optimum is at most ⌊x⌋ + 1 [40]. The famous approximation algorithm
of Karmarkar and Karp [28] for Bin Packing is based on rounding the Configuration LP, and
many other results in approximation use the Configuration LP for their respective problems
as the starting point.

In spite of this centrality and vast importance of the Configuration LP, there are only
few structural results providing deeper insight. Perhaps the most notable is the work of
Goemans and Rothvoß [20] and later Jansen and Klein [26] who show that there is a certain
set of “fundamental configurations” such that in any integer optimum, all but few machines
(bins, etc.) will use these fundamental configurations. Our result is based around a theorem
which shows a similar yet orthogonal result and can be informally stated as follows:

▶ Theorem 3 (informal; see the full version). There is an optimum of the Configuration
IP where all but few configuration are those discovered by the Configuration LP, and the
remaining configurations are not far from those discovered by the Configuration LP.

ESA 2022

73:4 Scheduling Kernels via Configuration LP

We note that our result, unlike the ones mentioned above [20, 26], also applies to arbitrary
separable convex functions. This has a fundamental reason: the idea behind both previous
results is to shift weight from the inside of a polytope to its vertices without affecting the
objective value, which only works for linear objectives.

Huge N -fold IP. Finally, we highlight that the engine behind our kernels, a conditional
kernel for the so-called quadratic huge N -fold IP, is of independent interest. Integer pro-
gramming is a central problem in combinatorial optimization. Its parameterized complexity
has been recently intensely studied [11, 31, 33, 10, 7]. However, it turns out that integer
programs cannot be kernelized in all but the most restricted cases [34, 35, 26]. We give a
positive result about a class of block-structured succinctly encoded IPs with a quadratic
objective function, so-called quadratic huge N -fold IPs, which was used to obtain many
interesting FPT results [29, 31, 4, 17, 32, 5]. However, our result is conditional on having
a polynomial algorithm for the so-called separation subproblem of the Configuration LP of
the quadratic huge N -fold IP, so there is a price to pay for the generality of this fragment
of IP. The separation subproblem is to optimize a certain objective function (which varies)
over the set of configurations. In the cases considered here, we show that this corresponds to
(somewhat involved) variations of the knapsack problem with polynomially bounded numbers;
in other problems expressible as n-fold IP, the separation subproblem corresponds to a known
hard problem. Informally, our result reads as follows:

▶ Theorem 4 (informal; see the full version). If the separation subproblem can be solved in
polynomial time, then quadratic huge N-fold IP has a polynomial kernel parameterized by
the block dimensions, the number of block types, and the largest coefficient.

Because huge N -fold IP is essentially equivalent to the Configuration IP, the kernel of
Theorem 3 can be viewed as a validation of the industry common wisdom that column
generation works really well. Another view is that methods from mathematical programming,
so far underrepresented in kernelization, deserve more attention.

One aspect of the algorithm above is reducing the quadratic objective function. The
standard approach, also used in kernelization of weighted problems [13, 8, 2, 19, 42, 41, 21]
is to use a theorem of Frank and Tardos [16] which “kernelizes” a linear objective function if
the dimension is a parameter. However, we deal with
1. a quadratic convex (non-linear) function,
2. over a space of large dimension.
We are able to overcome these obstacles by a series of steps which first “linearize” the
objective, then “aggregate” variables of the same type, hence shrinking the dimension, then
reduce the objective using the algorithm of Frank and Tardos, and then we carefully reverse
this process (see the full version for more details). This result has applications beyond this
work: for example, the currently fastest strongly FPT algorithm for R||

∑
wjCj (i.e., an

algorithm whose number of arithmetic operations does not depend on the weights wj) has
dependence of m2 poly log(m) on the number of machines m; applying our new result instead
of [11, Corollary 69] reduces this dependence to m poly log(m).

Other Applications. Theorem 4 can be used to obtain kernels for other problems which can
be modeled as huge N -fold IP. First, we may also optimize the ℓp norms of times when each
machine finishes, a problem known as R|HM |ℓp. Our results (Corollary 11) show that also
in this setting the separation problem can be solved quickly. Second, the P ||Cmax problem
is identical to Bin Packing (in their decision form), so our kernel also gives a kernel for

D. Knop and M. Koutecký 73:5

Bin Packing parameterized by the largest item size. Moreover, also the Bin Packing with
Cardinality Constraints problem has a huge N -fold IP model [30, Lemma 54] for which
Corollary 11 indicates that the separation subproblem can be solved quickly. Third, Knop
et al. [30] give a huge N -fold IP model for the Surfing problem, in which many “surfers”
make demands on few different “services” provided by few “servers”, where each surfer may
have different costs of getting a service from a server; one may think of internet streaming
with different content types, providers, and pricing schemes for different customer types. The
separation problem there is polynomially solvable for an interesting reason: its constraint
matrix is totally unimodular because it is the incidence matrix of the complete bipartite
graph. Thus, Theorem 4 gives polynomial kernels for all of the problems above with the
given parameters.

Related Work – Scheduling. Let us finally review related results in the intersection of
parameterized complexity and scheduling; for a more comprehensive survey of parameterized
results in scheduling see, e.g., [37]. First, to the best of our knowledge, the first to study
scheduling problems from the perspective of multivariate complexity were Bodlaender and
Fellows [3]. Fellows and McCartin [14] study scheduling on single machine of unit length
jobs with (many) different release times and due dates. Single machine scheduling where
two agents compete to schedule their private jobs is investigated by Hermelin et al. [22].
There are few other result [43, 27, 24, 23] focused on identifying tractable scenarios for
various scheduling paradigms (such as flow-shop scheduling or e.g. structural limitations of
the job–machine assignment).

Paper Organization. We begin with preliminaries (Section 2) which, besides introducing
necessary notation and definitions, also states several results which we use later in the proofs
of our results. Section 3 discusses how our scheduling problems are modeled as huge N -fold
IP (3.1) and how to solve the ConfLP quickly for those models (3.2 and 3.3). Finally, in
the full version, we show our “conditional kernel” for quadratic huge N -fold IP, which first
reduces all parts of the instance except for the objective function, and finally deals with the
objective. In the full version, we conclude with a short section giving an interpretation of our
algorithm for P ||Cmax and R||Cmax. A word of caution: it is at first tempting to think that
most of the machinery of our algorithm is not necessary for our simplest considered problem
P ||Cmax; however, as we discuss in the full version in detail, while some minor simplifications
are possible, the only truly avoidable step is the objective reduction which is needed for the∑

wjCj objective.

2 Preliminaries

We consider zero to be a natural number, i.e., 0 ∈ N. We write vectors in boldface (e.g., x, y)
and their entries in normal font (e.g., the i-th entry of a vector x is xi). For positive integers
m ≤ n we set [m, n] := {m, . . . , n} and [n] := [1, n], and we extend this notation for vectors:
for l, u ∈ Zn with l ≤ u, [l, u] := {x ∈ Zn | l ≤ x ≤ u} (where we compare component-wise).
For two vectors x, y ∈ Rn, z = max{x, y} is defined coordinate-wise, i.e., zi = max xi, yi for
all i ∈ [n], and similarly for min{x, y}.

If A is a matrix, Ai,j denotes the j-th coordinate of the i-th row, Ai,• denotes the i-th
row and A•,j denotes the j-th column. We use log := log2, i.e., all our logarithms are base 2.
For an integer a ∈ Z, we denote by ⟨a⟩ := 1 + ⌈log(|a| + 1)⌉ the binary encoding length of
a; we extend this notation to vectors, matrices, and tuples of these objects. For example,

ESA 2022

73:6 Scheduling Kernels via Configuration LP

⟨A, b⟩ = ⟨A⟩ + ⟨b⟩, and ⟨A⟩ =
∑

i,j⟨Ai,j⟩.2 For a function f : Zn → Z and two vectors
l, u ∈ Zn, we define f

[l,u]
max := maxx∈[l,u] |f(x)|; if [l, u] is clear from the context we omit it

and write just fmax.

▶ Proposition 5 ([15, Theorem 1.6]). Let (Q, κ), (R, λ) be parameterized problems such that
Q is NP-hard and R is in NP. If (Q, κ) admits a polynomial compression into (R, λ), then it
admits a polynomial kernel.

The above observation is useful when dealing with NP-hard problems. The proof simply
follows by pipelining the assumed polynomial compression with a polynomial time (Karp)
reduction from R to Q.

2.1 Scheduling Notation
Overloading the convention slightly, for each i ∈ [κ] and j ∈ [τ], denote by pi

j the processing
time of a job of type j on a machine of kind i, by wj the weight of a job of type j, by nj the
number of jobs of type j, by mi the number of machines of kind i, and denote n = (n1, . . . , nτ),
m = (m1, . . . , mκ), p =

(
p1

1, . . . , p1
τ , p2

1, . . . , pκ
τ

)
, w := (w1, . . . , wτ), pmax := ∥p∥∞, and

wmax := ∥w∥∞. We denote the high multiplicity versions of the previously defined problems
R|HM |Cmax and R|HM |

∑
wjCj .

For an instance I of R||Cmax or R||
∑

wjCj , we define its size as ⟨I⟩ :=
∑κ

i=1
∑τ

j=1⟨pi
j , wj⟩,

whereas for an instance I of P |HM |Cmax or P |HM |
∑

wjCj we define its size as ⟨I⟩ =
⟨n, m, p, w⟩. Note that the difference in encoding actually leads to different problems:
for example, an instance of R|HM |Cmax with 2k jobs with maximum processing time
pmax can be encoded with O(kτκ log pmax) bits while an equivalent instance of R||Cmax
needs Ω(2k log pmax) bits, which is exponentially more if τ, κ ∈ kO(1). The membership
of high-multiplicity scheduling problems in NP was open for some time, because it is not
obvious whether a compactly encoded instance also has an optimal solution with a compact
encoding. This question was considered by Eisenbrand and Shmonin, and we shall use their
result. For a set X ⊆ Zd define the integer cone of X, denoted coneN(X), to be the set
coneN(X) :=

{∑
x∈X λxx | λ ∈ NX

}
, where NX is the set of functions mapping X → N

viewed as vectors.

▶ Proposition 6 (Eisenbrand and Shmonin [12, Theorem 2]). Let X ⊆ Zd be a finite set
of integer vectors and let b ∈ coneN(X). Then there exists a subset X̃ ⊆ X such that
b ∈ coneN(X̃) and the following holds for the cardinality of X̃:
1. if all vectors of X are nonnegative, then |X̃| ≤ ⟨b⟩,
2. if M = maxx∈X ∥x∥∞, then |X̃| ≤ 2d(log 4dM).
One can use Proposition 6 to show that the decision version of R|HM |Cmax and
R|HM |

∑
wjCj have short certificates and thus belong to NP. We will later derive the

same result as a corollary of the fact that both of these scheduling problems can be encoded
as a certain form of integer programming, which we will show to have short certificates as
well.

2.2 Conformal Order and Graver Basis
Let g, h ∈ Zn be two vectors. We say that g is conformal to h (we denote it g ⊑ h) if
both gi · hi ≥ 0 and |gi| ≤ |hi| for all i ∈ [n]. In other words, g ⊑ h if they are in the same

2 We note that our encoding of integers already contains the delimiter symbol.

D. Knop and M. Koutecký 73:7

orthant (the first condition holds) and g is component-wise smaller than h. For a matrix A

we define its Graver basis (A) to be the set of all ⊑-minimal vectors in Ker(A) \ {0}. We
define g∞(A) = max {∥g∥∞ | g ∈ (A)} and g1(A) = max {∥g∥1 | g ∈ (A)}.

We say that two functions f, g : Zd → Z are equivalent on a polyhedron P ⊆ Zd if
f(x) ≤ f(y) if and only if g(x) ≤ g(y) for all x, y ∈ P . Note that if f and g are equivalent
on P , then the sets of minimizers of f(x) and g(x) over P coincide.

▶ Proposition 7 (Frank and Tardos [16]). Given a rational vector w ∈ Qd and an integer M ,
there is a polynomial algorithm which finds a w̃ ∈ Zd such that the linear functions wx and
w̃x are equivalent on [−M, M]d, and ∥w̃∥∞ ≤ 2O(d3)MO(d2).

The dual graph GD(A) = (V, E) of a matrix A ∈ Zm×n has V = [m] and {i, j} ∈ E if rows i

and j contain a non-zero at a common coordinate k ∈ [n]. The dual treewidth twD(A) of A

is tw(GD(A)). We do not define treewidth here, but we point out that tw(T) = 1 for every
tree T .

▶ Proposition 8 (Eisenbrand et al. [11, Theorem 98]). An IP with a constraint matrix A can
be solved in time (∥A∥∞g1(A))O(twD(A)) poly(n, L), where n is the dimension of the IP and
L is the length of the input.

▶ Proposition 9 (Eisenbrand et al. [11, Lemma 25]). For an integer matrix A ∈ Zm×n, we
have g1(A) ≤ (2∥A∥∞m + 1)m.

2.3 N -fold Integer Programming

The Integer Programming problem is to solve:

min f(x) : Ax = b, l ≤ x ≤ u, x ∈ Zn, (IP)

where f : Rn → R, A ∈ Zm×n, b ∈ Zm, and l, u ∈ (Z ∪ {±∞})n.
A generalized N -fold IP matrix is defined as

E(N) =


E1

1 E2
1 · · · EN

1
E1

2 0 · · · 0
0 E2

2 · · · 0
...

...
. . .

...
0 0 · · · EN

2

 . (1)

Here, r, s, t, N ∈ N, E(N) is an (r + Ns) × Nt-matrix, and Ei
1 ∈ Zr×t and Ei

2 ∈ Zs×t for
all i ∈ [N], are integer matrices. Problem (IP) with A = E(N) is known as generalized
N -fold integer programming (generalized N -fold IP). “Regular” N -fold IP is the problem
where Ei

1 = Ej
1 and Ei

2 = Ej
2 for all i, j ∈ [N]. Recent work indicates that the majority of

techniques applicable to “regular” N -fold IP also applies to generalized N -fold IP [11].
The structure of E(N) allows us to divide any Nt-dimensional object, such as the variables

of x, bounds l, u, or the objective f , into N bricks of size t, e.g. x =
(
x1, . . . , xN

)
. We use

subscripts to index within a brick and superscripts to denote the index of the brick, i.e., xi
j

is the j-th variable of the i-th brick with j ∈ [t] and i ∈ [N]. We call a brick integral if all of
its coordinates are integral, and fractional otherwise.

ESA 2022

73:8 Scheduling Kernels via Configuration LP

Huge N -fold IP. The huge N -fold IP problem is an extension of generalized N -fold IP to
the high-multiplicity scenario, where blocks come in types and are encoded succinctly by type
multiplicities. This means there could be an exponential number of bricks in an instance with
a polynomial encoding size. The input to the huge N -fold IP problem with τ̄ types of blocks
is defined by matrices Ei

1 ∈ Zr×t and Ei
2 ∈ Zs×t, i ∈ [τ̄], vectors l1, . . . , lτ̄ , u1, . . . , uτ̄ ∈ Zt,

b0 ∈ Zr, b1, . . . , bτ̄ ∈ Zs, functions f1, . . . , f τ̄ : Rt → R satisfying ∀i ∈ [τ̄], ∀x ∈ Zt we
have f i(x) ∈ Z and given by evaluation oracles, and integers µ1, . . . , µτ̄ ∈ N such that∑τ̄

i=1 µi = N . We say that a brick is of type i if its lower and upper bounds are li and ui,
its right hand side is bi, its objective is f i, and the matrices appearing at the corresponding
coordinates are Ei

1 and Ei
2. Denote by Ti the indices of bricks of type i, and note |Ti| = µi

and |
⋃

i∈[τ̄] Ti| = N . The task is to solve (IP) with a matrix E(N) which has µi blocks of
type i for each i. Knop et al. [30] have shown a fast algorithm solving huge n-fold IP. The
main idea of their approach is to prove a powerful proximity theorem showing how one can
drastically reduce the size of the input instance given that one can solve a corresponding
configuration LP (which we shall formally define later). We will build on this approach here.
When f i are restricted to be separable quadratic (and convex) for all i ∈ [τ̄], we call the
problem quadratic huge N -fold IP.

2.4 Configuration LP of Huge N -fold IP
Let a huge N -fold IP instance with τ̄ types be fixed. Recall that µi denotes the number of
blocks of type i, and let µ =

(
µ1, . . . , µτ̄

)
. We define for each i ∈ [τ̄] the set of configurations

of type i as

Ci =
{

c ∈ Zt | Ei
2c = bi, li ≤ c ≤ ui

}
.

Here we are interested in four instances of convex programming (CP) and convex integer
programming (IP) related to huge N -fold IP. First, we have the Huge IP

min f(x) : E(N)x = b, l ≤ x ≤ u, x ∈ ZNt . (HugeIP)

Then, there is the Configuration LP of (HugeIP),

min vy =
τ̄∑

i=1

∑
c∈Ci

f i(c) · y(i, c) (2)

τ̄∑
i=1

Ei
1

∑
c∈Ci

cy(i, c) = b0

∑
c∈Ci

y(i, c) = µi ∀i ∈ [τ̄]

y ≥ 0 . (3)

Let B be its constraint matrix and d = (b0, µ) be the right hand side and shorten (2)-(3) to

min vy : By = d, y ≥ 0 . (ConfLP)

Finally, by observing that By = d implies y(i, c) ≤ ∥µ∥∞ for all i ∈ [τ̄], c ∈ Ci, defining
C =

∑
i∈[τ̄]

∣∣Ci
∣∣, leads to the Configuration ILP,

min vy : By = d, 0 ≤ y ≤ (∥µ∥∞, . . . , ∥µ∥∞), y ∈ NC . (ConfILP)

D. Knop and M. Koutecký 73:9

The classical way to solve (ConfLP) is by solving its dual using the ellipsoid method
and then restricting (ConfLP) to the columns corresponding to the rows encountered while
solving the dual, a technique known as column generation. The Dual LP of (ConfLP) in
variables α ∈ Rr, β ∈ Rτ̄ is:

max b0α +
τ̄∑

i=1
µiβi

s.t. (αEi
1)c − f i(c) ≤ −βi ∀i ∈ [τ̄], ∀c ∈ Ci (4)

To verify feasibility of (α, β) for i ∈ [τ̄], we need to maximize the left-hand side of (4) over
all c ∈ Ci and check if it is at most −βi. This corresponds to solving the following separation
problem: find integer variables c which for a given vector (α, β) solve

min f i(c) − (αEi
1)c : Ei

2c = bi, li ≤ c ≤ ui, c ∈ Zt . (sep-IP)

Denote by sep(li, ui, f i
max, Ei

1, Ei
2) the time needed to solve (sep-IP).

▶ Lemma 10 (Knop et al. [30, Lemma 12]). An optimal solution y∗ of (ConfLP) with
| supp(y∗)| ≤ r+ τ̄ can be found in (rtτ̄⟨fmax, l, u, b, µ⟩)O(1) ·maxi∈[τ̄] sep(li, ui, f i

max, Ei
1, Ei

2)
time.

Since (sep-IP) is an IP, it can be solved using Proposition 8 in time g1(Ei
2)twD(Ei

2) ·
poly(⟨li, ui, bi, ∥Ei

1∥∞fmax⟩, t, τ̄). Hence, together with Lemma 10, we get the following
corollary:

▶ Corollary 11. An optimal solution y∗ of (ConfLP) with | supp(y∗)| ≤ r + τ̄ can be found
in time (rtτ̄⟨fmax, l, u, b, µ⟩)O(1) · maxi∈[τ̄] g1(Ei

2)twD(Ei
2).

We later show how that for our formulations of R|HM |Cmax and R|HM |
∑

wjCj , indeed
g1(Ei

2) is polynomial in τ, pmax, and twD(Ei
2) = 1, hence the (ConfLP) optimum can be

found in polynomial time.

3 Compressing High Multiplicity Scheduling to Quadratic N -fold IP

In this section we are going to prove Theorem 2. To that end, we use the following assumption,
mainly to simplify notation.

▶ Remark 12. From here on, we assume τ ≥ ∥p∥∞, i.e., there is a job type for each possible
job length {1, 2, . . . , ∥p∥∞}. This is without loss of generality in our regime since both
quantities are parameters.

▶ Theorem 2 (repeated). The problems R|HM |Cmax and R|HM |
∑

wjCj parameterized by
the number of job types τ , the longest processing time pmax, and the number of machine kinds
κ admit a polynomial compression to quadratic huge N -fold IP parameterized by the number
of block types τ̄ , the block dimension t, and the largest coefficient ∥E∥∞.

Recall that in order to use Theorem 2 to provide kernels for selected scheduling problems
(which are NP-hard) we want to utilize Proposition 5. Thus, we have to show that the “target
problem” quadratic huge N -fold IP is in NP.

▶ Lemma 13. The decision version of quadratic huge N -fold IP belongs to NP.

ESA 2022

73:10 Scheduling Kernels via Configuration LP

Proof. We will use Proposition 6 to show that there exists an optimum whose number of
distinct configurations is polynomial in the input length. Such a solution can then be encoded
by giving those configurations together with their multiplicities, and constitutes a polynomial
certificate. Recall that (ConfILP) corresponding to the given instance of huge N -fold is

min vy : By = d, 0 ≤ y ≤ (∥µ∥∞, . . . , ∥µ∥∞), y ∈ NC .

Let X be the set of columns of the matrix B extended with an additional coordinate
which is the coefficient of the objective function v corresponding to the given column, that
is, vb for a column b (i.e., the objective value of configuration b). Hence X ⊆ Zr+τ̄+1

and ∥x∥∞ ≤ ∥l, u, fmax∥∞ =: M for any x ∈ X. Applying Proposition 6, part 2, to X,
yields that there exists an optimal solution y of (ConfILP) with supp(y) = X̃ satisfying
|X̃| ≤ 2(r + τ̄ + 1) log(4(r + τ̄ + 1)M), hence polynomial in the input length of the original
instance. ◀

▶ Remark 14. Clearly Lemma 13 holds for any huge N -fold IP whose objective is restricted
by some, not necessarily quadratic, polynomial. Moreover, using the newer technique of
Aliev et al. [1] it is likely possible to remove any restrictions on the objective.

Using Theorem 2. Before we move to the proof of Theorem 2 we first derive two simple
yet interesting corollaries.

▶ Corollary 15. The problems R||Cmax and R||
∑

wjCj admit polynomial kernelizations
when parameterized by τ, κ, pmax.

Proof. Let obj ∈ {Cmax,
∑

wjCj}. We describe a polynomial compression from R||obj to
quadratic huge N -fold IP which, by Lemma 13, yields the sought kernel, since R||obj is
NP-hard and huge N -fold with a quadratic objective is in NP.

We first perform the high-multiplicity encoding of the given instance I of R||obj, thus
obtaining an instance IHM of R|HM |obj with the input encoded as (n, m, p, w). Now, we
can apply Theorem 2 and obtain an instance Īhuge N-fold equivalent to IHM with size bounded
by a polynomial in κ, τ, pmax. ◀

Proof of Corollary 1. This is now trivial, since it suffices to observe that P ||Cmax is a special
case of R||Cmax, where there is only a single machine kind (i.e., κ = 1) and τ ≤ pmax job
types. Our claim then follows by Corollary 15 (combined with the fact that P ||Cmax is
NP-hard and R||Cmax is in NP). ◀

3.1 Huge n-fold IP Models
Denote by nmax the τ -dimensional vector whose all entries are ∥n∥∞. It was shown [29, 30]
that R|HM |Cmax is modeled as a feasibility instance of huge n-fold IP as follows. Recall
that we deal with the decision versions and that k is the upper bound on the value of the
objective(s). We set b0 = n, the number of block types is τ̄ = κ, Ei

1 := (I 0) ∈ Zτ×(τ+1),
Ei

2 := (pi 1), li = 0, ui = (n, ∞), bi = k, for i ∈ [κ], and the multiplicities of blocks are
µ = m. The meaning is that the first type of constraints expressed by the Ei

1 matrices
ensures that every job is scheduled somewhere, and the second type of constraints expressed
by the Ei

2 matrices ensures that every machine finishes in time Cmax.
In the model of R|HM |

∑
wjCj , for each machine kind i ∈ [κ], we define ⪯i to be

the ordering of jobs by the wj/pi
j ratio non-increasingly, and let a = (a1, a2, . . . , aτ) be a

reordering of pi according to ⪯i. We let

D. Knop and M. Koutecký 73:11

Gi :=


a1 0 0 . . . 0
a1 a2 0 . . . 0
a1 a2 a3 . . . 0
...

. . .
a1 a2 a3 . . . aτ

 , H := −I,

with I the τ × τ identity, and define F i := (Gi H) in two steps. Denote by I⪯i a matrix
obtained from the τ × τ identity matrix by permuting its columns according to ⪯i. The
model is then b0 = n, the number of block types is again τ̄ = κ, for each i ∈ [κ] we have
Ei

1 = (I⪯i 0) ∈ Zτ×2τ , Ei
2 = F̄ i, li = 0, ui = (nmax, pmaxτnmax), bi = 0, f i is a separable

convex quadratic function (whose coefficients are related to the wj/pi
j ratios), and again

µ = m. Intuitively, in each brick, the first τ variables represent numbers of jobs of each
type on a given machine, and the second τ variables represent the amount of processing time
spend by jobs of the first j types with respect to the ordering ⪯i.

3.2 Solving The Separation Problem Quickly: Cmax

The crucial aspect of complexity of (sep-IP) is its constraint matrix Ei
2. For R|HM |Cmax,

this is just the vector (pi, 1). Clearly twD((pi, 1)) = 1 since GD((pi, 1)) is a single vertex.
By Proposition 9, g1((pi, 1)) ≤ 2∥p∥∞ + 1. Moreover, fmax depends polynomially on
∥n, m, p∥∞. Hence, Corollary 11 states that (ConfLP) of the R|HM |Cmax model can be
solved in time (rtτ̄⟨fmax, l, u, b, µ⟩)O(1) ·maxi g1(Ei

2)twD(Ei
2) = poly(pmax, τ, log ∥n, m, p∥∞),

which is polynomial in the input.

3.3 Solving The Separation Problem Quickly: ∑
wjCj

The situation is substantially more involved in the case of R|HM |
∑

wjCj : in order to
apply Corollary 11, we need to again bound g1(Ei

2) and twD(Ei
2), but the matrix Ei

2 is more
involved now. Let

Ḡi :=


a1 0 . . . 0
0 a2 . . . 0
...

. . .
...

0 0 . . . aτ

 , H̄ :=


−1 0 0 . . . 0
1 −1 0 . . . 0
0 1 −1 . . . 0
...

.
...

0 0 . . . 1 −1

 ,

and define F̄ i = (Ḡi H̄). Now observe that F i and F̄ i are row-equivalent3. This means that
we can replace F i with F̄ i without changing the meaning of the constraints and without
changing the feasible set. But while twD(Fi) = τ (because it is the clique Kτ), we have

▶ Lemma 16 (⋆). For each i ∈ [κ], twD(F̄ i) = 1.

Note that application of Proposition 9 yields g1(Ei
2) ≤ O(τ τ). This general upper bound,

as we shall see, is not sufficient for our purposes, since we need g1(Ei
2) ≤ poly(τ). However,

we can improve it significantly:

3 Two matrices A, A′ are row-equivalent if one can be transformed into the other using elementary row
operations.

ESA 2022

73:12 Scheduling Kernels via Configuration LP

▶ Lemma 17 (Hill-cutting). We have g∞(F i), g∞(F̄ i) ≤ O(τ4) and g1(F i), g1(F̄ i) ≤ O(τ5)
for every i ∈ [κ].

Proof. Let F = F i for some i ∈ [κ]. Let (x, z) ∈ Z2τ be some vector satisfying F · (x, z) = 0.
Our goal now is to show that whenever there exists k ∈ [τ] with |zk − zk−1| > 2τ3 + 1
(where we define z0 := 0 for convenience), then we can construct a non-zero integral vector
(g, h) ∈ KerZ(F) satisfying (g, h) ⊑ (x, z), which shows that (x, z) ̸∈ (A). If no such index
k exists, it means that ∥x∥∞ ≤ O(τ3) because zk − zk−1 = akxk holds in F (and F̄ i).
Moreover, if |zk − zk−1| ≤ 2τ3 + 1 for all k ∈ [τ], then |zk| ≤ O(τ4) for every k ∈ [τ],
hence ∥(x, z)∥∞ ≤ O(τ4). Note that, since the dimension of (x, z) is 2τ , this also implies
∥(x, z)∥1 ≤ O(τ5). Thus we now focus on the case when ∃k ∈ [τ] : |zk − zk−1| > 2τ3 + 1.

Let us now assume that (zk −zk−1) is positive and zk ≥ τ3. There are three other possible
scenarios: when (zk − zk−1) is positive but zk < τ3, or when (zk − zk−1) is negative and
zk < −τ3 or zk ≥ −τ3. We will later show that all these situations are symmetric to the one
we consider and our arguments carry over easily, hence our assumption is without loss of
generality.

▷ Claim 18 (⋆). If (zk − zk−1) is positive and zk ≥ τ3, then there exists nonzero (g, h) ∈
KerZ(F) with (g, h) ⊑ (x, z).

Let us consider the remaining symmetric cases. If zk − zk−1 is negative and zk < −τ3,
then (−x, −z) satisfies the original assumption, leading to some (g′, h′) ⊑ (−x, −z), hence
(−g′, −h′) ⊑ (x, z) and we are done. If zk − zk−1 is negative but zk > −τ3, then we would
pick the largest index ℓ smaller than k with xℓ > τ and continue as before (the symmetry
is that now ℓ is to the left of k rather than to its right; that is, the case distinction from
the previous paragraph is according to the value of z1). Lastly, if zk − zk−1 is positive but
zk < τ3, negating (x, z) gives a reduction to the previous case. ◀

Together with the observation from the previous section and using our newly obtained
bounds together with Corollary 11, we obtain:

▶ Corollary 19. Let I = (n, m, p, w) be an instance of R|HM |Cmax or R|HM |
∑

wjCj.
A (ConfLP) optimum y∗ with | supp(y∗)| ≤ r + τ̄ can be found in time
poly(pmax, τ, κ, ⟨n, m, p, w⟩).

4 Conclusions and Research Directions

On the side of theory, one may wonder why not apply the approach developed here to
other scheduling problems, in particular those modeled as quadratic huge N -fold IP in [30],
such as R|rj , dj |

∑
wjCj . The answer is simple: we are not aware of a way to solve the

separation problem in polynomial time; in fact, we believe this to be a hard problem roughly
corresponding to Unary Vector packing in variable dimension. However, the typical use
of Configuration LP is not to obtain an exact optimum (which is often hard), but to obtain an
approximation which is good enough. Perhaps a similar approach within our context may lead
to so-called lossy kernels [36]? However, it is not even clear that an approximate analogue of
Theorem 3 holds, because getting an LP solution whose value is close to optimal does not
immediately imply getting a solution which is (geometrically) close to some optimum; cf. the
discussions on ϵ-accuracy in [11, Definition 31] and [25, Introduction]. Another interesting
problem highlighted here is to find a combinatorial algorithm computing the Carathéodory
decomposition of the average configuration n/m into machine configurations. The only
approach we are aware of so far uses the equivalence of separation and optimization (thus,
the ellipsoid method), which is impractical.

D. Knop and M. Koutecký 73:13

References
1 Iskander Aliev, Jesús A. De Loera, Friedrich Eisenbrand, Timm Oertel, and Robert Weismantel.

The support of integer optimal solutions. SIAM Journal on Optimization, 28(3):2152–2157,
2018.

2 Matthias Bentert, René van Bevern, Till Fluschnik, André Nichterlein, and Rolf Niedermeier.
Polynomial-time preprocessing for weighted problems beyond additive goal functions. CoRR,
abs/1910.00277, 2019. arXiv:1910.00277.

3 Hans L. Bodlaender and Michael R. Fellows. W[2]-hardness of precedence constrained
k-processor scheduling. Operations Research Letters, 18(2):93–97, 1995. doi:10.1016/
0167-6377(95)00031-9.

4 Robert Bredereck, Andrzej Kaczmarczyk, Dušan Knop, and Rolf Niedermeier. High-multiplicity
fair allocation: Lenstra empowered by n-fold integer programming. In Anna Karlin, Nicole
Immorlica, and Ramesh Johari, editors, Proceedings of the 2019 ACM Conference on Economics
and Computation, EC 2019, Phoenix, AZ, USA, June 24-28, 2019, pages 505–523. ACM, 2019.
doi:10.1145/3328526.3329649.

5 Laurent Bulteau, Danny Hermelin, Dušan Knop, Anthony Labarre, and Stéphane Vialette.
The clever shopper problem. Theory of Computing Systems, 64(1):17–34, 2020. doi:10.1007/
s00224-019-09917-z.

6 Liming Cai, Jianer Chen, Rodney G. Downey, and Michael R. Fellows. Advice classes
of parameterized tractability. Annal of Pure Appliled Logic, 84(1):119–138, 1997. doi:
10.1016/S0168-0072(95)00020-8.

7 Timothy Chan, Jacob W. Cooper, Martin Koutecký, Daniel Král, and Kristýna Pekárková. A
row-invariant parameterized algorithm for integer programming. CoRR, abs/1907.06688, 2019.
arXiv:1907.06688.

8 Steven Chaplick, Fedor V. Fomin, Petr A. Golovach, Dušan Knop, and Peter Zeman. Ker-
nelization of graph hamiltonicity: Proper h-graphs. In Zachary Friggstad, Jörg-Rüdiger
Sack, and Mohammad R. Salavatipour, editors, Algorithms and Data Structures - 16th
International Symposium, WADS 2019, Edmonton, AB, Canada, August 5-7, 2019, Proceed-
ings, volume 11646 of Lecture Notes in Computer Science, pages 296–310. Springer, 2019.
doi:10.1007/978-3-030-24766-9_22.

9 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

10 Friedrich Eisenbrand, Christoph Hunkenschröder, and Kim-Manuel Klein. Faster algorithms
for integer programs with block structure. In Ioannis Chatzigiannakis, Christos Kaklamanis,
Dániel Marx, and Donald Sannella, editors, 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume
107 of LIPIcs, pages 49:1–49:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.ICALP.2018.49.

11 Friedrich Eisenbrand, Christoph Hunkenschröder, Kim-Manuel Klein, Martin Koutecký, Asaf
Levin, and Shmuel Onn. An algorithmic theory of integer programming. CoRR, abs/1904.01361,
2019. arXiv:1904.01361.

12 Friedrich Eisenbrand and Gennady Shmonin. Carathéodory bounds for integer cones. Opera-
tions Research Letters, 34(5):564–568, 2006.

13 Michael Etscheid, Stefan Kratsch, Matthias Mnich, and Heiko Röglin. Polynomial kernels
for weighted problems. Journal of Computer and System Sciences, 84:1–10, 2017. doi:
10.1016/j.jcss.2016.06.004.

14 Michael R. Fellows and Catherine McCartin. On the parametric complexity of schedules to
minimize tardy tasks. Theoretical Computer Science, 298(2):317–324, 2003. doi:10.1016/
S0304-3975(02)00811-3.

15 Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: theory
of parameterized preprocessing. Cambridge University Press, 2019.

ESA 2022

http://arxiv.org/abs/1910.00277
https://doi.org/10.1016/0167-6377(95)00031-9
https://doi.org/10.1016/0167-6377(95)00031-9
https://doi.org/10.1145/3328526.3329649
https://doi.org/10.1007/s00224-019-09917-z
https://doi.org/10.1007/s00224-019-09917-z
https://doi.org/10.1016/S0168-0072(95)00020-8
https://doi.org/10.1016/S0168-0072(95)00020-8
http://arxiv.org/abs/1907.06688
https://doi.org/10.1007/978-3-030-24766-9_22
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.4230/LIPIcs.ICALP.2018.49
http://arxiv.org/abs/1904.01361
https://doi.org/10.1016/j.jcss.2016.06.004
https://doi.org/10.1016/j.jcss.2016.06.004
https://doi.org/10.1016/S0304-3975(02)00811-3
https://doi.org/10.1016/S0304-3975(02)00811-3

73:14 Scheduling Kernels via Configuration LP

16 András Frank and Éva Tardos. An application of simultaneous diophantine approximation in
combinatorial optimization. Combinatorica, 7(1):49–65, 1987.

17 Tomáš Gavenčiak, Dušan Knop, and Martin Koutecký. Integer programming in parameterized
complexity: Three miniatures. In Christophe Paul and Michal Pilipczuk, editors, 13th
International Symposium on Parameterized and Exact Computation, IPEC 2018, August
20-24, 2018, Helsinki, Finland, volume 115 of LIPIcs, pages 21:1–21:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.IPEC.2018.21.

18 P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting-stock problem.
Operations Research, 9:849–859, 1961.

19 Steffen Goebbels, Frank Gurski, Jochen Rethmann, and Eda Yilmaz. Change-making problems
revisited: a parameterized point of view. Journal of Combinatorial Optimization, 34(4):1218–
1236, November 2017. doi:10.1007/s10878-017-0143-z.

20 Michel X. Goemans and Thomas Rothvoß. Polynomiality for bin packing with a constant
number of item types. In Proc. SODA 2014, pages 830–839, 2014.

21 Frank Gurski, Carolin Rehs, and Jochen Rethmann. Knapsack problems: A parameterized point
of view. Theoretical Compututer Science, 775:93–108, 2019. doi:10.1016/j.tcs.2018.12.019.

22 Danny Hermelin, Judith-Madeleine Kubitza, Dvir Shabtay, Nimrod Talmon, and Gerhard J.
Woeginger. Scheduling two competing agents when one agent has significantly fewer jobs. In
Thore Husfeldt and Iyad A. Kanj, editors, 10th International Symposium on Parameterized
and Exact Computation, IPEC 2015, September 16-18, 2015, Patras, Greece, volume 43
of LIPIcs, pages 55–65. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. doi:
10.4230/LIPIcs.IPEC.2015.55.

23 Danny Hermelin, Michael Pinedo, Dvir Shabtay, and Nimrod Talmon. On the parameterized
tractability of single machine scheduling with rejection. European Journal of Operational
Research, 273(1):67–73, 2019. doi:10.1016/j.ejor.2018.07.038.

24 Danny Hermelin, Dvir Shabtay, and Nimrod Talmon. On the parameterized tractability of
the just-in-time flow-shop scheduling problem. Journal of Scheduling, 22(6):663–676, 2019.
doi:10.1007/s10951-019-00617-7.

25 D. S. Hochbaum and J. G. Shantikumar. Convex separable optimization is not much harder
than linear optimization. J. ACM, 37(4):843–862, 1990.

26 Bart M. P. Jansen and Stefan Kratsch. A structural approach to kernels for ilps: Treewidth
and total unimodularity. In Nikhil Bansal and Irene Finocchi, editors, Algorithms - ESA
2015 - 23rd Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings,
volume 9294 of Lecture Notes in Computer Science, pages 779–791. Springer, 2015. doi:
10.1007/978-3-662-48350-3_65.

27 Klaus Jansen, Marten Maack, and Roberto Solis-Oba. Structural parameters for scheduling
with assignment restrictions. In Dimitris Fotakis, Aris Pagourtzis, and Vangelis Th. Paschos,
editors, Algorithms and Complexity - 10th International Conference, CIAC 2017, Athens,
Greece, May 24-26, 2017, Proceedings, volume 10236 of Lecture Notes in Computer Science,
pages 357–368, 2017. doi:10.1007/978-3-319-57586-5_30.

28 Narendra Karmarkar and Richard M. Karp. An efficient approximation scheme for the
one-dimensional bin-packing problem. In Proceedings of the 23rd Annual Symposium on
Foundations of Computer Science, FOCS ’82, pages 312–320, Washington, DC, USA, 1982.
IEEE Computer Society.

29 Dušan Knop and Martin Koutecký. Scheduling meets n-fold integer programming. Journal of
Scheduling, 21:493–503, 2018.

30 Dušan Knop, Martin Koutecký, Asaf Levin, Matthias Mnich, and Shmuel Onn. Multitype
integer monoid optimization and applications. CoRR, abs/1909.07326, 2019. arXiv:1909.
07326.

31 Dušan Knop, Martin Koutecký, and Matthias Mnich. Combinatorial n-fold integer pro-
gramming and applications. Mathematical Programming, November 2019. doi:10.1007/
s10107-019-01402-2.

https://doi.org/10.4230/LIPIcs.IPEC.2018.21
https://doi.org/10.1007/s10878-017-0143-z
https://doi.org/10.1016/j.tcs.2018.12.019
https://doi.org/10.4230/LIPIcs.IPEC.2015.55
https://doi.org/10.4230/LIPIcs.IPEC.2015.55
https://doi.org/10.1016/j.ejor.2018.07.038
https://doi.org/10.1007/s10951-019-00617-7
https://doi.org/10.1007/978-3-662-48350-3_65
https://doi.org/10.1007/978-3-662-48350-3_65
https://doi.org/10.1007/978-3-319-57586-5_30
http://arxiv.org/abs/1909.07326
http://arxiv.org/abs/1909.07326
https://doi.org/10.1007/s10107-019-01402-2
https://doi.org/10.1007/s10107-019-01402-2

D. Knop and M. Koutecký 73:15

32 Dušan Knop, Martin Koutecký, and Matthias Mnich. Voting and bribing in single-exponential
time. ACM Transactions on Economics and Computation, 8(3), June 2020. doi:10.1145/
3396855.

33 Martin Koutecký, Asaf Levin, and Shmuel Onn. A parameterized strongly polynomial algorithm
for block structured integer programs. In Ioannis Chatzigiannakis, Christos Kaklamanis,
Dániel Marx, and Donald Sannella, editors, 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume
107 of LIPIcs, pages 85:1–85:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.ICALP.2018.85.

34 Stefan Kratsch. On polynomial kernels for integer linear programs: Covering, packing and
feasibility. In Hans L. Bodlaender and Giuseppe F. Italiano, editors, Algorithms - ESA
2013 - 21st Annual European Symposium, Sophia Antipolis, France, September 2-4, 2013.
Proceedings, volume 8125 of Lecture Notes in Computer Science, pages 647–658. Springer,
2013. doi:10.1007/978-3-642-40450-4_55.

35 Stefan Kratsch. On polynomial kernels for sparse integer linear programs. Journal of Computer
and System Sciences, 82(5):758–766, 2016. doi:10.1016/j.jcss.2015.12.002.

36 Daniel Lokshtanov, Fahad Panolan, MS Ramanujan, and Saket Saurabh. Lossy kernelization.
In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages
224–237, 2017.

37 Matthias Mnich and René van Bevern. Parameterized complexity of machine scheduling: 15
open problems. Computers & Operations Research, 100:254–261, 2018.

38 Matthias Mnich and Andreas Wiese. Scheduling and fixed-parameter tractability. Math.
Program., 154(1-2):533–562, 2015.

39 Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006.
doi:10.1093/ACPROF:OSO/9780198566076.001.0001.

40 Guntram Scheithauer and Johannes Terno. The modified integer round-up property of the one-
dimensional cutting stock problem. European Journal of Operational Research, 84(3):562–571,
1995.

41 René van Bevern, Till Fluschnik, and Oxana Yu. Tsidulko. On (1+\varepsilon)-approximate
data reduction for the rural postman problem. In Michael Khachay, Yury Kochetov, and
Panos M. Pardalos, editors, Mathematical Optimization Theory and Operations Research - 18th
International Conference, MOTOR 2019, Ekaterinburg, Russia, July 8-12, 2019, Proceedings,
volume 11548 of Lecture Notes in Computer Science, pages 279–294. Springer, 2019. doi:
10.1007/978-3-030-22629-9_20.

42 René van Bevern, Till Fluschnik, and Oxana Yu. Tsidulko. Parameterized algorithms and
data reduction for the short secluded s-t-path problem. Networks, 75(1):34–63, 2020. doi:
10.1002/net.21904.

43 René van Bevern, Matthias Mnich, Rolf Niedermeier, and Mathias Weller. Interval scheduling
and colorful independent sets. Journal of Scheduling, 18(5):449–469, 2015. doi:10.1007/
s10951-014-0398-5.

ESA 2022

https://doi.org/10.1145/3396855
https://doi.org/10.1145/3396855
https://doi.org/10.4230/LIPIcs.ICALP.2018.85
https://doi.org/10.1007/978-3-642-40450-4_55
https://doi.org/10.1016/j.jcss.2015.12.002
https://doi.org/10.1093/ACPROF:OSO/9780198566076.001.0001
https://doi.org/10.1007/978-3-030-22629-9_20
https://doi.org/10.1007/978-3-030-22629-9_20
https://doi.org/10.1002/net.21904
https://doi.org/10.1002/net.21904
https://doi.org/10.1007/s10951-014-0398-5
https://doi.org/10.1007/s10951-014-0398-5

	1 Introduction
	2 Preliminaries
	2.1 Scheduling Notation
	2.2 Conformal Order and Graver Basis
	2.3 N-fold Integer Programming
	2.4 Configuration LP of Huge N-fold IP

	3 Compressing High Multiplicity Scheduling to Quadratic N-fold IP
	3.1 Huge n-fold IP Models
	3.2 Solving The Separation Problem Quickly: C_{max}
	3.3 Solving The Separation Problem Quickly: sum w_j C_j

	4 Conclusions and Research Directions

