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Abstract
Given an undirected graph G = (V, E), an (α, β)-hopset is a graph H = (V, E′), so that adding its
edges to G guarantees every pair has an α-approximate shortest path that has at most β edges
(hops), that is, dG(u, v) ≤ d

(β)
G∪H(u, v) ≤ α ·dG(u, v). Given the usefulness of hopsets for fundamental

algorithmic tasks, several different algorithms and techniques were developed for their construction,
for various regimes of the stretch parameter α.

In this work we devise a single algorithm that can attain all state-of-the-art hopsets for general
graphs, by choosing the appropriate input parameters. In fact, in some cases it also improves upon
the previous best results. We also show a lower bound on our algorithm.

In [3], given a parameter k, a (O(kϵ), O(k1−ϵ))-hopset of size Õ(n1+1/k) was shown for any
n-vertex graph and parameter 0 < ϵ < 1, and they asked whether this result is best possible. We
resolve this open problem, showing that any (α, β)-hopset of size O(n1+1/k) must have α · β ≥ Ω(k).
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1 Introduction

Hopsets are graph theoretic structures that have gained much attention recently [5, 20,
14, 13, 8, 1, 10, 15, 7, 3]. They play a role in central algorithmic applications such as
approximating shortest paths [16, 5, 2, 11], distributed computing tasks [9, 18, 4, 6], dynamic
graph algorithms [14, 17], and many more.

Given a graph G = (V, E), possibly with non-negative weights on the edges w : E → R,
an (α, β)- hopset is a graph H = (V, E′) such that every pair in V has an α-approximate
shortest path in G ∪H with at most β hops. That is, for all u, v ∈ V ,

dG(u, v) ≤ d
(β)
G∪H(u, v) ≤ α · dG(u, v) ,

where dG(u, v) is the distance between u, v in G, and d
(β)
G∪H(u, v) stands for the length of

the shortest path in G ∪H between u, v that has at most β edges. The weight of an edge
(x, y) ∈ E′ of H is defined to be the length of the shortest path in G that connects x and y.

Hopsets were first introduced by [5], although they were implicitly used before in [16].
In her seminal work, given a parameter k that determines the hopset size, [5] devised a

construction of (1 + ϵ, β)-hopsets of size O(n1+1/k · log n) with β = O
(

log n
ϵ

)log k

. This result

was recently improved by [8, 15, 10], who obtained β = O
(

log k
ϵ

)log k

and size O(n1+1/k).
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81:2 A Unified Framework for Hopsets

On the opposite end of the stretch spectrum, for a stretch factor linear in k, it is folklore
that the distance oracle of [21] (henceforth the TZ algorithm) is in a fact a (2k− 1, 2)-hopset
of size O(k · n1+1/k).

A lower bound of [1] asserts that any (1 + ϵ, β)-hopset of size O(n1+1/k) must have

β = Ω
(

1
ϵ·log k

)log k

. This lower bound is meaningful only when the stretch is smaller than
1 + 1/ log k, so it motivates the natural question: allowing the stretch to be larger than
1 + 1/ log k, what is the trade off between stretch and hopbound?

This question was partially studied by [7, 3], who showed (3 + ϵ, β)-hopsets of size
O(n1+1/k · log Λ) with improved β = klog(3+O(1/ϵ)), where Λ is the aspect ratio of the graph1

(In fact, [7] did not have the log Λ factor in the size, albeit their β had a somewhat worse
exponent). More generally, for any 0 < ϵ < 1, [3] devised a (O(kϵ), Oϵ(k1−ϵ))-hopset of size
O(kϵ · n1+1/k · log Λ). We note that by choosing ϵ = O( 1

log k ) they get a (O(c), k1+O(1/ log c))-
hopset for any constant c > 1. The previous state-of-the-art results for hopsets are summarized
in Table 1.

There are two main concerns with the current state of affairs regarding hopsets. First,
there is no lower bound for any constant (or larger) stretch. Indeed, the tightness of the
(O(kϵ), Oϵ(k1−ϵ))-hopset was asked as an open question in [3]. The second concern is that
previous hopset constructions use a variety of different techniques for each possible range of
the stretch α: from the sparse covers used by [5], to two types of the TZ sampling algorithm
[21, 22], the superclustering technique of [12], and in some cases a certain combination of
these with other ingredients. For instance, the algorithms of [3] for hopsets with stretch
3 + ϵ and O(kϵ) are rather complicated, and contain a three-stage construction, involving a
truncated application of the [22] algorithm, a superclustering phase, and a multiplicative
spanner built on some cluster graph.

In this paper we devise a single framework that unifies all previous results for hopsets,
matching and even improving upon the state-of-the-art in all the possible stretch regimes. In
addition, we answer affirmatively the question of [3] mentioned above.

Table 1 Previous results on (α, β)-hopsets for n-vertex weighted graphs, with parameter k ≥ 1
(the dependence on k in the size is omitted for brevity).

Stretch Hopbound Hopset Size Paper
1 + ϵ O( log k

ϵ
)log k O(n1+ 1

k ) [15, 10]
3 + ϵ klog(3+O(1/ϵ)) O(n1+ 1

k · log Λ) [3]
O(c) k1+O(1/ log c) O(n1+ 1

k · log Λ) [3]
O(kϵ) Oϵ(k1−ϵ) O(n1+ 1

k · log Λ) [3]
2k − 1 2 O(n1+ 1

k ) [21]

1.1 Our Results
We develop a generalization of the TZ-algorithms [21, 22], that achieves (and in some cases
improves on) the state-of-the-art for hopsets. This unifies all previous results in a single
framework, and greatly simplifies the constructions for hopsets with intermediate stretch
(above 1 + ϵ and below 2k − 1). We also remove all the log Λ factors from the size. This
result is summarized in Theorem 1 below.

1 The aspect ratio is the ratio between the largest distance to the smallest distance in the graph.
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In addition, we affirmatively resolve the open problem of [3] mentioned above, by prov-
ing that an (α, β)-hopset of size O(n1+1/k) must have α · β ≥ Ω(k). This lower bound
asymptotically matches the upper bound of (kϵ, Oϵ(k1−ϵ))-hopset by [3] for every 0 < ϵ < 1.

In the full version of this paper, we also show that whenever our algorithm produces
a hopset of size O(n1+1/k) with stretch α, it must have a superlinear hopbound of β =
Ω( 1

α2 k1+1/(2 log α)). This matches the upper bound shown in [3] and here, for all constant α.
As our algorithm generalizes all previous constructions, we believe it is an indication that the
question whether there exists an (O(1), O(k))-hopset of size O(n1+1/k), may have a negative
answer.

▶ Theorem 1. Let G = (V, E) be a weighted undirected graph with n vertices, and fix an
integer k ≥ 1. Then there is an algorithm that can compute each of the following:
1. A hopset H of size O(log k · n1+1/k), which is a

(
1 + ϵ, O( log k

ϵ )log k
)

-hopset for all
0 < ϵ < 1 simultaneously.

2. A hopset H of size O(log k · n1+1/k), which is a
(

3 + ϵ, O(klog2(3+ 16
ϵ ))

)
-hopset for all

0 < ϵ < 1 simultaneously.
3. For any integer c ≥ 1, an

(
8c + 3, O(k1+ 2

ln c )
)

-hopset of size O(c · logc k · n1+1/k).
4. For any 0 < ϵ < 1, an

(
O(e2/ϵ · kϵ), O(k1−ϵ)

)
-hopset of size O(n1+1/k/ϵ2).

5. A (2k − 1, 2)-hopset of size O(k · n1+1/k).

1.1.1 Spanners
A closely related concept to hopsets is that of spanners: An (α, β)-spanner of G is a subgraph
H = (V, E′′) such that for all u, v ∈ V , dG(u, v) ≤ dH(u, v) ≤ α · dG(u, v) + β. In the
full version of this paper, we describe a unified framework for building spanners, which is
a variation of our unified framework for hopsets described here. This unified framework
achieves the state-of-the-art results for spanners in essentially all possible values of α.

1.2 Our Techniques
1.2.1 Lower bound
The lower bound on the triple tradeoff between stretch, hopbound and size of (α, β)-hopsets,
showing that α · β = Ω(k) whenever the size is O(n1+1/k), uses the existence of n1/g-regular
graphs with girth g. The basic idea is simple: locally (within distance less than g/2) the
graph looks like a tree, so when considering short enough paths, of length less than g/α,
there are no alternative paths with stretch at most α. This means that any hopset edge (u, v)
can only be useful to pairs whose shortest path is “nearby” to u, v. Making this intuition
precise, and defining what exactly is “nearby”, requires some careful counting arguments.

We remark that for (α, β)-spanners of size O(n1+1/k), there is a better lower bound of
α + β ≥ Ω(k), which also follows from the family of high girth graphs. (This is because such
spanners are in particular (α + β, 0)-spanners.) However, this lower bound cannot hold for
hopsets, as indicated by the existence of (O(kϵ), O(k1−ϵ))-hopsets for ϵ = 1/2, say. Indeed,
the analysis we use is inherently different, and more intricate, than the one used in the lower
bound for spanners.

1.2.2 General algorithm
Before discussing our general algorithm for hopsets, let us review the previous TZ algorithm.
Let G = (V, E) be a (possibly weighted) graph with n vertices, and fix an integer parameter
k. The algorithms of [21, 22] randomly sample a sequence of sets V = A0 ⊇ A1 ⊇ ... ⊇ AF ,

ESA 2022



81:4 A Unified Framework for Hopsets

for some F , where each Ai+1, 0 ≤ i < F , is sampled by including each vertex from Ai

independently with some predefined probability. Then they define for each v ∈ V its i-th
pivot pi(v) as the closest vertex in Ai to v, and the i-th bunch as Bi(v) = {u ∈ Ai : d(u, v) <

d(v, pi+1(v))}. The hopset consists of all edges between each v and some of its bunches.
In [21], the sampling probabilities of each Ai+1 from Ai were uniform n−1/k, i.e., the

exponent of n−1/k was linear, so we call this a linear-TZ. In this version, each vertex v ∈ V

can connect to vertices in Bi(v) for all 0 ≤ i ≤ F . The analysis can give a hopset with β = 2
and stretch 2k − 1.

In [22], the sampling probabilities of each Ai+1 from Ai were roughly n−2i/k, i.e., the
exponent of n−2i/k was exponential in i, so we naturally call this an exponential-TZ. As the
probabilities are much lower here, the bunches will be larger, so vertices in Ai \ Ai+1 can
only connect to their i-th bunch (in order to keep the size under control). This version can
provide a near-exact stretch for the hopset.

1.2.3 Our algorithm

In this work, we devise the following generalization of both of these algorithms. Our algorithm
expects as a parameter a function f : N→ N that determines, for each level i, the highest
bunch-level that vertices in Ai \ Ai+1 will connect to (in the linear-TZ we have f(i) = F ,
while in the exponential-TZ, f(i) = i for all i). This function f implies what should the
sampling probability be for each level i, in order to keep the total size of the hopset roughly
O(n1+1/k). We denote these probabilities by n−λi/k, for parameters λ0, λ1, ..., λF −1. The
number of sets F is in turn determined by these λi (roughly speaking, it is when we expect
AF to be empty).

As this is a generalization of the algorithms of [21, 22], clearly it may achieve their results.
One of our main technical contributions is showing that an interleaving of the linear-TZ and
exponential-TZ probabilities, yields a hopset with a low hopbound, for any intermediate
stretch between 3 + ϵ and k. This means that we divide the integers in [F ] to F/t intervals,
so that the λi’s are the same within each interval, and decays exponentially between intervals.
The parameter t controls the stretch.

Our analysis combines ideas from previous works [22, 7, 3], with some novel insights that
simplify some of the previously used arguments. In particular, [3] truncated the connections
from every vertex in Ai to within a certain range. We show that in our approach, such
truncation can be avoided at essentially no cost: this enables our analysis to be scale-free,
thereby removing the log Λ factors from the size. In addition, our (3 + ϵ, β)-hopsets combine
the best attributes of the hopsets of [7] and [3]: they have no dependence on log Λ and
work for all ϵ simultaneously like [7], and have the superior β like [3]. The simplicity of our
algorithm has other benefits: for instance, [3] devised two different algorithms, using different
tools, for (O(kϵ), O(k1−ϵ))-hopsets; one for ϵ ∈ (0, 1/2] and the other for ϵ ∈ [1/2, 1). Our
unified algorithm has no need for such separation.

1.3 Organization

In Section 2 we show our lower bound for hopsets. In Section 3 we describe our general
algorithm for hopsets, and provide an analysis of its stretch and hopbound in Section 4.
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2 Lower Bound for Hopsets

In this section we build a graph G, such that every hopset for G with stretch α and size
O(n1+ 1

k ) must have a hopbound of at least ≈ k
α . G has high girth (the size of the smallest

simple cycle) and high degree for each vertex, and we prove our lower bound by using
counting arguments.

For the construction, we use the following result, which is a well known corollary from a
paper by Lubotzky, Phillips and Sarnak [19]:

▶ Theorem 2 ([19]). Given an integer γ ≥ 1, there are infinitely many integers n ∈ N such
that there exists a (p + 1)-regular graph G = (V, E) with |V | = n and girth ≥ 4

3 γ(1− o(1)),
where p = D · n

1
γ , for some universal constant D.

Fix α, γ ≥ 1 and a large enough n as above, and let G = (V, E) be the matching (p + 1)-
regular graph from the theorem. The girth of G is ≥ 4

3 γ(1− o(1)) > γ. We look at paths in
G of distance δ := ⌊ γ−1

α+1⌋. For a path P , denote by |P | its length. For u, v ∈ V , denote by
Pu,v a shortest path between them.

▶ Lemma 3. Suppose d(u, v) = δ. Then for every path P ′ between u, v such that |P ′| ≤ αδ,
Pu,v ⊆ P ′.

Proof. If Pu,v ⊈ P ′, then Pu,v ∪ P ′ contains a simple cycle of length ≤ |Pu,v| + |P ′| ≤
δ + αδ = (α + 1)δ ≤ γ − 1, in contradiction to the girth of G being ≥ γ. ◀

Lemma 3 implies if d(u, v) = δ, then Pu,v is unique. Let Qδ = {Pu,v | d(u, v) = δ}.

▶ Lemma 4. |Qδ| ≥ 1
2 npδ.

Proof. Given a vertex u ∈ V , denote its BFS tree, up to the δ’th level, by T . Since G’s girth
is > (α + 1)δ, there are no edges between the vertices of T , apart from the edges of T itself.
That means that each vertex of T has at least p children at the next level, so we have at
least pδ leaves in T . Each of these leaves is a vertex of distance δ from u, and is connected
to u with a δ-path. When summing this quantity over all the vertices u ∈ V , we count every
path twice, so we get at least 1

2
∑

u∈V pδ = 1
2 npδ paths of length δ. ◀

We are now ready to prove the main theorem:

▶ Theorem 5. For every positive integer k, a real number α > 0, a constant C > 0 and for
infinitely many integers n, there exists a graph G with n vertices such that every hopset H

for G with size ≤ Cn1+ 1
k and stretch ≤ α, H has a hopbound β ≥ ⌊ k−2

α+1⌋.

Proof. For α, n and a fixed γ ≥ 1 that will be chosen later, let G = (V, E) be the (p + 1)-
regular graph from Theorem 2 (|V | = n, girth ≥ γ and p = D · n

1
γ ). Define δ, Qδ the same

way as above.
Let H be an (α, β)-hopset for G with size ≤ Cn1+ 1

k , where β < δ. For e = (x, y) ∈ H,
we denote the weight of e, which is defined to be the distance d(x, y), by w(e) (d(x, y)
is the distance in the graph G. We omit the subscript from dG(u, v) for brevity). To
formalize our next arguments, we think of a bipartite graph (A, B, Ê), where A = Qδ,
B = {e ∈ H | w(e) ≤ αδ} and Ê = {(P, (x, y)) ∈ A × B | P ∩ Px,y ̸= ∅}. We prove the
following two properties of this graph (degÊ denotes the degree of a vertex in this graph):
1. ∀P ∈A degÊ(P ) ≥ 1,
2. ∀e∈B degÊ(e) ≤ αδ2pδ−1.

ESA 2022



81:6 A Unified Framework for Hopsets

For (1), we need to show that if d(u, v) = δ, then ∃(x, y) ∈ H : Pu,v ∩ Px,y ̸= ∅ and
w(x, y) ≤ αδ. Let P ⊆ G ∪H be the shortest path from u to v, that has at most β edges,
and let P̂ be the same path as P , with every H-edge (x, y) replaced by Px,y. In P̂ , we call
the original edges from P blue edges, and the other edges red edges. By the hopset property:
|P̂ | = w(P ) = d

(β)
G∪H(u, v) ≤ α · d(u, v) = αδ.

From lemma 3, we know that Pu,v ⊆ P̂ , but since P̂ contains at most β < δ = |Pu,v| blue
edges, that means that there is a red edge in P̂ which is in Pu,v. By the definition of red edges,
there is some (x, y) ∈ H such that Px,y contains this red edge, therefore Pu,v ∩ Px,y ̸= ∅.
This edge (x, y) is part of P , so we also have w(x, y) ≤ w(P ) ≤ αδ.

For (2), given (x, y) ∈ H such that w(x, y) ≤ αδ, we need to bound the number of pairs
u, v ∈ V such that d(u, v) = δ and Pu,v ∩ Px,y ≠ ∅. Let (a, b) ∈ Px,y. Every path of length δ

that passes through (a, b) is a concatenation of a path of length i that ends in a, the edge
(a, b) and a path of length δ− 1− i from b, for some i ∈ [0, δ− 1]. Fixing i, we can look at the
BFS trees Ta, Tb of a, b respectively, up to the i’th and (δ − 1− i)’th level respectively. Since
the degree of any vertex in G is p + 1, Ta contains at most pi leaves, and Tb contains at most
pδ−1−i leaves. Therefore, the number of concatenations of paths as above is bounded by:

δ−1∑
i=0

pi · pδ−1−i =
δ−1∑
i=0

pδ−1 = δpδ−1 .

Since Px,y contains at most αδ edges, we get that the number of paths Pu,v such that
Pu,v ∩Px,y ̸= ∅ and |Pu,v| = δ, is bounded by αδ · δpδ−1 = αδ2pδ−1. This concludes the proof
of (2).

Finally, using the two properties of the bipartite graph, we bound its number of edges
from both sides:

|Ê| =
∑
P ∈A

degÊ(P )
(1)
≥ |A| = |Qδ|

lemma 4
≥ 1

2npδ ,

|Ê| =
∑
e∈B

degÊ(e)
(2)
≤ |B|αδ2pδ−1 ≤ |H|αδ2pδ−1 .

Using these inequalities, we get

|H| ≥ 1
2αδ2 np = D

2αδ2 n · n
1
γ = D

2αδ2 n1+ 1
γ .

Recall that |H| ≤ Cn1+ 1
k , so when choosing large enough n, it must be that k ≤ γ.

Summarizing our proof so far, we showed that for fixed γ ≥ 1, α > 0 and a constant C,
there is a graph G such that every (α, β)-hopset H for G, with size ≤ Cn1+ 1

k , either satisfies
β ≥ δ, or satisfies k ≤ γ.

Choose γ = k − 1. Now the matching graph G has the property that every (α, β)-hopset
H for G, with size ≤ Cn1+ 1

k , must have β ≥ δ. By δ’s definition:

β ≥ δ = ⌊γ − 1
α + 1⌋ = ⌊ k − 2

α + 1⌋ . ◀
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3 A Unified Construction of Hopsets

Let G = (V, E) be a weighted undirected graph, and let k be some positive integer.
Our construction of a hopset is a simple generalization of the construction of [21]. We

start by constructing a sequence of sets V = A0 ⊇ A1 ⊇ A2 ⊇ .... The set Aj+1 is defined by
selecting each vertex from Aj independently with some probability that will be defined later.

Given this sequence, define some useful notations:
1. For a vertex u ∈ V , denote by i(u) the level of u, which is the only i such that u ∈ Ai\Ai+1.
2. The j’th pivot of u, pj(u), is the vertex of Aj which is the closest to u.
3. The j’th bunch of u is the set Bj(u) = {v ∈ Aj | d(u, v) < d(u, pj+1(u))}.

(Whenever Aj+1 = ∅ or Aj+1 is undefined, then also pj+1(u) is undefined, and we say
that d(u, pj+1(u)) =∞, so Bj(u) = Aj).

The hopset construction that relies on [21] adds an hopset edge from each u ∈ V to
the vertices in all of its bunches. Instead, in our case, we add a new parameter to the
construction: A non-decreasing function f : N→ N such that ∀i≥0 i ≤ f(i). Now instead of
connecting u ∈ V to all of its bunches, we connect it only to bunches Bj(u) with index j

between i(u) and f(i(u)).
This choice gives us the freedom to change the sampling probability, i.e. the probability

that some v ∈ Aj is chosen to Aj+1; As we will see later, this probability controls the size
of the bunches Bj(u), and since u now has less bunches to connect to, they can be larger.
In turn, the sampling probability implies how many non-empty sets there will be in the
sequence V = A0 ⊇ A1 ⊇ ....

For specifying this dependency between the sampling probability and the parameter f ,
we use here and throughout this paper, the following notation:

f−1(j) = min{i | j ≤ f(i)}.

Given the parameters k, f , we define a sequence {λj} by2 λj = 1 +
∑

l<f−1(j) λl.

The sampling probability of a vertex v ∈ Aj into Aj+1 is now defined as n−
λj
k (recall

that n = |V |). We also define F = min{F ′ |
∑

l<F ′ λl ≥ k + 1}, and one can simply check
that w.h.p. AF = ∅.

▶ Definition 6. Given an integer k ≥ 1 and a non-decreasing function f : N→ N such that
∀i f(i) ≥ i, the General Hopset H(k, f), is the hopset:

H(k, f) =
⋃

u∈V

F −1⋃
j=0
{(u, pj(u))} ∪

⋃
u∈V

f(i(u))⋃
j=i(u)

{(u, v) | v ∈ Bj(u)}.

The following lemma bounds the expected size of our hopset. Its proof appears in the
full version of this paper.

▶ Lemma 7. E[|H(k, f)|] = O(Fn1+ 1
k ).

2 Note that in the definition of the sequence {λj}, no explicit base case was provided (i.e. a definition of
λ0). But, notice that the definition of {λj} actually does contain a definition for λ0:

λ0 = 1 +
∑

l<f−1(0)

λl = 1 +
∑
l<0

λl = 1,

where f−1(0) = 0 is true by the definition of f−1 and the fact that f(0) ≥ 0.

ESA 2022



81:8 A Unified Framework for Hopsets

3.1 Examples
3.1.1 Linear TZ
When choosing f(j) = k for all j ≤ k, we get λj = 1 for all j (since f−1(j) = 0 for all j ≤ k),
and k + 1 =

∑
j<F λj = F . The resulting hopset H(k, f) relies on the same construction as

in [21], and as observed in [3], it is a (2k − 1, 2)-hopset.

3.1.2 Exponential TZ
Choose f(j) = j for every j. Since f−1(j) = j for every j, we get λj = 1 +

∑
l<j λl ⇒

λj = 2j (proof by induction). Also, k + 1 ≈
∑

j<F λj = 2F − 1 ⇒ F = ⌈log2(k + 2)⌉. The
resulting construction is the same as the emulator from section 4 in [22]. By the analysis of
[15, 10], this emulator from [22] is actually a (1+ϵ, O( log k

ϵ )log k)-hopset of size O(log k ·n1+ 1
k ),

for every 0 < ϵ < 1 simultaneously.

4 Stretch and Hopbound Analysis Method

In this section we show that our general hopset can provide the state-of-the-art results for
(α, β)-hopsets, for various regimes of α.

Given a weighted undirected graph G, and given k, f , we add another parameter, which
is a sequence of non-negative real numbers: {ri}F

i=0. We stress that these parameters only
play a part in the analysis.

The following definition of the score of a vertex is needed for the lemma that will be
proved afterwards.

▶ Definition 8. Given the function f and the sequence {ri}, the Score of a vertex u ∈ V is:

score(u) = max{i > 0 | d(u, pi(u)) > ri and ∀j∈[f−1(i−1),i−1] d(u, pj(u)) ≤ rj} ,

where if pi(u) is not defined (e.g. when i = F and AF = ∅), we consider d(u, pi(u)) to be ∞.

▶ Remark 9. The set in the definition of score(u) is not empty, so the score of each vertex
is well defined and positive. To see this, note that if i is the minimal index such that
d(u, pi(u)) > ri, then i > 0 (because p0(u) = u, so d(u, p0(u)) = 0 ≤ r0), i ≤ F (because
d(u, pF (u)) = ∞ > rF ) and also for every j ∈ [f−1(i − 1), i − 1], by the minimality of i,
d(u, pj(u)) ≤ rj .

Denote H = H(k, f).

▶ Lemma 10 (Jumping Lemma). Suppose that score(u) = i, then for every u′ ∈ V such that
d(u, u′) ≤ ri−ri−1

2 − rf−1(i−1),

d
(3)
G∪H(u, u′) ≤ 3d(u, u′) + 2(ri−1 + rf−1(i−1)).

Moreover, if also d(u, u′) ≥ 2
t (ri−1 + rf−1(i−1)) for some t > 0, then:

d
(3)
G∪H(u, u′) ≤ (t + 3)d(u, u′).

Proof. Let u ∈ V be some vertex with score(u) = i and let u′ ∈ V be some other vertex.
We have:

d(u′, pi−1(u′)) ≤ d(u′, pi−1(u)) ≤ d(u′, u) + d(u, pi−1(u)) ≤ d(u′, u) + ri−1 . (1)



O. Neiman and I. Shabat 81:9

Since score(u) = i, ∀j ∈ [f−1(i − 1), i − 1], we have d(u, pj(u)) ≤ rj . In particular,
d(u, pf−1(i−1)(u)) ≤ rf−1(i−1), and now we can see that:

d(pf−1(i−1)(u), pi−1(u′)) ≤ d(pf−1(i−1)(u), u) + d(u, u′) + d(u′, pi−1(u′))
(1)
≤ rf−1(i−1) + d(u, u′) + (d(u, u′) + ri−1)
= 2d(u, u′) + rf−1(i−1) + ri−1 .

For convenience, we denote u0 = pf−1(i−1)(u), and we also bound the distance d(u0, pi(u0)).

ri < d(u, pi(u)) ≤ d(u, pi(u0)) ≤ d(u, u0) + d(u0, pi(u0)) ≤ rf−1(i−1) + d(u0, pi(u0))

⇒ d(u0, pi(u0)) > ri − rf−1(i−1).

Figure 1 The potential path between u and u′. Notice that d(u, pi−1(u)) ≤ ri−1 and
d(u, pf−1(i−1)(u)) ≤ rf−1(i−1), since score(u) = i.

Since u0 is a f−1(i − 1)’th pivot: i(u0) ≥ f−1(i − 1), so using the fact that f is non-
decreasing: i− 1 ≤ f(f−1(i− 1)) ≤ f(i(u0)). Also, since d(u0, pi(u0)) > ri − rf−1(i−1) > 0,
it cannot be that i(u0) ≥ i (otherwise u0 = pi(u0), so d(u0, pi(u0)) = 0). Then we got that
i− 1 ∈ [i(u0), f(i(u0))].

Therefore, u0 is connected to every vertex of Bi−1(u0). Since pi−1(u′) ∈ Ai−1, a sufficient
condition for pi−1(u′) to be in Bi−1(u0), which would imply that (u0, pi−1(u′)) ∈ H, is
2d(u, u′) + rf−1(i−1) + ri−1 ≤ ri − rf−1(i−1), i.e.

d(u, u′) ≤ ri − ri−1

2 − rf−1(i−1).

In case that this criteria is satisfied, and we get a 3-hops path from u to u′ with weight:

d
(3)
G∪H(u, u′) ≤ rf−1(i−1) + (2d(u, u′) + rf−1(i−1) + ri−1) + (d(u, u′) + ri−1)

= 3d(u, u′) + 2(ri−1 + rf−1(i−1)) .

If also ri−1 + rf−1(i−1) ≤ t
2 d(u, u′) (or equivalently d(u, u′) ≥ 2

t (ri−1 + rf−1(i−1))), then
this path is of weight ≤ 3d(u, u′) + td(u, u′) = (t + 3)d(u, u′). ◀
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Given lemma 10, it’s best to choose {ri} such that 2
t (ri−1+rf−1(i−1)) ≤ ri−ri−1

2 −rf−1(i−1),
i.e.

ri ≥ (1 + 4
t
)ri−1 + (2 + 4

t
)rf−1(i−1) (2)

From now on, we assume that {ri} we chose satisfies this inequality. In particular, {ri} is
non-decreasing.

Fix u, v ∈ V , and let u = u0, u1, u2, ..., ud = v be the shortest path between them.

▶ Lemma 11. Suppose that score(uj) = i and let l = max{l′ ≥ j | d(uj , ul′) ≤ ri−ri−1
2 −

rf−1(i−1)}. Then if l < d, we have:
1. d

(4)
G∪H(uj , ul+1) ≤ (t + 3)d(uj , ul+1)

2. d(uj , ul+1) ≥ 4
t rf−1(i−1)

Proof. Denote by W the weight of the edge (ul, ul+1). We look at two different cases.
The first case is that d(uj , ul) ≥ 2

t (ri−1 + rf−1(i−1)). In this case, by lemma 10:

d
(4)
G∪H(uj , ul+1) ≤ d

(3)
G∪H(uj , ul) + W ≤ (t + 3)d(uj , ul) + W

< (t + 3)(d(uj , ul) + W ) = (t + 3)d(uj , ul+1) .

The second case is that d(uj , ul) < 2
t (ri−1 + rf−1(i−1)). By lemma 10, inequality (2) and

l’s definition:

d
(4)
G∪H(uj , ul+1) ≤ d

(3)
G∪H(uj , ul) + W

10
≤ 3d(uj , ul) + 2(ri−1 + rf−1(i−1)) + W

(2)
≤ 3d(uj , ul) + t(ri − ri−1

2 − rf−1(i−1)) + W

≤ 3d(uj , ul) + t(d(uj , ul) + W ) + W

< (t + 3)(d(uj , ul) + W ) = (t + 3)d(uj , ul+1) .

In both cases, we saw that d(uj , ul+1) ≥ 2
t (ri−1 + rf−1(i−1)), so d(uj , ul+1) ≥ 4

t rf−1(i−1).
◀

The following theorem presents the size, the stretch and the hopbound for our hopset,
H(k, f). It uses lemma 11 repeatedly between every pair of vertices u, v ∈ V . Note that we
choose the minimal sequence {ri}, for minimizing the hopbound.

▶ Theorem 12. Fix an integer k > 0, a non-decreasing f : N → N such that ∀if(i) ≥ i,
parameters {λj} such that ∀jλj ≤ 1 +

∑
l<f−1(j) λl and F such that

∑
j<F λj ≥ k + 1. We

can build a (2t + 3, O(rF ))-hopset for an undirected weighted graph G, simultaneously for
every t > 0, with size O(Fn1+1/k), where {ri} satisfies r0 = 1 and ∀i>0 ri = (1 + 4

t )ri−1 +
(2 + 4

t )rf−1(i−1).

Proof. Given G, k, f , build H(k, f) on G. By lemma 7, this hopset has the wanted size. Fix
u, v ∈ V , and let u = u0, u1, u2, ..., ud = v be the shortest path between them. We use lemma
11 to find a path between u and v.

Starting with j = 0, find l = max{l′ ≥ j | d(uj , ul′) ≤ ri−ri−1
2 − rf−1(i−1)}, where

score(uj) = i. If l = d, stop the process and denote v′ = uj . Otherwise, set j ← l + 1, and
continue in the same way.

This process creates a subsequence of u0, ..., ud: u = v0, v1, v2, ..., vb = v′, such that for
every j < b we have d

(4)
G∪H(vj , vj+1) ≤ (t + 3)d(vj , vj+1) (by lemma 11). For v′ = vb we have

d(v′, v) ≤ ri−ri−1
2 − rf−1(i−1), where score(v′) = i. For this last segment, we get from lemma

10 that

d
(3)
G∪H(v′, v) ≤ 3d(v′, v) + 2(ri−1 + rf−1(i−1)) ≤ 3d(v′, v) + 4rF .
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When summing over the entire path, we get:

d
(4b+3)
G∪H (u, v) ≤

b−1∑
j=0

(t + 3)d(vj , vj+1) + 3d(v′, v) + 4rF

= (t + 3)d(u, v′) + 3d(v′, v) + 4rF ≤ (t + 3)d(u, v) + 4rF .

To bound b, we notice that by lemma 11, for every j < b: d(vj , vj+1) ≥ 4
t rf−1(i−1) ≥ 4

t r0.
So, the number of these “jumps” couldn’t be greater than d(u,v)

4
t r0

= t·d(u,v)
4r0

, and we finally
got:

d
( t·d(u,v)

r0
+3)

G∪H (u, v) ≤ (t + 3)d(u, v) + 4rF .

This is true for every sequence {ri} that satisfies inequality (2) (even if it doesn’t satisfy
r0 = 1).

Given such sequence {ri}, we can define a new sequence as follows:

r′
i = t · d(u, v) · ri

4rF
.

This sequence clearly still satisfies (2), so if we use it instead of {ri}, we get that for our
specific u, v:

d
( t·d(u,v)

r′
0

+3)

G∪H (u, v) ≤ (t + 3)d(u, v) + 4r′
F ⇒

⇒ d
(4rF +3)
G∪H (u, v) ≤ (t + 3)d(u, v) + t · d(u, v) = (2t + 3)d(u, v) ,

i.e. the stretch of this new path is 2t + 3, and its hopbound is 4rF + 3.
Although we chose {r′

i} for a specific pair of vertices, this choice of {r′
i} doesn’t change

our construction at all, but only the analysis. So, we proved that for each u, v ∈ V , there
is a path between them in G ∪H, with stretch 2t + 3 and hopbound 4rF + 3, for our initial
choice of {ri}. ◀

4.1 Applications
Table 2 demonstrates the different results that can be achieved by substituting different
parameters in our construction. The technical computations can be found in the full version
of this paper. All of these applications achieve equivalent or even improved results as of [3].

Table 2 The results achieved by substituting different parameters in our construction.

Parameter
Choices

Resulting
Stretch

Resulting
Hopbound

Resulting
Hopset Size

f(i) = i,
t = ϵ

2
3 + ϵ O(klog2(3+ 16

ϵ
)) O(log k · n1+ 1

k )

f(i) = ⌊ i
c
⌋ · c + c − 1,

t = 4c
8c + 3 O(k1+ 2

ln c ) O(logc k · n1+ 1
k )

f(i) = ⌊ i
c
⌋ · c + c − 1,

t = 4c, c = ⌈kϵ⌉
O(e 2

ϵ kϵ) O(k1−ϵ) O(n1+ 1
k /ϵ)

Note that in all 3 resulting hopsets, the hopset size is improved by a log Λ factor in
comparison to [3]. Also, for a stretch of 3 + ϵ, we get a single hopset with the mentioned
properties simultaneously for all ϵ > 0. Finally, in comparison to [3], our (Oϵ(kϵ), O(k1−ϵ)-
hopset construction enjoys a simpler algorithm and doesn’t require a separation to cases
(ϵ < 1

2 and 1
2 ≤ ϵ, as in [3]).
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