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Abstract
Cardinality estimation is the task of approximating the number of distinct elements in a large
dataset with possibly repeating elements. LogLog and HyperLogLog (c.f. Durand and Flajolet [ESA
2003], Flajolet et al. [Discrete Math Theor. 2007]) are small space sketching schemes for cardinality
estimation, which have both strong theoretical guarantees of performance and are highly effective in
practice. This makes them a highly popular solution with many implementations in big-data systems
(e.g. Algebird, Apache DataSketches, BigQuery, Presto and Redis). However, despite having simple
and elegant formulation, both the analysis of LogLog and HyperLogLog are extremely involved –
spanning over tens of pages of analytic combinatorics and complex function analysis.

We propose a modification to both LogLog and HyperLogLog that replaces discrete geometric
distribution with the continuous Gumbel distribution. This leads to a very short, simple and
elementary analysis of estimation guarantees, and smoother behavior of the estimator.
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1 Introduction

In the cardinality estimation problem we are presented with a dataset consisting of many
items, and some of these items might appear more than once. Our goal is to process this
dataset efficiently, in order to estimate the number n of distinct elements it contains. Here,
efficiently means in small auxiliary space, and with fast processing time per each item. A
natural scenario to consider is a stream processing of a dataset, with stream of events being
either element insertions to the multiset or queries of the multiset cardinality.

A folklore information theoretic analysis reveals that this problem over universe of u

elements requires at least u bits of memory to answer queries exactly. However, in many
practical settings it is sufficient to provide an approximation of the actual cardinality. One of
the possible real-world scenarios is a problem of estimating the number of unique addresses in
packets that a router observes, in order to detect malicious behaviors and attacks. Here, the
challenge arises from the limited computational capabilities of the router and sheer volume
of the data that can be observed over e.g. a day.

The theoretical study of the cardinality estimation was initiated by the seminal work of
Flajolet and Martin [20]. From that point, two separate lines of research follow. First, there
has been a considerable effort put into developing approximation schemes with so called (ε, δ)-
guarantees, meaning that they guarantee outputting (1 + ε)-multiplicative approximation of
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76:2 Cardinality Estimation Using Gumbel Distribution

the cardinality, with probability at least 1− δ. Here, we mention [6, 7, 8, 11, 22, 23, 29] on
the upper-bound side and [6, 10, 27, 28, 36] on lower-bound side. The high-level takeaway
message is that one can construct approximate schemes that provide (1 + ε)-multiplicative
approximation to the number of distinct elements, using an order of ε−2 space, and that
this dependency on ε is tight. More specifically, the work of Błasiok [11] settles the bit-
complexity of the problem, by providing O( log δ−1

ε2 + log n) bits of space upper-bound, and
this complexity is optimal by a matching lower bound [28]. To achieve such small space usage,
a number of issues have to be resolved, and a very sophisticated machinery of expanders and
pseudo-randomness is deployed.

The other line of work is more practical in nature, and focuses on providing variance bounds
for efficient algorithms. The bounds are usually of the form ∼ 1/

√
k where k is some measure

of space-complexity of algorithms (usually, corresponds to the number of parallel estimation
processes). This approach includes work of [9, 12, 14, 16, 18, 19, 21, 24, 30, 31, 34, 35].
Recently, Pettie and Wang started the study of the intrinsic tradeoff between the space
complexity of the cardinality estimation sketch and its estimation error by introducing the
notion of memory-variance product (MVP) [31]. They proposed a Fishmonger sketch that
has an MVP equal to H0/I0 ≈ 1.98 (where H0, I0 are some precisely defined constants) and
they also proved that this is the best MVP that one can get in a class of linearizable sketches
(in fact all the popular mergeable sketches are linearizable). In the very recent follow-up
work Pettie, Wang and Yin studied the MVPs of non-mergeable sketches [32].

We now focus on two specific algorithms, namely LogLog [16] and its refined version
called HyperLogLog [19]. The guarantees that these algorithms provide for variance are
approximately 1.3/

√
k and 1.04/

√
k respectively, when using k integer registers. Both are

based on a simple principle of observing the maximal number of trailing zeroes in the binary
representation of hashes of elements in the stream, although they vary in the way they extract
the final estimate from this observed value (we will discuss those details in the following
section). In addition to being easy to state and provided with theoretical guarantees, they
are highly practical in nature. We note the following works on algorithmic engineering of
practical variants [17, 26, 37], with actual implementations e.g. in Algebird [1], BigQuery [2],
Apache DataSketch [3], Presto [4] and Redis [5].

Despite its simplicity and popularity, LogLog and HyperLogLog are exceptionally tough
to analyze. We note that both papers analyzing LogLog and later HyperLogLog use a heavy
machinery of tools from analytic combinatorics and complex function analysis e.g. Mellin
transform, poissonization and analytical depoissonization. In fact, unpacking the main tool
used in the paper requires understanding of another tens of pages from [33]. Additionally,
both papers are presented in a highly compressed form. Thus, the analysis is not easily
digestible by a typical computer scientist, and has to be accepted “as it is” in a black-box
manner, without actually unpacking it.

This creates an unsatisfactory situation where one of the most popular and most elegant
algorithms for the cardinality estimation problem has to be treated as a black-box from the
perspective of its performance guarantees. It is an obstacle both in terms of popularization
of the LogLog and HyperLogLog algorithms, and in terms of scientific progress. We note that
those algorithms are generally omitted during majority of theoretical courses on streaming
and big data algorithms.

Our contribution: Gumbel distribution
Our contribution comes in two factors. First, we observe that the key part of LogLog and
HyperLogLog algorithms is counting the trailing zeroes in the binary representation of a hash
of element. This random variable is distributed according to a geometric distribution. Both



A. Łukasiewicz and P. Uznański 76:3

−2 0 2 4 6 8 100

0.1

0.2

0.3

0.4

0.5

−2 0 2 4 6 8 100

0.1

0.2

0.3

0.4

0.5

Figure 1 Distribution of max{X1, . . . , Xk} for k ∈ {1, 2, 4, 8, 16, 32, 64} where Xi iid random
variables distributed according to discrete Geometric distribution (on the left) and Gumbel distribu-
tion (on the right). Discrete distribution given by fk(x) = (1 − 2−x−1)k − (1 − 2−x)k is drawn with
continuous intermediate values for smooth drawing.

LogLog and HyperLogLog estimate the cardinality using the maximum value of the count of
trailing zeroes observed over all elements of the dataset. However, the distribution of the
maximum of many discrete random variables drawn from an identical geometric distribution
is not distributed according to a geometric distribution. This is unwieldy to handle in the
analysis in [19].

We propose the following: as the first step we replace the discrete geometric distribution
with its continuous counterpart, i.e. the exponential distribution with the CDF 1 − e−x.
Next, we take a maximum of N independent repetitions of our algorithm which can be
simulated by, e.g., replacing each update x with N updates of the form (x, i) for i ∈ [N ].
This yields the CDF of the form (1 − e−x)N . Intuitively, we expect this manipulation to
have a smoothing effect on the irregularities of LogLog and HyperLogLog (which performance
deteriorate greatly for very small values of n). Third and the final step is to take a limit of
N →∞, while maintaining a proper normalization of the distribution (i.e., we take a shift
by ln N), resulting in a CDF of the form F (X) = limN→∞(1− e−x−ln N )N .

A little manipulation gives us F (X) = limN→∞(1 − e−x

N )N = e−e−x which is precisely
the CDF of the Gumbel distribution, with the following crucial property

If X1, . . . , Xk are independent random variables drawn from a Gumbel distribution, then
Z = max(X1, . . . , Xk)− ln(k) is also distributed according to the same Gumbel distribution.

This allows us to simplify extraction of the value of k from max(X1, . . . , Xk), since we are
always dealing with the same type of error (distributed according to the Gumbel distribution)
on top of the value ln(k).

Our contribution: Simpler analysis
Our second contribution comes in the form of a simple analysis of the performance guarantees
of the estimation. We note that since our observable can be interpreted as an observable from
LogLog or HyperLogLog repeated N -times (for some very large value of N), we expect to get
a similar type of the guarantees. One should be able to go with the tour-de-force analysis
analogous to [16, 19]. However, we find it valuable to provide analysis that is tractable
using just elementary and short proofs. We show that by taking advantage of the Gumbel
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distribution being the limiting distribution, one can isolate a very simple combinatorial
problem capturing the essence of the stochastic averaging. The analysis of this problem
requires application of only some basic probabilistic inequalities and multinomial identities.1

2 Related work

The key concept used in virtually all cardinality estimation results, can be summarized as
follows: given a universe U of elements, we start by picking a hash-function. Then, given a
subset M ⊆ U which cardinality we want to estimate, we proceed by applying h to every
element of M and operate only on M ′ = {h(x) : x ∈M} ⊂ [0, 1]. The next step is computing
an observable – i.e. a quantity that only depends on the underlying set and is independent
of replications. In the final step we somehow extract the estimate of the cardinality from the
observable.

For example [7] uses h : M → [0, 1] and the value y = min M ′ = minx∈M h(x) as an
observable. We expect y ∼ 1

n+1 , thus 1
y − 1 is used as an estimate of the cardinality n.

However, since we need to overcome the variance, one might need to average over many
independent instances of the process, in order to achieve a good estimation. In this particular
example, to get an (1+ε) approximation, we need to average over O(ε−2) independent copies
of the algorithm. Therefore, the total memory usage becomes O(ε−2 log n) bits.

Stochastic averaging
Naively averaging over k independent copies of the algorithm has an important drawback
- the time for processing each query grows from O(1) to O(k). Stochastic averaging is a
technique designed to address that issue. In our setting it works as follows: instead of
processing each element in each of the k processes independently (which is a bottleneck), we
randomly partition our input into k disjoint sub-inputs: M = M1 ∪ . . . ∪Mk, and we run
each copy of an algorithm only on its corresponding sub-input. This is simulated by picking
a second hash function h′ : M → {1, . . . , k}, and when we are processing an element x, it
is assigned to Mi where i = h′(x) is decided solely on the hash of x. Intuitively, we expect
each Mi to contain roughly n/k elements. Note that the actual number of elements in all Mi

follows a multinomial distribution, and this presents an additional challenge in the analysis.

LogLog sketching
Consider the following: we hash the elements to bitstrings, that is h : M → {0, 1}∞, and
consider the bit-patterns observed. For each element find the value bit(x) such that h(x) has
a prefix 0bit(x)1. The particular value bit(x) = c should be observed once every ∼ 2c different
hashes, and can be used to estimate the cardinality. The observable used in the LogLog is
the value maxx bit(x) among all elements. Since we expect its value to be roughly of order
log n, we maintain the value of max bit(x) on O(log log n) bits.

Denote the observables produced in the concurrent copies of the algorithm as t1, . . . , tk.
We expect the values of ti to be such that 2ti ∼ n/k. One can easily show, that for any ti,
we have E[2ti ] = ∞, thus taking the arithmetic average over 2ti is not a feasible strategy.

1 It is important to note that this is not the first cardinality estimation algorithm with a simple analysis,
e.g. [7, 20] algorithms have relatively straightforward analysis. However, none of those techniques apply
to the simplification of LogLog or HyperLogLog specifically, which are default practical choices for the
cardinality estimation.
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However, it turns out that the geometric average works in this setting, and we expect the
k (

∏
i 2ti)1/k to be an estimate for n (one also needs a normalizing constant that depends

solely on k). The analysis in [16] shows that the variance of the estimation is roughly 1.3/
√

k.

HyperLogLog sketching
HyperLogLog ([19]) is an improvement over LogLog with the observation that the harmonic
average achieves a better averaging performance over geometric average. Thus HyperLogLog
is constructed by setting the estimator to k2 (

∑
i 2−ti)−1 with some normalizing constant

(depending on k). The resulting algorithm has a variance which is roughly 1.04/
√

k.
In fact it can be shown that the harmonic average is optimal in that setting: among

observables that constitute of taking maximum of a hash function, harmonic average is a
maximum likelihood estimator (see e.g. [13]). However, this claim is strict only without
stochastic averaging.

Due to the space limitations, in this article we provide only the analysis of the LogLog
version (with geometric average estimation) of our algorithm. The HyperLogLog version
(using harmonic average estimation) is available in the full version of the paper. 2

3 Preliminaries

Computational model

We assume oracle access to a perfect source of randomness, that is a hash function h : [u]→
{0, 1}∞. If the sketch demands it, we allow it to access multiple independent such sources,
which can be simulated with a help of bit and arithmetic operations. The oracle access is
a standard assumption in this line of work (c.f. discussion in [31]) – the purpose of this
assumption is to separate the analysis of the space complexity of the algorithm from the
space complexity of the source of the randomness.

Besides that, we assume standard RAM model, with words of size log u and standard
arithmetic operations on those words taking constant time.

Gumbel distribution

We use the following distribution, which originates from the extreme value theory.

▶ Definition 1 (Gumbel distribution [25]). Let Gumbel(µ) denote the distribution given by a
following CDF:

F (x) = e−e−(x−µ)
.

Its probability density function is given by

f(x) = e−e−(x−µ)
e−(x−µ).

Observe that, directly from the definition, if X ∼ Gumbel(µ), then X +c ∼ Gumbel(µ+c).
We also note that when x→∞, then f(x) ≈ e−(x−µ), thus the Gumbel distribution has

an exponential tail on the positive side. The distribution has a doubly-exponential tail when
x→ −∞.

2 The full version of the paper is available under the following link: https://arxiv.org/abs/2008.07590.
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We have the following basic property when X ∼ Gumbel(µ) (c.f. [25]):

E[eαX ] = eαµ

∫ ∞

−∞
e−e−x

e(α−1)xdx = eαµΓ(1− α), (1)

from which it follows that E[e−X ] = e−µ and Var[e−X ] = e−2µ.

▶ Property 2 (Sampling from Gumbel distribution.). If t ∈ [0, 1] is drawn uniformly at random,
then X = − ln(− ln t) + µ has the distribution Gumbel(µ).

The following property is the key property used in our algorithm analysis. It essentially
states that Gumbel distribution is invariant under taking the maximum of independent
samples (up to normalization).3

▶ Property 3. If x1, x2, . . . , xn ∼ Gumbel(0) are independent random variables, then for
Z = max(x1, . . . , xn) we have Z ∼ Gumbel(ln n).

Proof.

Pr(Z < x) =
∏

i

Pr(xi < x) = (ee−x

)n = ee−x+ln n

. ◀

Multinomial distribution

We now discuss the multinomial distribution and its role in the analysis of the stochastic
averaging.

▶ Definition 4. We say that X1, . . . , Xk are distributed according to Multinomial(n; p1, . . . , pk)
distribution for some

∑
i pi = 1, if, for any n1 + . . . + nk = n there is

Pr[X1 = n1 ∧ . . . ∧Xk = nk] =
(

n

n1, . . . , nk

)
pn1

1 . . . pnk

k .

Consider a process of distributing n identical balls to k urns, where for each ball we
place it in the urn i with probability pi, fully independently between the balls. Then, the
vector of the total number of balls in each urn X1, . . . , Xk follows Multinomial(n; p1, . . . , pk)
distribution.

For our purposes we are interested in the following setting: let f be some real-valued
function. Lets say that we have a stochastic process of estimating cardinality in a stream,
that is if n distinct elements appear, the process outputs a value that is concentrated around
its expected value f(n). Now, we apply stochastic averaging, by splitting the stream into
sub-streams, and feed each sub-stream to estimation process separately, say ni going into
sub-stream i. We can look at the following random variables:

Sn = E[
∑

i

f(ni)] and Pn = E[
∏

i

f(ni)].

3 In fact, the Fisher–Tippett–Gnedenko theorem (c.f. [15]) states, that for any distribution D, if for
some an, bn the limit limn→∞( max(X1,...,Xn)−bn

an
) converges to some non-degenerate distribution, where

X1, . . . Xn ∼ D (and are independent), then it converges to one of three possible distribution families:
a Fréchet distribution, a Weibull distribution or a Gumbel distribution. Thus, those three distributions
can be viewed as a counterpart to normal distribution, w.r.t. to taking maximum (instead of repeated
additions).
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We expect Sn ≈ kf(n/k) and Pn ≈ f(n/k)k. Deriving actual concentration bounds for
specifically chosen functions f gives us insight on how well harmonic average or geometric
average performs when concentrating cardinality estimation processes under stochastic
averaging.

The analysis of the stochastic averaging for a generic function f (under some regularity
constraints) has been done in [13]. We actually derive a stronger set of bounds for very
specific functions: f(x) = ln(x + 1) and f(x) = 1

x+1 .

4 Geometric average estimation

We start by showing a simple concentration result for geometric average of independent
random variables distributed according to the Gumbel distribution.

▶ Lemma 5. Let G1, . . . , Gk be independent random variables distributed according to
Gumbel(0), and let G =

∑
i Gi. If k > 1, then E[exp(G/k)] = Γ(1 − 1/k)k = exp(γ)(1 +

π2

12
1
k + O(k−2)). If k > 2, then Var[exp(G/k)] = Γ(1 − 2/k)k − Γ(1 − 1/k)2k = exp(2γ) ·(

π2

6k +O(k−2)
)

Proof.

E[exp(G/k)] =
∏

i

E[exp(Gi/k)] = Γ(1− 1/k)k

Var[exp(G/k)] =
∏

i

E[exp(Gi/k)2]−
∏

i

E[exp(Gi/k)]2

= Γ(1− 2/k)k − Γ(1− 1/k)2k.

From the Taylor expansion of the log-gamma function we get that Γ(1−z) = exp(γz + π2

12 z2 +
O(z3)), which yields the desired approximations. ◀

The following algorithm shows that if we are fine with slower updates, then the Gumbel
distribution fits nicely into the standard cardinality estimation framework. The main idea
is just to hash each element into a real-value distributed according to Gumbel distribution,
and take the maximum across the values.

Algorithm 1 Cardinality estimation using Gumbel distribution.

1 Procedure Init()
2 pick r1, . . . , rk : U → [0, 1] as independent hash functions
3 X1 ← −∞, . . . , Xk ← −∞
4 Procedure Update(x)
5 for 1 ≤ i ≤ k do
6 v ← − ln(− ln ri(x)) // Gumbel(0) RV
7 Xi ← max(v, Xi)

8 Procedure GeometricEstimate()
9 αk ← Γ(1− 1/k)−k // normalizing factor, for large k: αk ≈ exp(−γ)

10 return Z = exp( 1
k

∑
i Xi) · αk

ESA 2022
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▶ Theorem 6. Applied to a stream of n distinct elements, Algorithm 1 outputs Z such that
E[Z] = n and if k > 2 then Var[Z] = n2

k

(
π2

6 + O(k−1)
)

. It uses k real-value registers and
spends O(k) operations per single processed element of the input.

Proof. We analyze the Algorithm 1 after processing a stream of n distinct elements. For
each Xi, its value is a maximum of n random variables drawn from Gumbel(0) distribution,
so by Property 3 we have that Xi ∼ Gumbel(ln n). Hence, Xi = Gi + ln n where all Gi are
identically distributed according to the Gumbel(0). Moreover, repeated occurrences of the
elements do not change the state of the algorithm. Denoting G =

∑
i Gi, we get

E[Z] = Γ(1− 1/k)−k E[exp(ln n + G/k)] = nΓ(1− 1/k)−kΓ(1− 1/k)k = n

and

Var[Z] = n2Γ(1− 1/k)−2k Var[exp(G/k)] = n2
(

Γ(1− 2/k)k

Γ(1− 1/k)2k
− 1

)
. ◀

4.1 Stochastic averaging
We refine the Algorithm 1 by adding stochastic averaging. Application of the technique is
straightforward, but for technical reasons we need to take care of the initialization of the
registers – since the expected value of Xi is the logarithm of the number of the elements
assigned to the i-th register, we don’t want any of the registers to be empty at the and.
Therefore, at the beginning we feed each of them with an artificial random element.

Algorithm 2 Cardinality estimation using Gumbel distribution and stochastic averaging.

1 Procedure Init()
2 pick h : U → {1, . . . , k} and r : U → [0, 1] as independent hash functions
3 for 1 ≤ i ≤ m do
4 Xi ← − ln(− ln ui) where ui is picked uniformly from [0, 1]. // Gumbel(0) RV

5 Procedure Update(x)
6 t← h(x)
7 v ← − ln(− ln r(x)) // Gumbel(0) RV
8 Xt ← max(v, Xt)
9 Procedure GeometricEstimate()

10 αk ← Γ(1− 1/k)−k // normalizing factor, for large k: αk ≈ exp(−γ)
11 return Z = k · exp( 1

k

∑
i Xi) · αk

▶ Theorem 7. Applied to a stream of n distinct elements, Algorithm 2 outputs Z such that
if k > 1 then n k

k+1 ≤ E[Z] ≤ n + k and if k > 2 then Var[Z] ≤ 3.645n2

k + O(n2/k2 + k2).
It uses k real-value registers and spends constant number of operations per single processed
element of the input.

Proof. We analyze Algorithm 2 after processing stream S of n distinct elements. Let
n1, . . . , nk be the respective numbers of unique items hashed by h into registers {1, . . . , k}
respectively. It follows that n1, . . . , nk ∼ Multinomial(n; 1

k , . . . , 1
k ). For each Xi, its value is a

maximum of ni + 1 random variables drawn from the Gumbel(0) distribution (taking into
account ni updates to its value and the initialization). Thus, conditioned on the specific
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values of n1, . . . , nk, we have that Xi follows the Gumbel distribution – more specifically
Xi|n1, . . . , nk ∼ Gumbel(ln(ni + 1)). Let us denote Gi = Xi − ln(ni + 1), G =

∑
i Gi and

Y =
∑

i ln(ni + 1). We observe that Gi’s are independent random variables distributed
according to Gumbel(0) (and independent from Y ).

We now have

Z = kΓ(1− 1/k)−k exp(Y/k) exp(G/k).

Since E[exp(G/k)] = Γ(1− 1/k)k and G and Y are independent, using Lemma 8 we get

E[Z] = k E[exp(Y/k)] ≥ n · k

k + 1

and

E[Z] = k E[exp(Y/k)] ≤ n + k.

Now, using Var[AB] = Var[A]E[B2] + E[A]2 Var[B] identity for independent random
variables and Lemma 8 we can bound

Var[Z] = k2Γ(1− 1/k)−2k
(
Var[exp(Y/k)]E[exp(G/k)2] + E[exp(Y/k)]2 Var[exp(G/k)]

)
≤ (k2 + 2n2/k + O(n2/k2)) Γ(1− 2/k)k

Γ(1− 1/k)2k
+ (n + k)2( Γ(1− 2/k)k

Γ(1− 1/k)2k
− 1)

= (k2 + 2n2/k + O(n2/k2))(1 + O(k−1)) + (n + k)2(π2

6k
+ O(k−2)),

and the claim follows. ◀

▶ Lemma 8. Let n1, . . . , nk ∼ Multinomial(n; 1/k, . . . , 1/k) and let T = k
√∏

i(ni + 1) =
exp( 1

k

∑
i ln(ni + 1)). Then there is n/(k + 1) ≤ E[T ] ≤ n/k + 1 and Var[T ] ≤ 1 + 2n2/k3 +

O(n2/k4).

Proof. Denote Y =
∑

i ln(ni + 1). By Lemma 9 bound we have

E[exp(Y/k)] ≥
∫ ∞

0
exp(ln(n/k)− t/k)e−tdt

= n/k

∫ ∞

0
exp(−k + 1

k
t)dt

= n/(k + 1).

By concavity of a logarithm we have Y =
∑

i ln(ni + 1) ≤ k ln(n/k + 1), so exp(Y/k) ≤
n/k + 1. Finally, by Lemma 9 bound we get

Var[exp(Y/k)] ≤ E[(exp(Y/k)− n/k)2]

≤ ((n/k + 1)− n/k)2 + n2

k2

∫ ∞

0
(1− e−t/k)2e−tdt

= 1 + n2

k2

(
1− 2 k

k + 1 + k

k + 2

)
. ◀

▶ Lemma 9. Let n1, . . . , nk ∼ Multinomial(n; 1/k, . . . , 1/k) and let Y =
∑

i ln(ni + 1). Then
Y ≥ k ln(n/k)− t with probability at least 1− e−t.

ESA 2022
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Proof. Consider E[e−Y ]. We have

E
n1,..,nk∼
Multinomial

[e−Y ] = E
n1,..,nk∼
Multinomial

[∏
i

1
ni + 1

]

=
∑

i1+...+ik=n

Pr[n1 = i1 ∧ . . . ∧ nk = ik]
∏

i

1
ii + 1

=
∑

i1+...+ik=n

k−n

(
n

i1, . . . , ik

) ∏
i

1
ii + 1

= k−n
∑

i1+...+ik=n

n!
(i1 + 1)! · . . . · (ik + 1)!

= k−n
∑

i1+...+ik=n

(
n + k

i1 + 1, . . . , ik + 1

)
n!

(n + k)!

≤ k−nkn+k n!
(n + k)!

≤
(

k

n

)k

.

Thus, for any t > 0, by Markov’s inequality

Pr[Y ≤ k ln(n/k)− t] = Pr[e−Y ≥ et−k ln(n/k)]
≤ Pr[e−Y ≥ et · E[e−Y ]]
≤ e−t. ◀

4.2 Discretization
Presented sketches use k real-value registers, which is in disadvantage when compared with
LogLog and HyperLogLog, where only k integers are used, each taking O(log log n) bits. We
now discuss how to reduce the memory footprint of the algorithms. This section exemplifies
the usefulness of Gumbel distributions. In particular, this is a family of the limit distributions
where additive error of registers corresponds to multiplicative error of estimation.

Simple rounding

First, we note that rounding the registers to nearest multiplicity of ε for some ε > 0
introduces at most exp(ε) = 1 + ε + O(ε2) multiplicative distortion in the estimation
procedure GeometricEstimate() from both Algorithm 1 and 2. For example, for 1, we have,
assuming X ′

i are rounded registers: |X ′
i −Xi| ≤ ε, and so for Z ′ = αk exp( 1

k

∑
i X ′

i) there
is Z′

Z = exp( 1
k

∑
i(X ′

i −Xi)), so exp(−ε) ≤ Z′

Z ≤ exp(ε). Since each register stores w.h.p.
values of magnitude 2 log n, it can be implemented on integer registers using O(log log n

ε ) =
O(log log n + log ε−1) bits.

Randomized rounding

We now show how to eliminate the log ε−1 term. We define the following shift-rounding, for
shift value c ∈ [0, 1):

fc(x) def= ⌊x + c⌋ − c.
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We note two key properties:

1. shift-rounding commutes with maximum, that is, for any x1, . . . , xk, we have
max(fc(x1), . . . , fc(xk)) = fc(max(x1, . . . , xk)),

2. If c ∼ U [0, 1], then fc(x) ∼ U [x − 1, x], where U [a, b] denotes uniform distribution on
range [a, b].

We thus show how to adapt the Algorithm 2 using shift-rounding.
The analysis of Algorithm 3 comes from following invariant: if Algorithms 3 and 2 are

run side-by-side on the same input stream, at any given moment there is X ′
i = fci

(Xi). Thus,
we have the following X ′

i ∼ Gumbel(ln(ni + 1))−U [0, 1] = ln(ni + 1) + Gumbel(0)−U [0, 1].

Algorithm 3 Algorithm 2 with shift-rounding.

1 Procedure Init()
2 pick h : U → {1, . . . , k} and r : U → [0, 1] as independent hash functions
3 for 1 ≤ i ≤ m do
4 ci is picked uniformly from [0, 1]
5 X ′

i ← ⌊− ln(− ln ui) + ci⌋ − ci

6 where ui is picked uniformly from [0, 1]. // Gumbel(0) RV + randomized
rounding

7 Procedure Update(x)
8 t← h(x)
9 v ← ⌊− ln(− ln h(x)) + ui⌋ − ui

10 X ′
t ← max(v, X ′

t)
11 Procedure GeometricEstimate()
12 α′

k ← Γ(1− 1/k)−k(1− exp(−1/k))−kk−k // normalizing factor, for large
k: α′

k ≈ exp(1/2− γ)
13 return Z = k · exp( 1

k

∑
i X ′

i) · α′
k

Additionally, X ′
i are independent as Xi were independent. We observe that for X ′ ∼

Gumbel(0)−U [0, 1], there is E[exp(X ′/k)] = Γ(1−1/k)(1− exp(−1/k))k, so we have equival-
ents of Lemma 5 in the following sense: E[exp( 1

k

∑
i G′

i)] = Γ(1−1/k)k(1−exp(−1/k))kkk ≈
exp(γ − 1/2)(1 + ( π2

12 + 1
6 ) 1

k +O(k−2)), and Var[exp( 1
k

∑
i G′

i)] ≈ exp(2γ − 1)((π2

6 + 1
3 ) 1

k +
O(k−2)).

Thus an equivalent of Theorem 7 applies to Algorithm 3 with slightly worse constants.

▶ Theorem 10. Applied to a stream of n distinct elements, Algorithm 3 outputs Z such that
if k > 1 then n k

k+1 ≤ E[Z] ≤ n + k and if k > 2 then Var[Z] ≤ 3.98n2

k +O(n2/k2 + k2). It
uses k integer registers of size O(log log n) bits each and spends constant number of operations
per single processed element of the input.

We note that each X ′
i takes values only from set Z− ci of magnitude at most 2 log n, it

can be stored using O(log log n) bits. Values of ci do not need to be stored explicitly, as
those can be extracted by picking a hash function c : {1, . . . , k} → [0, 1] and setting ci = c(i).
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