Insertion Time of Random Walk Cuckoo Hashing
below the Peeling Threshold

Stefan Walzer =

Universitat zu Koln, Germany

—— Abstract

Most hash tables have an insertion time of O(1), often qualified as “expected” and/or “amortised”.
While insertions into cuckoo hash tables indeed seem to take O(1) expected time in practice, only
polylogarithmic guarantees are proven in all but the simplest of practically relevant cases. Given the
widespread use of cuckoo hashing to implement compact dictionaries and Bloom filter alternatives,
closing this gap is an important open problem for theoreticians.

In this paper, we show that random walk insertions into cuckoo hash tables take O(1) expected
amortised time when any number k& > 3 of hash functions is used and the load factor is below the
corresponding peeling threshold (e.g. = 0.81 for k = 3). To our knowledge, this is the first meaningful
guarantee for constant time insertion for cuckoo hashing that works for k& € {3,...,9}.

In addition to being useful in its own right, we hope that our key-centred analysis method can
be a stepping stone on the path to the true end goal: O(1) time insertions for all load factors below
the load threshold (e.g. ~ 0.91 for k = 3).

2012 ACM Subject Classification Theory of computation — Bloom filters and hashing; Theory of
computation — Design and analysis of algorithms; Mathematics of computing — Random graphs

Keywords and phrases Cuckoo Hashing, Random Walk, Random Hypergraph, Peeling, Cores
Digital Object Identifier 10.4230/LIPIcs.ESA.2022.87
Related Version Full Version: https://arxiv.org/abs/2202.05546

Funding Stefan Walzer: DFG grant WA 5025/1-1.

Acknowledgements I would like to thank Martin Dietzfelbinger for providing several useful comments
that helped with improving the presentation of this paper as well as an anonymous reviewer who

gave useful feedback regarding the technical argument.

1 Introduction

Cuckoo Hashing Basics. Cuckoo hashing is an elegant approach for constructing compact
and efficient dictionaries that has spawned both a rich landscape of theoretical results and
popular practical applications. Briefly, each key x in a set of m keys is assigned k positions
hi(x),...,hg(z) in an array of n > m buckets via hash functions hq, ..., h;. Each bucket
can hold at most £ keys and the challenge is to choose for each key one of its assigned buckets
while respecting bucket capacities. We follow many previous works in assuming k£ > 2 and
¢ > 1 to be constants and hy, ..., hy to be uniformly random functions (but see e.g. [1, 2, 3]
for works pursuing cuckoo hashing with explicit hash families).

Since the term cuckoo hashing was coined for (k,¢) = (2,1) [27] and then generalised
to k > 3 [12] and ¢ > 2 [7], a major focus of theory papers has been to determine the load
thresholds ¢}, ,, which are constants such that for a load factor 7+ < ke — € a placement of
all keys exists with high probability (whp, defined in this paper as probability 1 — n_Q(l))
and for 7 > ¢} , + ¢ a placement does not exist whp. This project has since been completed
[11, 4, 6, 14, 13, 24] and we reproduce some thresholds in Table 1 for reference. Further
research pursued cuckoo hashing variants with reduced failure probability [21], improved

© Stefan Walzer;
37 licensed under Creative Commons License CC-BY 4.0

30th Annual European Symposium on Algorithms (ESA 2022).
Editors: Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman; Article No. 87; pp. 87:1-87:11

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:walzer@cs.uni-koeln.de
https://orcid.org/0000-0002-6477-0106
https://doi.org/10.4230/LIPIcs.ESA.2022.87
https://arxiv.org/abs/2202.05546
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

87:2

Insertion Time of Random Walk Cuckoo Hashing Below the Peeling Threshold

load thresholds [7, 23, 30] or weaker randomness requirements for hq,...,hy [1, 2, 3, 25, 22].
Moreover, cuckoo filters [9, 10, 8], which are Bloom filter alternatives based on cuckoo
hashing, are now widely popular in the data base community.

Table 1 For each 2 < k < 7and 1 < ¢ <6 a cell shows cﬁe/é (left) and cj, ,/£ (right), rounded to
three decimal places. The thresholds are divided by £ to reflect the corresponding memory efficiency
(populated space over allocated space).

AV 2 3 4 5 6 7
1 — /0.500 0.818/0.918 0.772/0.977 0.702/0.992 0.637/0.997 0.582/0.999
2 0.838/0.897 0.776/0.988 0.667/0.998 0.579/1 0.511/1 0.457/1
3 0.858/0.959 0.725/0.997 0.604/1 0.515/1 0.450/1 0.399/1
4 0.850/0.980 0.687/0.999 0.562/1 0.476/1 0.412/1 0.364/1
5 0.837/0.990 0.658/1 0.533/1 0.448/1 0.387/1 0.341/1
6 0.823/0.994 0.635/1 0.511/1 0.427/1 0.368/1 0.323/1

Cuckoo Insertions. An important concern in all variants of cuckoo hashing is how to insert
a new key z into an existing data structure. If all buckets hq(x),..., hx(z) are full, then
one key that is currently placed in those buckets has to be moved out of the way into one
of its alternative buckets, which might require additional relocations of keys. Two natural
strategies for organising insertions have been proposed [12]. Breadth-first search (BFS)
insertion systematically pursues all possibilities for relocating keys in parallel. Random walk
(RW) insertion starts by optimistically placing x into bucket h;(z) for a uniformly random
i € [k] (where in this paper [a] := {1,...,a} for a € N), without first considering any of the
k — 1 other buckets. If h;(x) was already full, then a random key is evicted from h;(x) and
is itself placed into one of its k£ — 1 alternative buckets. This chain of evictions continues
until a bucket with leftover space is reached (see Figure 1 for the case with ¢ = 1).

Algorithm RW(x):

Told < L

repeat
pick random i € {h1(z),...,he(z)} \ {to1a}
swap(z, Bli])
Told ¢ &

N o o W -

until x = 1L

Figure 1 The random walk insertion algorithm for £ = 1. The array B of buckets is initialised
with L.

Experiments suggest that, regardless of k and ¢, and for any load factor * < ¢, —¢
where insertions still succeed whp, the expected insertion time is independent of n, hence
“O(1)” (neglecting dependence on the constants k, ¢, €), for both RW and BFS. Despite some
partial success (see below), this claim has not been proven for any &k and ¢, neither for RW
nor for BFS, with the exception of (k,) = (2,1), which behaves very differently compared
to other cases. A theoretical explanation for the good performance of cuckoo hashing in
practical applications is therefore seriously lacking in this aspect. While this paper does not
solve the problem, it puts a new kind of dent into it.

S. Walzer

Contribution. Like most previous papers on cuckoo hashing insertions (an exception [18]
is mentioned below) we focus on the case { = 1. Our analysis shows that RW insertions
take O(1) expected amortised time for all £ > 3, but it only works for = < cﬁ‘l — ¢ where
ckA,‘g < ¢}, ¢ 1s known as the peeling threshold or threshold for the occurrence of an (¢ + 1)-core
in a random k-uniform hypergraph [28, 26, 5, 19], see Table 1. Our analysis extends to a

setting where the m insertions are carried out by m threads in parallel, each executing RW.

We consider the worst case, where a (possibly adversarial) scheduler arbitrarily assigns the
available computation time to threads that have not yet terminated. We only assume that
the scheduler is oblivious of future random choices and that swaps are atomic, i.e. when
several threads perform swaps concurrently, the effect is the same as executing these swaps
in some sequential order (see e.g. [29, Sec. 2.4] for common parallel programming models).

» Theorem 1. Let k € N with k > 3 and € > 0 be constants and n,m € N with % < c,ﬁ‘l —€.
(i) Conditioned on a high probability event, sequentially inserting m keys into a cuckoo
hash table with n buckets of size 1 using RW takes O(n) steps in expectation.
(ii) The same applies if the m insertions are started in parallel with arbitrary scheduling,
only assuming that swaps are atomic. In other words, the combined work is O(n).

Related Work and Comparison. Table 2 summarises related work that we now discuss

from left to right.

[20] is only included here to show that the case of static cuckoo hash tables is well understood
with optimal results in all considered categories.

[12] offers a strong analysis of BFS. The only downside is that it does not work for some
small £ and does not reach all the way to ¢j ;. These issues might be resolvable by
modernising the proof (the values €1 were not known at the time of writing). Note,
however, that even full success on this front would not render an analysis of RW irrelevant
as several authors, including [12], see significant practical benefits of RW over BF'S.

[17, 15] propose and improve, respectively, an analysis of RW via graph expansion. It

guarantees most desired properties, including a concentration bound on insertion times.

The major downside is an only polylogarithmic bound on expected insertion time.

[16] are first to prove an O(1) bound on expected random walk insertion time. The proof
extends to any load factor 1 — ¢ with € > 0. There is a downside, however. Instead
of using k = O(log(1/¢)) hash functions as would be required for the existence of a
placement of all keys (and as are used by [12] in their BFS analysis), the authors use
k = O(log(1/e)/e) hash functions. To give an example, while ¥ = 3 hash functions
suffice for € = 0.2 (because 80% < c3 ; ~ 92%), the analysis of [16] requires k£ > 50 hash

Table 2 Guarantees offered by analyses on cuckoo table insertions. The motivation for the third
line is that any load factor < 50% can be achieved with k = 2.

[20] [12] [17,15] [16] new

algorithm offline BFS RW RW' RW
construction

(expected amortised) insertion time o(1) o1) 1g°Pmn) o0@1) oQ)
least k for load factor > 50% 3 > 10 3 > 12 3
supports load factor 1 — ¢ for large k v v v v X
supports load factor cj ; — € v X v X X
supports deletions - v v X X

87:3

ESA 2022

87:4

Insertion Time of Random Walk Cuckoo Hashing Below the Peeling Threshold

functions for that e. Even if the analysis can be tuned to some degree (which seems
probable), useful guarantees for practically relevant & would likely remain out of reach.
We remark that they use a variant RW’ of RW where a key x searches all its buckets
hi(x),..., hi(x) for a free space and only moves to a random bucket if all are full.

[18], not shown in the table, considers k& = 2 hash functions, buckets of size ¢ > 2 and
random walk insertion. The result resembles [16] in its merits and downsides: Expected
insertion time of O(1) is supported at any load factor 1 — ¢, provided that ¢ is large
enough; the value ¢ = ¢(¢) required in the analysis is exponentially larger than what is
needed for the existence of a placement; and meaningful guarantees for small values of £
seem out of reach.

This paper is the first to guarantee constant time insertions into cuckoo hash tables using
k € {3,...,9} hash functions. Like [16] our proof does not consider deletions. The main
downside is that our analysis only works for ™ < ckA‘,1 — e. Paradoxically, this means that
the load factor supported by our analysis decreases when more hash functions are used
(indeed, c,ﬁ1 — 0 for kK — 00) and the supremum of supported load factors is c§1 ~ 0.818
for £ = 3 hash functions. We mention a potential avenue for overcoming this problem in
the conclusion.

Technical Overview. A central idea in our approach is to not count the number of evictions
caused by a single insertion operation but to take the perspective of a single key and count
how often it moves in the course of all m insertion operations combined.

Our proof is inspired by a simple observation: If a key «x is assigned a bucket h;(x) that is
assigned to no other key, then x is safely out of the way of other keys as soon as it has been
placed in h;(z). In expectation, this happens after x has moved k times. A constant fraction
of keys is “harmless” in this way. Moreover, there are keys y that are assigned a bucket h;(y)
that is assigned to no other key, except for some harmless keys. It seems plausible that vy,
too, can quickly find a home in h;(y) and is only expected to be evicted from it a few times
until the harmless keys live up to their name.

A formalisation attempt goes like this: Let F' be an injective placement function assigning
to each key = a bucket F'(z) € {h1(z),..., hx(x)} (such an F exists whp for ¢ < cj , —¢). We
say a key x depends on a key y if F(x) € {h1(y),...,he(y)}, i.e. if the position designated for
x is admissible for y. Let D(z) be the set of all keys that « depends on. Finally, let moves(z)
be the total number of times that x moves during the insertion of all keys. We then have

E[moves(z)] <k + »_ E[moves(y)]. (1)
yeD(x)

The “k” is due to x being first placed in F(x) after & moves in expectation. It can then only
be evicted from F(z) by a key from D(x). Each movement of a key in D(x) has a chance of
+ to evict & from F(z), causing k more moves of x in expectation until z is back in F(z).
Hence each move of a key from D(z) can cause at most one move of x in expectation, as
(1) suggests. The claim is even true in a more general context we call the random eviction
process where in each round an adversary choses the key y to be moved among all keys not
currently placed in their designated location F(y).

As a way of bounding E[moves(x)], Equation (1) is hopelessly circular at first, but it is
useful for specific F'. Indeed, assume that the configuration of keys and buckets is peelable,
i.e. for every subset X’ of keys there is a bucket b* assigned to only one key z* € X’. In
that case, we can iteratively construct F', always picking such a pair (z*,b*) uniformly at
random, setting F(x*) = b* and removing x* from further consideration. This yields an

S. Walzer

acyclic dependence relation and an acyclic dependence graph (the directed graph with one
vertex for each key that has the dependence relation as its edge relation). We can then
upper bound E[moves(z)] by a multiple of peel(z), which is the number of paths in the
dependence graph that start at x. Bounding the expected number of moves of all insertion
operations combined by O(n) then amounts to bounding the total number of paths in the
dependence graph by O(n).

The second part of our argument — contained in the full version of this paper — is intimately
related to the analysis of 2-cores in random hypergraphs. We extend Janson and Luczak’s
“simple solution to the (¢ + 1)-core problem” [19], which uses a random process embedded in

continuous time where peeling is applied to the configuration model of a random hypergraph.

We establish two guarantees concerning the peeling process.

Firstly, the guarantee that during “early” rounds of peeling (when Q(n) keys still remain)
there are always Q(n) candidate pairs (z*,b*) to choose from. Intuitively, this large
number of choices for the peeling process makes it likely that the dependence graph
becomes very “wide” with few long paths. For illustration (the formal argument works
differently) assume the maximum path length is w with w = O(1). Since the indegree of
the dependence graph is bounded by k — 1 this gives a bound of m - (k — 1)* = ©(m) on
the total number of paths as desired.

Secondly, the technically demanding guarantee that in the “late” phase of peeling (when
only o(n) keys remain) almost all buckets have at most one remaining key assigned
to them. Most steps of the peeling process will then not create further edges in the
dependence graph. This implies that for each of the paths that already exist in the
dependence graph less than one additional path is created in future rounds.

Outline. The rest of this paper is devoted to proving Theorem 1. We introduce two notable
auxiliary concepts we call the random eviction process (REP) and peeling numbers. We
reduce Theorem 1 to a claim about REP (Section 2) and reduce this claim to an upper
bound on peeling numbers (Section 3). The remaining technical content is found in the full

version of this paper. A deep dive into hypergraph peeling is required (full version Section 4).

We then establish the upper bound on peeling numbers by counting paths in the dependence
graph (full version Section 5).

2 Orientations, Peeling and the Random Eviction Process

In this section, we introduce the random eviction process (REP), which generalises sequential
RW insertions, and formulate a claim on REP’ that implies Theorem 1.

From Hashing to Hypergraphs. A well-subscribed model for cuckoo hashing involves
hypergraph terminology. The set of buckets corresponds to the set V' of vertices and each
key x corresponds to the hyperedge {hi(x),..., hi(x)} in the set E of hyperedges. The task
of placing all keys then becomes the task of orienting H = (V, E) as explained below.

Under the simple uniform hashing assumption, the distribution of H = H,, ,, j; is simple:
Each of the km incidences of the m hyperedges are chosen independently and uniformly
at random from V. Formally this means that hyperedges are multisets of size k, possibly
containing multiple copies of the same vertex (though in expectation only O(1) do) and E is
a multiset possibly containing identical hyperedges (though whp E does not). This issue
complicates a few definitions but does not cause any real trouble.

87:5

ESA 2022

87:6 Insertion Time of Random Walk Cuckoo Hashing Below the Peeling Threshold

1 Algorithm REP(V, E): 1 Algorithm REP’(V, E, F):

2 f+<{(e,L)|e€E}/ ie f=1 2 f«{(e,L)|ec E}

3 while Je € E: f(e) = L do 3 while Je € E : f(e) # F(e) do
4 pick such an e arbitrarily 4 pick such an e arbitrarily

5 pick a random v € e 5 pick a random v € e

6 if 3¢’ #e: f(e/) = v then 6 if 3¢’ £e: f(¢/) = v then

7 Lf(e’)<—i 7 Lf(e')<—L

8 fle) «w 8 fle) «wv

Figure 2 The random eviction process (REP) is a generalisation of sequential random walk
insertion. A variant REP’ only terminates when a specific target orientation F': E — V is reached.
Changes are highlighted in bold.

Orientations and Peelings. A partial orientation of a hypergraph H = (V| E) is a function
f+E—VU{Ll} with f(e) € eU{L} for each e € FE that is injective except for collisions on
L. If f(e) = L then we say that e is unoriented, otherwise e is oriented (to f(e)). We call f
an orientation if all e € E are oriented.

We can try to construct an orientation F' of H greedily by repeatedly selecting a vertex
v of degree 1 arbitrarily as long as one such vertex exists, setting F'(e) = v for the unique
hyperedge e incident to v, and removing e from H. We call the resulting partial orientation
F a peeling of H. If H does not contain a subhypergraph of minimum degree at least 2 (i.e.
when the 2-core of H is empty [26]) then F is an orientation and we say H is peelable. We
call F' a random peeling if the choice of v is made uniformly at random whenever there are
several vertices of degree 1.

The Random Eviction Process. The random eviction process (REP), see Figure 2 (left),
is run on a hypergraph H = (V,FE) and maintains a partial orientation f of H. The
process continues in a sequence of rounds as long as unoriented hyperedges remain, possibly
indefinitely. In each round, an unoriented hyperedge e is chosen and oriented to a random
incident vertex. If a different hyperedge €’ was oriented to that vertex, then this e’ is evicted,
i.e. becomes unoriented.

A variant of REP is the random eviction process with target orientation (REP’), see
Figure 2 (right). It is run on a hypergraph H and an orientation F' of H. REP’ works just
like REP, except that it terminates only when f = F' is reached, and in every round any
hyperedge e with f(e) # F(e) may be chosen. We claim:

» Proposition 2. Let k € N with k > 3 and ¢ > 0 be constants and n,m € N with 7+ < cﬁl—s.
Conditioned on a high probability event, H = Hy, ,,, . is peelable and the random peeling F
of H satisfies the following. REP’ with target orientation F and an arbitrary' policy for
choosing e in line 4 terminates after O(n) rounds in expectation.

Proposition 2 is proved in the following section. We now show that it implies Theorem 1.

L This allows these choices to be made adversarially. The adversary may know all about H and the state
of the algorithm but cannot predict future random choices made in line 5.

S. Walzer

Proof of Theorem 1. The case of m sequential insertions is equivalent to the case of m
parallel insertions where the scheduler only assigns computation time to the thread of least
index that has not yet terminated. It therefore suffices to prove (ii), where the parallel case
with arbitrary scheduling is considered.

We deal with m threads, each running RW, executed in an arbitrarily interleaved way.

However, the only point where RW interacts with data visible to other threads is the swap,

which is assumed to be atomic. A sufficiently general case is therefore one where the scheduler

always picks an arbitrary thread that has not yet terminated and that thread is then allowed
to run for one iteration of the loop. The correspondence between this process and REP
should be clear: The scheduler’s arbitrary choice of a thread implicitly chooses an unplaced
key in that thread’s local variable x, which is then placed into a random bucket, possibly
evicting a different key. Likewise, REP arbitrarily chooses an unoriented hyperedge, which is
then randomly oriented, possibly evicting another hyperedge.

For Proposition 2’s claim on REP’ to apply to RW, there are two differences to consider.

REP vs. REP’. Assume an adversary wants to mazimise the expected running times of REP

and REP’ by making bad choices for e in line 4. Her job is harder for REP for two reasons:
Firstly, the termination condition is strictly weaker, such that REP may terminate when
REP’ does not. Secondly, her choices for e are restricted to unoriented hyperedges, where
REP’ additionally permits oriented hyperedges with f(e) # F(e).
Intuitively speaking, the relatively weaker adversary in REP means that the upper bound
on expected running time in Proposition 2 carries over from REP’ to REP. More formally,
every policy P for line 4 of REP is also valid for REP’ and under the natural coupling
random coupling REP’ with P takes always at least as long as REP with P.

REP vs. RW: i519. In RW an evicted key is not allowed to immediately move back into
the bucket i,q it was just evicted from. The intuition is that this avoids a needless
back-and-forth that otherwise occurs in 1 out of every k evictions. However, the author
is not aware of a simple proof that the use of iyq is an improvement. Instead, we will
check that the relevant part of the argument (Lemma 3) works for both cases. |

3 Bounding the Number of Evictions using Peeling Numbers

We now introduce the concept of peeling numbers and bound the number of evictions
occurring in REP’ in terms of them. This proves Proposition 2 but leaves the task of
bounding peeling numbers for the full version of this paper.

Direct Dependence and Numbers of Moves. Consider a peelable hypergraph H = (V, E)
and a peeling F : E — V of H. For e # ¢ € E we say that e directly depends on € if
F(e) € €. This implies that e is peeled after ¢/, making the transitive closure of direct
dependence an acyclic relation. We define D(e) = Dp(e) as the set of all ¢’ that e directly
depends on, or more precisely: D(e) is a multiset containing e’ with the same multiplicity
with which e’ contains F'(e).

Now consider a run of REP’ with target orientation F' (and an arbitrary policy for line 4).
For e € E let moves(e) be the number of times that e is selected in line 4 of REP’ (this is
one more than the number of times that e is evicted).

> Lemma 3. For any e € E we have E[moves(e)] <k + 3. ¢ p.) E[moves(e)].
Proof. For clarity, we ignore complications that are due to multisets at first. Let m; be

the number of times that e moves until f(e) = F(e) holds for the first time. Whenever e is
selected to be moved, the chance to select f(e) = F(e) is ¢, so clearly E[m1] = k. Afterwards,

87:7

ESA 2022

87:8

Insertion Time of Random Walk Cuckoo Hashing Below the Peeling Threshold

e may not be selected anymore until evicted. Only hyperedges in D(e) can evict e from F(e)
and when selected they do so with probability %, causing another k£ moves of e in expectation.
It follows that E[m] = E[mp] where m := moves(e) — m; and where mp is the number of
times that a hyperedge from D(e) moves while f(e) = F(e). The claim now follows from
mp < 3 .ep(e moves(e') and linearity of expectation.

When D(e) is a multiset the argument can be adapted: Whenever a hyperedge ¢’ moves
that is contained in D(e) with multiplicity a > 1 it has an increased chance of £ to move to
F(e). But this is reflected in our bound since E[moves(e')] is counted a times.

Let us now consider a variant of the claim that incorporates the “igq” feature of RW as
promised in the proof of Theorem 1. In particular, a hyperedge never moves into the position
it was last evicted from. We now have E[m;] < k because all moves after the first move have
an improved chance of 15 to select F(e). To compare E[m.] and E[mp], we can distinguish
two kinds of moves. Concerning moves away from F(e), mp counts the same or one more
compared to m4. All other moves have a chance of 15 to end in F(e) and contribute the
same amount to E[m,] and E[mp] as before. The same adaptation to multisets applies. <«

The Peeling Number. We define the peeling number of e € E recursively as

peel(e) = peelp(e) := Z (1 + peel(€)). (2)
e’€Dp(e)

Peeling numbers are well-defined by acyclicity of direct dependence, the base case being
peel(e) = 0 for any e with D(e) = @. The idea is that peel(e) counts the number of
hyperedges that e directly or indirectly depends on, in other words, those hyperedges e’ that
must be peeled before e can be peeled. However, some ¢/ may be counted multiple times.
The relevance of peeling numbers lies in the following lemma.

» Lemma 4. Let H be a peelable hypergraph with a peeling F. Let R be the number of rounds
until REP’ with target orientation F terminates. We have E[R] < k- (m +) . peelg(e)).

Proof. For a single e € F we have E[moves(e)] < k- (1 4 peel(e)) because

Lem.3 Induction
Efmoves(e)] < k+ > Emoves(e)] < k+ 3 k-(1+peel(c))
e’e€D(e) e’e€D(e)
L) + k- peel(e) = k - (1 + peel(e)).
Since the total number R of rounds of REP’ is the sum of all moves we conclude

E[R] = E[Z moves(e)] <> k- (L +pecl(e) = k- (m+ Y peel(e)). <

eckE ecE eckE
The remaining technical challenge is to bound the sum of all peeling numbers:
» Proposition 5. Let H be as in Proposition 2. There is a high probability event € such that,

conditioned on £, H is peelable and the peeling numbers with respect to the random peeling F
of H satisfy

E[ZpeelF(e) | 5} — O(n).
eelE

A prove is found in the full version of this paper (Section 5) and requires a detailed analysis
of the peeling process (Section 4). We conclude this extended abstract with showing how
Proposition 5 implies Proposition 2.

S. Walzer

Proof of Proposition 2. We take the opportunity to clarify the structure of our probability
space. There are three random experiments, performed in sequence: First, we pick a random
hypergraph H. Second, if H is peelable, we pick a random peeling F' of H and observe the
peeling numbers. Last, we execute REP’(H, F') and observe which moves are made. Note
that the high probability event £ from Proposition 5 only relates to the first two steps (it
does not relate to any moves). Lemma 4 only relates to the last step and does not require H
and F' to be random. For the number R of rounds of REP’ we obtain:

E[R | €] =E[E[R | H,F.€] | €] =E[EIR| H,F]| €] "< "E[k- (m+ 3 peel(e)) | €]
ecE
Pr(E. 5

:km+k-E[Zpeel(e)\5]

ecEl

4 Conclusion and Future Work

This paper proves O(1) expected amortised running times for random walk insertions into
cuckoo hash tables and is the first to yield meaningful results for small values of k£ such as
k = 3. Our proof strategy is to link the number of times that a key x moves to the number
of times that certain other keys move, where these other keys all preceed x in the peeling
process. The main technical challenge (addressed in the full version of this paper) was to
extend an existing analysis of this peeling process in order to obtain stronger guarantees on
its late stages when a sublinear number of keys remain. There are several ways in which our
result might be strengthened.
While amortisation is central to our argument, it seems unlikely to be required for the
result itself. Indeed, the plausible claim that the expected time for inserting the i-th key
is monotonically increasing in 4 already implies a non-amortised result.
To make the result more relevant to practitioners, it is natural to pursue a generalisation
to long sequences of insertions and deletions and to buckets of size ¢ > 2. The author
suspects that the given argument can be correspondingly extended with moderate technical
complications.
If deletions are allowed then it seems natural to partition the data structure’s lifetime into
time slices of en operations such that the set S; of all keys present at some point during
time slice ¢ yields a peelable configuration whp. One would hope to conclude that O(n)
evictions occur during the time slice in expectation whp. However, the peeling number of
a key is no longer sufficient for bounding its expected number of moves for the simple

reason that the key itself might be inserted and deleted frequently within the time slice.

The most important goal, however, is to obtain a result that works up to the load threshold
(for all ¢ < ¢} | —€), not just up to the peeling threshold (for ¢ < ckA"l —¢). There is at
least one reason for optimism, namely the recent discovery of a variant of cuckoo hashing
that raises the peeling threshold to the load threshold [31]. Briefly, a key’s k hashes
are randomly distributed in a random window of yn consecutive buckets. The peeling

threshold of this variant is equal to c; , — & where £(7) can be made arbitrarily small.

However, when using this variant, an analysis can no longer rely on the configuration
model due to a lack of symmetry between the vertices, meaning that even if the general
idea is still sound, the proof would have to use different methods.
Regardless of whether such improvements are achievable, we believe this paper to be a
promising step forward in the ongoing project of retrofitting the widespread use of cuckoo
hash tables and cuckoo filters with strong theoretical guarantees.

km+E-O(n) = O(n). <

87:9

ESA 2022

87:10

Insertion Time of Random Walk Cuckoo Hashing Below the Peeling Threshold

—— References

1

10

11

12

13

14

15

16

17

18

19

20

Anders Aamand, Mathias Baek Tejs Knudsen, and Mikkel Thorup. Power of d choices
with simple tabulation. In 45th ICALP, volume 107 of LIPIcs, pages 5:1-5:14, 2018. doi:
10.4230/LIPIcs.ICALP.2018.5.

Martin Aumiiller, Martin Dietzfelbinger, and Philipp Woelfel. Explicit and efficient hash
families suffice for cuckoo hashing with a stash. Algorithmica, 70(3):428-456, 2014. doi:
10.1007/s00453-013-9840-x.

Michael A. Bender, Tsvi Kopelowitz, William Kuszmaul, Ely Porat, and Clifford Stein.
Incremental edge orientation in forests. In 29th ESA, volume 204 of LIPIcs, pages 12:1-12:18,
2021. doi:10.4230/LIPIcs.ESA.2021.12.

Julie Anne Cain, Peter Sanders, and Nicholas C. Wormald. The random graph threshold
for k-orientiability and a fast algorithm for optimal multiple-choice allocation. In Proc. 18th
SODA, pages 469-476, 2007. URL: http://dl.acm.org/citation.cfm?id=1283383.1283433.
Colin Cooper. The cores of random hypergraphs with a given degree sequence. Random Struct.
Algorithms, 25(4):353-375, 2004. doi:10.1002/rsa.20040.

Martin Dietzfelbinger, Andreas Goerdt, Michael Mitzenmacher, Andrea Montanari, Rasmus
Pagh, and Michael Rink. Tight thresholds for cuckoo hashing via XORSAT. In Proc. 37th
ICALP (1), pages 213-225, 2010. doi:10.1007/978-3-642-14165-2_19.

Martin Dietzfelbinger and Christoph Weidling. Balanced allocation and dictionaries with
tightly packed constant size bins. Theor. Comput. Sci., 380(1-2):47-68, 2007. doi:10.1016/j.
tcs.2007.02.054.

David Eppstein. Cuckoo filter: Simplification and analysis. In Proc. 15th SWAT, pages
8:1-8:12, 2016. doi:10.4230/LIPIcs.SWAT.2016.8.

Bin Fan, David G. Andersen, and Michael Kaminsky. Cuckoo filter: Better than
Bloom. ;login:, 38(4), 2013. URL: https://www.usenix.org/publications/login/
august-2013-volume-38-number-4/cuckoo-filter-better-bloom.

Bin Fan, David G. Andersen, Michael Kaminsky, and Michael Mitzenmacher. Cuckoo filter:
Practically better than bloom. In Proc. 10th CoNEXT, pages 75-88, 2014. doi:10.1145/
2674005.2674994.

Daniel Fernholz and Vijaya Ramachandran. The k-orientability thresholds for gn . In Proc.
18th SODA, pages 459-468, 2007. URL: http://dl.acm.org/citation.cfm?id=1283383.
1283432.

Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul G. Spirakis. Space efficient hash
tables with worst case constant access time. Theory Comput. Syst., 38(2):229-248, 2005.
doi:10.1007/s00224-004-1195-x.

Nikolaos Fountoulakis, Megha Khosla, and Konstantinos Panagiotou. The multiple-orientability
thresholds for random hypergraphs. Combinatorics, Probability & Computing, 25(6):870-908,
2016. doi:10.1017/S0963548315000334.

Nikolaos Fountoulakis and Konstantinos Panagiotou. Sharp load thresholds for cuckoo hashing.
Random Struct. Algorithms, 41(3):306-333, 2012. doi:10.1002/rsa.20426.

Nikolaos Fountoulakis, Konstantinos Panagiotou, and Angelika Steger. On the insertion time
of cuckoo hashing. SIAM J. Comput., 42(6):2156-2181, 2013. doi:10.1137/100797503.
Alan M. Frieze and Tony Johansson. On the insertion time of random walk cuckoo hashing.
Random Struct. Algorithms, 54(4):721-729, 2019. doi:10.1002/rsa.20808.

Alan M. Frieze, Pall Melsted, and Michael Mitzenmacher. An analysis of random-walk cuckoo
hashing. SIAM J. Comput., 40(2):291-308, 2011. doi:10.1137/090770928.

Alan M. Frieze and Samantha Petti. Balanced allocation through random walk. Inf. Process.
Lett., 131:39-43, 2018. doi:10.1016/j.ip1.2017.11.010.

Svante Janson and Malwina J. Luczak. A simple solution to the k-core problem. Random
Struct. Algorithms, 30(1-2):50-62, 2007. doi:10.1002/rsa.20147.

Megha Khosla. Balls into bins made faster. In Proc. 21st ESA, pages 601-612, 2013. doi:
10.1007/978-3-642-40450-4_51.

https://doi.org/10.4230/LIPIcs.ICALP.2018.5
https://doi.org/10.4230/LIPIcs.ICALP.2018.5
https://doi.org/10.1007/s00453-013-9840-x
https://doi.org/10.1007/s00453-013-9840-x
https://doi.org/10.4230/LIPIcs.ESA.2021.12
http://dl.acm.org/citation.cfm?id=1283383.1283433
https://doi.org/10.1002/rsa.20040
https://doi.org/10.1007/978-3-642-14165-2_19
https://doi.org/10.1016/j.tcs.2007.02.054
https://doi.org/10.1016/j.tcs.2007.02.054
https://doi.org/10.4230/LIPIcs.SWAT.2016.8
https://www.usenix.org/publications/login/august-2013-volume-38-number-4/cuckoo-filter-better-bloom
https://www.usenix.org/publications/login/august-2013-volume-38-number-4/cuckoo-filter-better-bloom
https://doi.org/10.1145/2674005.2674994
https://doi.org/10.1145/2674005.2674994
http://dl.acm.org/citation.cfm?id=1283383.1283432
http://dl.acm.org/citation.cfm?id=1283383.1283432
https://doi.org/10.1007/s00224-004-1195-x
https://doi.org/10.1017/S0963548315000334
https://doi.org/10.1002/rsa.20426
https://doi.org/10.1137/100797503
https://doi.org/10.1002/rsa.20808
https://doi.org/10.1137/090770928
https://doi.org/10.1016/j.ipl.2017.11.010
https://doi.org/10.1002/rsa.20147
https://doi.org/10.1007/978-3-642-40450-4_51
https://doi.org/10.1007/978-3-642-40450-4_51

S. Walzer

21 Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. More robust hashing: Cuckoo hashing
with a stash. STAM J. Comput., 39(4):1543-1561, 2009. doi:10.1137/080728743.

22 Mathieu Leconte. Double hashing thresholds via local weak convergence. In Proc. 51st Allerton,
pages 131-137, 2013. doi:10.1109/Allerton.2013.6736515.

23 Eric Lehman and Rina Panigrahy. 3.5-way cuckoo hashing for the price of 2-and-a-bit. In
Proc. 17th ESA, pages 671-681, 2009. doi:10.1007/978-3-642-04128-0_60.

24 Marc Lelarge. A new approach to the orientation of random hypergraphs. In Proc. 23rd
SODA, pages 251-264. STAM, 2012. doi:10.1137/1.9781611973099.23.

25 Michael Mitzenmacher and Justin Thaler. Peeling arguments and double hashing. In Proc.
50th Allerton, pages 1118-1125, 2012. doi:10.1109/Allerton.2012.6483344.

26 Michael Molloy. Cores in random hypergraphs and Boolean formulas. Random Struct.
Algorithms, 27(1):124-135, 2005. doi:10.1002/rsa.20061.

27 Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. J. Algorithms, 51(2):122-144,
2004. doi:10.1016/j.jalgor.2003.12.002.

28 Boris Pittel, Joel Spencer, and Nicholas C. Wormald. Sudden emergence of a giant k-core in a
random graph. J. Comb. Theory, Ser. B, 67(1):111-151, 1996. doi:10.1006/jctb.1996.0036.

29 Peter Sanders, Kurt Mehlhorn, Martin Dietzfelbinger, and Roman Dementiev. Sequential
and Parallel Algorithms and Data Structures - The Basic Toolbox. Springer, 2019. doi:
10.1007/978-3-030-25209-0.

30 Stefan Walzer. Load thresholds for cuckoo hashing with overlapping blocks. In Proc. 45th
ICALP, pages 102:1-102:10, 2018. doi:10.4230/LIPIcs.ICALP.2018.102.

31 Stefan Walzer. Peeling close to the orientability threshold: Spatial coupling in hashing-

based data structures. In Proc. 32nd SODA, pages 2194—2211. STAM, 2021. doi:10.1137/1.
9781611976465.131.

87:11

ESA 2022

https://doi.org/10.1137/080728743
https://doi.org/10.1109/Allerton.2013.6736515
https://doi.org/10.1007/978-3-642-04128-0_60
https://doi.org/10.1137/1.9781611973099.23
https://doi.org/10.1109/Allerton.2012.6483344
https://doi.org/10.1002/rsa.20061
https://doi.org/10.1016/j.jalgor.2003.12.002
https://doi.org/10.1006/jctb.1996.0036
https://doi.org/10.1007/978-3-030-25209-0
https://doi.org/10.1007/978-3-030-25209-0
https://doi.org/10.4230/LIPIcs.ICALP.2018.102
https://doi.org/10.1137/1.9781611976465.131
https://doi.org/10.1137/1.9781611976465.131

	1 Introduction
	2 Orientations, Peeling and the Random Eviction Process
	3 Bounding the Number of Evictions using Peeling Numbers
	4 Conclusion and Future Work

