
Approximating Dynamic Time Warping Distance
Between Run-Length Encoded Strings
Zoe Xi !

Massachusetts Institute of Technology, Cambridge, MA, USA

William Kuszmaul !

Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract
Dynamic Time Warping (DTW) is a widely used similarity measure for comparing strings that
encode time series data, with applications to areas including bioinformatics, signature verification,
and speech recognition. The standard dynamic-programming algorithm for DTW takes O(n2) time,
and there are conditional lower bounds showing that no algorithm can do substantially better.

In many applications, however, the strings x and y may contain long runs of repeated letters,
meaning that they can be compressed using run-length encoding. A natural question is whether
the DTW-distance between these compressed strings can be computed efficiently in terms of the
lengths k and ℓ of the compressed strings. Recent work has shown how to achieve O(kℓ2 + ℓk2) time,
leaving open the question of whether a near-quadratic Õ(kℓ)-time algorithm might exist.

We show that, if a small approximation loss is permitted, then a near-quadratic time algorithm
is indeed possible: our algorithm computes a (1 + ϵ)-approximation for DTW(x, y) in Õ(kℓ/ϵ3) time,
where k and ℓ are the number of runs in x and y. Our algorithm allows for DTW to be computed
over any metric space (Σ, δ) in which distances are O(log n)-bit integers. Surprisingly, the algorithm
also works even if δ does not induce a metric space on Σ (e.g., δ need not satisfy the triangle
inequality).

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases Dynamic time warping distance, approximation algorithms, run-length
encodings, computational geometry

Digital Object Identifier 10.4230/LIPIcs.ESA.2022.90

Related Version Full Version: http://arxiv.org/abs/2207.00915

Funding This research was funded by a Hertz Foundation Fellowship and an NSF GRFP Fellowhship.
The research was also partially sponsored by the United States Air Force Research Laboratory and the
United States Air Force Artificial Intelligence Accelerator and was accomplished under Cooperative
Agreement Number FA8750-19-2-1000. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the official policies, either
expressed or implied, of the United States Air Force or the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for Government purposes notwithstanding any
copyright notation herein.

Acknowledgements The authors would like to thank Charles E. Leiserson for his helpful feedback
and suggestions.

1 Introduction

Dynamic Time Warping (DTW) distance is a well-known similarity measure for comparing
strings that represent time-series data. DTW distance was first introduced by Vintsyuk
in 1968 [40], who applied it to the problem of speech discrimination. In the decades
since, DTW has become one of the most widely used similarity heuristics for comparing
time series [28] in applications such as bioinformatics, signature verification, and speech
recognition [20, 34, 33, 1, 14, 43].

© Zoe Xi and William Kuszmaul;
licensed under Creative Commons License CC-BY 4.0

30th Annual European Symposium on Algorithms (ESA 2022).
Editors: Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman; Article No. 90; pp. 90:1–90:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zoexi@bu.edu
mailto:kuszmaul@mit.edu
https://doi.org/10.4230/LIPIcs.ESA.2022.90
http://arxiv.org/abs/2207.00915
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

90:2 Approximating DTW Distance Between RLE Strings

Consider any two strings x and y, with characters taken from some metric space (Σ, δ).
For example, in many applications, we have that Σ = Rc for some parameter c and that
δ(a, b) = ∥a − b∥2 computes ℓ2 distance. Define a time warp of x (and similarly of y) to
be any string x′ that can be obtained by warping the letters in x, where warping a letter
means replacing it with ≥ 1 consecutive copies of itself. The DTW-distance DTW(x, y) is
defined to be

min
|x′|=|y′|

|x′|∑
i=1

δ(x′
i, y′

i),

where x′ and y′ range over all time warps of x and y.
The most fundamental question concerning DTW is how to compute it efficiently. Vintsyuk

showed that, given strings x and y of length n, it is possible to compute DTW(x, y) in O(n2)
time [40]. His algorithm, which was one of the earliest uses of dynamic programming,
continues to be taught in textbooks and algorithms courses today.

For many decades, it was an open question whether any algorithm could achieve a running
time of O(n2−Ω(1)). (Interestingly, it is known that one can shave small sub-polynomial
factors off of the running time [22].) A major breakthrough occurred in 2015, when Abboud,
Backurs, and Williams [2] and Bringmann and Künnemann [12] established conditional lower
bounds prohibiting any strongly subquadratic-time algorithm for DTW, unless the Strong
Exponential Time Hypothesis (SETH) fails.

This lower bound puts us in an interesting situation. On one hand, the classic O(n2)-time
algorithm is often too slow for practical applications. On the other hand, we have good
reason to believe that it is nearly optimal. This has led researchers to focus on forms of
beyond-worst-case analysis when studying the DTW problem.

An especially appealing question [39, 21] is what happens if x and y both contain long
runs of repeated letters. In this case, the strings can be compressed using run-length encoding
(RLE). For example, the string “aaaaabbc” has RLE encoding “(a, 5), (b, 2), (c, 1)”. If a
string x has k runs, then it is said to have an RLE representation of length k.

It is known that, if x and y each contain k runs, then DTW(x, y) can be computed in
O(k3) time [21].1 It is still an open question whether it is possible to significantly reduce
this cubic running time, and in particular, whether a near-quadratic time algorithm might
be possible.

This paper: A Near-Quadratic Approximation Algorithm

We show that, if a small approximation loss is permitted, then a near-quadratic time algorithm
is indeed possible. Consider any two run-length encoded strings x ∈ Σn and y ∈ Σn, where
x has k runs and y has ℓ runs. Let δ be an arbitrary distance function δ : Σ × Σ → [poly(n)]
mapping pairs of characters to O(log n)-bit nonnegative integers. (Perhaps surprisingly, our
algorithms will not require δ to satisfy the triangle inequality, or even to be symmetric.)

Our main result is an algorithm that computes a (1 + ϵ)-approximation for DTW(x, y) in
Õ(kℓ/ϵ3) time2. In the special case where Σ is over Hamming space (i.e., δ(a, b) is either 0
or 1 for all a, b ∈ Σ), the running time of our algorithm further improves to Õ(kℓ/ϵ2).

1 More generally, if x contains k runs and y contains ℓ runs, then the time becomes O(kℓ2 + ℓk2).
2 Here we are using soft-O notation to mean that Õ(kℓ/ϵ3) is equivalent to O((kℓ/ϵ3) polylog(n)).

Z. Xi and W. Kuszmaul 90:3

Our algorithm takes a classical geometric interpretation of DTW in terms of paths
through a grid, and shows how to decompose each path in such a way that its components
can be efficiently approximated. This allows for us to reduce the problem of approximating
DTW-distance between RLE strings to the problem of computing pairwise distance in a
small directed acyclic graph.

Other related work

In addition to work on run-length-encoded strings [39, 21], there has been a recent push to
study other theoretical facets of the DTW problem. This includes work on approximation
algorithms [25, 3, 42], low-distance-regime algorithms [25], communication complexity [11],
slightly-subquadratic algorithms [22], reductions to other similarity measures [25, 37, 36],
binary DTW [26, 38], etc.

All of these results (along with the results in this paper) can be viewed as part of a larger
effort to close the gap between what is known about DTW and what is known about its
closely related cousin edit distance, which measures the number of insertions, deletions, and
substitutions of characters needed to turn one string x into another string y. Like DTW, edit
distance can be computed in O(n2) time using dynamic programming [40, 35] (and can be
computed in slightly subquadratic time using lookup-table techniques [31]). Also like DTW,
edit distance has conditional lower bounds [12, 2, 25] prohibiting strongly subquadratic time
algorithms.

When it comes to beyond-worst-case analysis, however, edit distance has yielded much
stronger results than DTW: it is known how to compute a constant-approximation for edit
distance in strongly subquadratic time [5, 24, 10, 15, 4, 9, 6, 17]; it is known how to compute
the edit distance between RLE strings in Õ(kℓ) time [19, 8, 18, 29, 13, 7, 32, 23, 30]; and if
two strings x and y have small edit distance k, it is known how to compute the edit distance
in O(|x| + |y| + k2) time [16, 27].

Whether or not any of these results can be replicated for DTW remains the central open
question in modern theoretical work on DTW. There are several reasons to believe that
DTW computation should be more challenging than edit distance. Whereas edit distance
satisfies the triangle inequality, DTW does not (for example, if we take Σ = {0, 1}, then
DTW(111110, 100000) = 0, DTW(100000, 000000) = 1, and DTW(111110, 000000) = 5).
This erratic behavior of DTW seems to make it especially difficult to approximate. Addi-
tionally, whereas almost all work on edit distance focuses on insertion/deletion/substitution
costs of 1, work on DTW must consider arbitrary cost functions δ for comparing characters.
Finally, it is known that the problem of computing edit distance actually reduces to that
of computing DTW [25], indicating that the latter problem is at least as hard (although,
interestingly, this reduction does not apply in the run-length encoded setting).

Our paper represents the first evidence that an Õ(kℓ)-time algorithm for DTW may
be within reach. Such an algorithm would finally unify edit distance and DTW in the
run-length-encoded setting.

2 Technical Overview

This section gives a technical overview of how we approximate DTW-distance between
run-length encoded strings. To simplify exposition, we focus here only on the big ideas in
the algorithm design and we defer the detailed analysis to later sections.

ESA 2022

90:4 Approximating DTW Distance Between RLE Strings

Throughout the section, we consider two strings x and y of length n whose characters
are taken from a set Σ with a symmetric distance function δ : Σ × Σ → N ∪ {0}. Our only
assumption on δ is that δ(a, b) ∈ {0, 1, 2, . . . , poly(n)} for all a, b ∈ Σ. (We do not need the
triangle inequality on δ.) Let k and ℓ be the number of runs in x and y, respectively. We
will describe a (1 + O(ϵ))-approximate algorithm that takes Õ(kℓ/ poly(ϵ)) time.

How to think about DTW

There are several mathematically equivalent ways (see, e.g., [25, 22, 21]) to define the
dynamic time warping distance between x and y. In this paper, we work with the geometric
interpretation: consider an n × n grid where cell (i, j) has cost δ(xi, yj); consider the paths
through the grid that travel from (1, 1) to (n, n) via steps of the form ⟨1, 0⟩ (a horizontal step
(h-step) to the right), ⟨0, 1⟩ (a vertical step (v-step) up), and ⟨1, 1⟩ (a diagonal step (d-step) to
the upper right); the cost of such a path is the sum of the costs of the cells that it encounters,
and DTW(x, y) is defined to be the smallest cost of any such path. For an example, see
Figure 1, which shows an optimal full path for computing DTW(aaabbbbddd, aabcdd) = 1,
where the δ-function measures the distance between characters in the alphabet.

Note that the i-th column of the grid corresponds to xi and the j-th row of the grid
corresponds to yj . Thus, each run xi0 , . . . , xi1 in x corresponds to a sequence of adjacent
columns i0, . . . , i1 in the grid, and each run yj0 , . . . , yj1 in y corresponds to a sequence of
adjacent rows j0, . . . , j1 in the grid.

If we want to design an algorithm that approximates DTW(x, y) in Õ(kℓ/ poly(ϵ)) time,
then it is natural to think about the grid as follows. We break the grid into blocks by drawing
a vertical line between every pair of runs in x and a horizontal line between every pair of
runs in y; and label the blocks {Bi,j}i∈[k],j∈[ℓ], where block Bi,j corresponds horizontally to
the i-th run in x and vertically to the j-th run in y. All of the cells within a given block B

have the same cost, which we refer to as δ(B). We may also use δi,j for δ(Bi,j). We refer to
the first/last row of each block as a lower/upper horizontal boundary and to the first/last
column of each block as a left/right vertical boundary.

Finally, it will be helpful to talk about sequences of blocks that are adjacent horizontally
or vertically. An h-block segment consists of a sequence of consecutive blocks lined up
horizontally. Formally, given i1 ≤ i2 in [k] and j in [ℓ], we use B[i1,i2],j for the h-block segment
Bi1,j , Bi1+1,j , . . . , Bi2,j . Similarly, a v-block segment consists of a sequence of consecutive
blocks lined up vertically – we use Bi,[j1,j2] for the v-block segment Bi,j1 , Bi,j1+1, . . . , Bi,j2 .
In the same way that we can talk about the four boundaries of a block, we can talk about
the four boundaries of a given h-block or v-block segment.

Intuitively, since there are O(kℓ) blocks, our goal is to design an algorithm that runs in
time roughly proportional to the number of blocks.

How to think about the optimal path

Let P be a minimum-cost path through the grid. We can decompose the path into a sequence
of disjoint components P1, P2, P3, . . ., where each component takes one of two forms:
1. A horizontal-to-vertical (h-to-v) component connects a cell on the lower boundary of

some v-block segment to another cell on the right boundary of the same v-block segment.
2. A vertical-to-horizontal (v-to-h) component connects a cell on the left boundary of

some h-block segment to another cell on the upper boundary of the same h-block segment.
The components P1, P2, P3, . . . are defined such that the end cell of each Pr connects to the
the start cell of each Pr+1 via a single step (either horizontal, vertical, or diagonal).

Z. Xi and W. Kuszmaul 90:5

We will now describe a series of simplifications that we can make to P while increasing
its total cost by at most a (1 + O(ϵ))-factor. The simplifications are central to the design of
our algorithm.

Simplification 1: Rounding each component to start and end on “snap points”

Let us call a grid cell (i, j) an intersection point if it lies in the intersection of a horizontal
boundary and a vertical boundary. (Each block contains at most four intersection points.)
We call a grid cell a snap point if either it is an intersection point, or it is of the form
(i + (1 + ϵ)t, j) on the upper boundary of a block B, or it is of the form (i + 1 + (1 + ϵ)t, j) on
the lower boundary of a block B, or it is of the form (i, j + (1 + ϵ)t) on the right boundary
of a block B, or it is of the form (i, j + 1 + (1 + ϵ)t) on the left boundary of a block B,
where (i, j) is an intersection point of the block B and t is nonnegative integer (since this is
a technical overview, we ignore floor and ceiling issues). For each boundary cell p in the grid,
define snap(p) to be the nearest snap point to the right of p, if p is on a horizontal boundary,
and to be the nearest snap point above p, if p is on a vertical boundary. If p is on both a
horizontal boundary and a vertical boundary, then p is an intersection point, so snap(p) = p.

How much would the cost of P increase if we required each of its components to start
and end on snap points? Suppose, in particular, that we replace each component Pr with a
component P ′

r whose start point pr has been replaced with snap(pr) and whose end point qr

has been replaced with snap(qr). It may be that snap(qr) does not connect to snap(pr+1),
meaning that P ′

r and P ′
r+1 do not connect properly. If this happens, however, then one can

simply modify the starting-point of P ′
r+1 in order to connect it to P ′

r (and it turns out this
only makes P ′

r+1 cheaper).
Let P ′ be the concatenation of P ′

1, P ′
2, P ′

3, To bound the cost of P ′, we can argue
that the cost of each P ′

r is at most (1 + ϵ) times that of Pr. To transform Pr into P ′
r, the

first step is to round the start point pr of Pr to snap(pr) – one can readily see that this only
decreases (or leaves unchanged) the cost of Pr. The second step is to round the end point qr

of Pr to snap(qr). For simplicity, assume that Pr is an h-to-v component that starts on the
lower boundary of some block Bi,j1 and finishes on the right boundary of some block Bi,j2 .
Let (u, v) be the lower-right intersection point of Bi,j2 and suppose that Pr finishes in cell
(u, v + s). Then Pr incurs cost at least (s + 1) · δi,j2 in block Bi,j2 . Moreover, the snap point
snap(qr) = snap(u, v + s) is guaranteed to be in the set {(u, v + s + t)}t∈{0,1,...,ϵ·s}. Thus the
cost of traveling from qr to snap(qr) is at most ϵ · s · δi,j2 . So the cost of P ′

r is at most (1 + ϵ)
times that of Pr.

By analyzing each component in this way, we can argue that cost(P ′) ≤ (1 + ϵ) cost(P).
Throughout the rest of the section, we will assume that P has been replaced with P ′, meaning
that each component starts and ends with a snap point.

Simplification 2: Understanding the structure of each component

Next we observe that each individual component can be assumed to have a relatively simple
structure. For simplicity, let us focus on an h-to-v component Pr in a v-block segment
Bi,[j1,j2]. We may assume without loss of generality that all of Pr’s h-steps occur together
on the lower boundary of some block; and that all of Pr’s v-steps occur at the end of Pr.
In other words, Pr is of the form D1 ⊕ H ⊕ D2 ⊕ U where ⊕ is for path concatenation, D1
consists of d-steps, H consists of h-steps (along a lower boundary), D2 again consists of
d-steps, and U consists of v-steps (along a right boundary).3 (See Figure 2 where the path
p1q1q2p2p3 in solid lines is such an example.)

3 Note that the components D1, H, D2, and U are each individually allowed to be length 0.

ESA 2022

90:6 Approximating DTW Distance Between RLE Strings

Combined, these assumptions make it so that Pr is fully determined by four quantities:
(1) Pr’s start point pr, (2) the block Bi,j in which H occurs, (3) the length of H, and (4)
the length of U .

Define Pr to be the prefix of Pr that terminates as soon as U hits its first snap point.
(See Figure 2 where the path p1q1q2p2p′

2 is such a prefix of the path p1q1q2p2p3.) We will
see later that Pr is, in some sense, the “important” part of Pr to our algorithm. Observe
that Pr is fully determined by just three quantities: (1) Pr’s start point pr, (2) the block
Bi,j in which H occurs, and (3) the length of H.

Simplification 3: Reducing the number of options for each component

We will now argue that, if we fix the start point pr, and we are willing to tolerate a
(1 + O(ϵ))-factor approximation loss, then we only need to consider poly(ϵ−1 log n) options
for Pr.

We begin by considering block Bi,j in which H occurs. Let us define the sequence of
blocks B0, B1, B2, . . . so that Bs = Bi,j+s and define the sequence of costs δ0, δ1, δ2, . . . so
that δs = δi,j+s. We say that a block Bs is extremal if (1 + ϵ)δs ≤ δt for all t < s. If we are
willing to tolerate a (1+O(ϵ))-factor increase in Pr’s cost, then we can assume without loss of
generality that H occurs in an extremal block. On the other hand, there are only O(log1+ϵ(n))
extremal blocks, so this means that we only need to consider O(log1+ϵ(n)) ≤ poly(ϵ−1 log n)
options for the starting point of H.

Next we consider the length of the horizontal sub-component H. If we are willing to
tolerate a (1 + O(ϵ))-factor increase in Pr’s cost, then we can round |H|, the length of H, up
to be a power of (1 + ϵ) (or to be whatever length brings us to the next vertical boundary).
Thus we only need to consider O(log1+ϵ(n)) ≤ poly(ϵ−1 log n) options for |H|.

Together, the block Bi,j in which H occurs and the length of H fully determine Pr. Thus,
we have reached the following conclusion: if the start point pr of the component Pr is known,
then there are only poly(ϵ−1 log n) options that we must consider for what Pr could look like.
Moreover, although we have considered only h-to-v components here, one can make a similar
argument for v-to-h components.

Approximating DTW in Õ(kℓ/ poly(ϵ)) time

We will now construct a weighted directed acyclic graph G = ⟨V, E⟩ that has two special
vertices v0 and v∗ and that satisfies the following properties:

G has a total of Õ(kℓ/ poly(ϵ)) vertices/edges, and
the distance from v0 to v∗ in G is a (1 + O(ϵ))-approximation for DTW(x, y).

This reduces the problem of approximating DTW(x, y) to the problem of computing a
distance in a weighted directed acyclic graph. The latter problem, of course, can be solved
in linear time with dynamic programming; thus the graph G give us a Õ(kℓ/ poly(ϵ))-time
(1 + O(ϵ))-approximation algorithm for DTW.

We construct G to capture the different ways in which path components Pr can connect
together (assuming that the path components take the simplified forms described above). As
the vertices v ∈ V correspond to the snap points p in the grid, we can use a vertex to refer
to its corresponding snap point and vice versa. We define v0 to be the cell (1, 1) in the grid
and v∗ to be the cell (n, n). We add edges E as follows:

Z. Xi and W. Kuszmaul 90:7

We connect each snap point p on a horizontal (resp. vertical) boundary to the next snap
point q to its right (resp. above it).
We connect each snap point p on a right (resp. upper) boundary to any snap points q on
the adjacent left (resp. lower) boundary that can be reached from p in a single step.
Each snap point p ∈ V has poly(ϵ−1 log n) out-edges corresponding to the poly(ϵ−1 log n)
options for what a (truncated) component Pr starting at p could look like.4

Note that, although we only add edges for truncated path components Pr (rather than
full components Pr), these edges can be combined with edges of the first type in order to
obtain the full component. This is why we said earlier that the truncated component is the
“important” part of the component.

The paths from v0 to v∗ in G correspond to the ways in which we can concatenate path
components together to get a full path through the grid; if we assign the appropriate weights
to the edges, then the cost of a path through G corresponds to the cost of the same path
through the grid. The distance from v0 to v∗ is therefore a (1 + O(ϵ))-approximation for
DTW(x, y).

Finally, we must bound the size of G. Each block contains at most four intersection
points; so there are O(kℓ) total intersection points. Each intersection point creates at most
O(log1+ϵ(n)) snap points; so there are O(kℓϵ−1 log n) snap points (which are the vertices in
V). Each snap point has an out-degree of at most poly(ϵ−1 log n). Hence we have:

|E| ≤ O(kℓϵ−1 log n) poly(ϵ−1 log n) = Õ(kℓ/ poly(ϵ)).

We can therefore compute the distance from v0 to v∗ in Õ(kℓ/ poly(ϵ)) time, as desired.

Paper outline

For the sake of simplicity, there are a number of details that we chose to ignore in this section
(such as a time-efficient construction of G and a careful proof that the modifications to P

incur only a (1 + O(ϵ))-factor change in its cost). In the remainder of the paper, we give a
formal presentation and analysis of the algorithm outlined above.

3 Preliminaries

We use [n1, n2] for the set {n1, n1 + 1, . . . , n2} consisting of all the integers between n1 and
n2, inclusive, and use [n] as a shorthand for [1, n]. We use Tm,n for a table consisting of
m columns and n rows and Tm,n[i, j] for the entry on the i-th column and j-th row, where
(i, j) ∈ [m] × [n] is assumed. We may use T for Tm,n if m and n can be readily inferred from
the context. Please note that an entry Tm,n[i, j] in a table should be distinguished from the
value stored in the entry – when discussing the value, we shall refer to it as the content of
the entry Tm,n[i, j].

Letters

Let us assume an alphabet Σ, which is possibly infinite. We use δ for a distance function on
letters such that δ(a, a) = 0 for any a ∈ Σ. We do not require that δ be symmetric or the
triangular inequality δ(a, c) ≤ δ(a, b) + δ(b, c) hold for δ.

4 Note that G is not necessarily simple. If there are multiple ways that a component Pr could connect
two vertices p1 and p2, then there will be multiple edges from p1 to p2.

ESA 2022

90:8 Approximating DTW Distance Between RLE Strings

0 0 0

0 0 0

1 1 1 1

1 1 1 1

3 3 3

3 3 3

1 1 1 0 0 0 0 2 2 2

2 2 2 1 1 1 1 1 1 1

3 3 3

3 3 3

2 2 2 2

2 2 2 2

0 0 0

0 0 0

a

a

b

c

d

d

(y)

a a a b b b b d d d (x)

Figure 1 An optimal full path of the order (10, 6) whose cost equals 1.

Strings

We use x and y for strings. We write x = (a1, . . . , am) for a string consisting of m letters
such that x[i] (often written as xi), the i-th letter in x, is ai for each i ∈ [m]. We use
aˆn for a string of n occurrences of a, which is also referred to as a run of a, and x̂ for a
run-length encoded (RLE) string, which consists of a sequence of runs. We use |x̂| and ∥x̂∥
for the length and r-length of x̂, which are m1 + · · · + mk and k, respectively, in the case
x̂ = (a′

1ˆm1, . . . , a′
kˆmk).

A run in a string x is maximal if it is not contained in a longer run in x. There is a
unique run-length encoding x̂ of x that consists of only maximal runs in x, and this encoding
x̂ is referred to as the RLE representation of x. We also use ∥x∥ for the number of maximal
runs in x (and thus ∥x∥ = ∥x̂∥).

We use p for points, which are just integer pairs.

▶ Definition 1. Given a point p1 = (i1, j1), another point p2 = (i2, j2) is a successor of p1 if
(1) i2 = i1 + 1 and j2 = j1, or (2) i2 = i1 and j2 = j1 + 1, or (3) i2 = i1 + 1 and j2 = j1 + 1.

▶ Definition 2. Let P = ⟨p1, . . . , pR⟩ be a sequence of points such that pr ∈ [m] × [n] holds
for each 1 ≤ r ≤ R. We call P a path of order (m, n) if pr+1 is a successor of pr for each
1 ≤ r < R (and this P is sometimes also called a “warping path” [21]). Also, we refer to a
path of length 2 as a step that connects a point to one of its successors.

We use P(m, n) for the set of paths of order (m, n). A path P1 ∈ P(m, n) is a subpath of
another path P2 ∈ P(m, n) if P1 is contained in P2 (as a consecutive segment).

▶ Definition 3. Let P1 and P2 be two non-empty paths. We use P1 ≃ P2 to mean that P1
and P2 begin at the same point and end at the same point.

▶ Definition 4. Let P1 and P2 be two paths such that the first point of P2, if it exists, is the
successor of the last point of P1, if it exists. We write P1 +P2 to mean the concatenation of P1
and P2 (as sequences of points) that forms a path containing both P1 and P2 as its subpaths.
In the case where both P1 and P2 are non-empty, there is a step in P1 + P2 connecting P1
and P2 that consists of the last point in P1 and the first point in P2.

Also, we write P1 ⊕ P2 to mean P1 + P ′
2 where the last point of P1 is assumed to be the first

point of P2 and P ′
2 is the tail of P2, that is, P ′

2 is obtained from removing the first point in
P2. In other words, P1 + P2 implies that P1 and P2 share no point while P1 ⊕ P2 implies
that P1 and P2 share one point, which is the last point of P1 and the first point of P2.

Z. Xi and W. Kuszmaul 90:9

▶ Definition 5. Let x = (a1, . . . , am) and y = (b1, . . . , bn) be two strings. For each path P ∈
P(m, n), there is a value costx,y(P) = ΣR

r=1δ(air
, bjr

), where P equals ((i1, j1), . . . , (iR, jR)).
This value is often referred to as the cost of P . We may write cost(P) for costx,y(P) if it is
clear from the context what x and y should be.

We call each P ∈ P(m, n) a full path if (i1, j1) = (1, 1) and (iR, jR) = (m, n). The DTW
distance between x and y, denoted by DTW(x, y), is formally defined as the minimum of
costx,y(P), where P ranges over the set of full paths of order (m, n). Also, a full path P is
referred to as an optimal full path if costx,y(P) = DTW(x, y). Given there are only finitely
many paths of order (m, n), there must exist one full path that is optimal. As an example,
the shaded squares in Figure 1 illustrate the following full path of the order (10, 6):

⟨(1, 1), (2, 2), (3, 2), (4, 3), (5, 3), (6, 3), (7, 4), (8, 5), (9, 6), (10, 6)⟩

where the number in each square is the assumed distance between the two corresponding
letters (computed here as the difference between their positions in the alphabet).

▶ Definition 6. Let P = ⟨(i1, j1), . . . , (iR, jR)⟩.
1. P is a v-path if all the ir are the same for 1 ≤ r ≤ R.
2. P is a h-path if all the jr are the same for 1 ≤ r ≤ R.
3. P is a d-path if ir+1 = ir + 1 and jr+1 = jr + 1 for 1 ≤ r < R.
Please recall that a step is a path of length 2. If a step is a h-path/v-path/d-path, respectively,
then it is a h-step/v-step/d-step, respectively.

▶ Definition 7. Let x = (a1, . . . , am) and y = (b1, . . . , bn) be two strings. We use TDTW (x, y)
for the table Tm,n such that the content of Tm,n[i, j] is δ(ai, bj) for each i ∈ [m] and j ∈ [n].

We may use TDTW for TDTW (x, y) if x and y can be readily inferred from the context. If
a table TDTW can be readily inferred from the context, we often associate a point (i, j)
with the entry TDTW [i, j] and think of a path P = ⟨(i1, j1), . . . , (iR, jR)⟩ as the sequence of
entries TDTW [ir, jr] for 1 ≤ r ≤ R. As an example, a full path of the order (10, 6) is given in
Figure 1, where the path is indicated with the 10 shaded entries.

Suppose that the ith run (jth) in x (y) consists of the letters in x (y) from position i1
(j1) to position i2 (j2), inclusive. Then there is a corresponding block Bi,j consisting of all
the entries TDTW [u, v] for i1 ≤ u ≤ i2 and j1 ≤ v ≤ j2. Finally, we introduce notation for
discussing specific blocks:

▶ Definition 8. If there exists a block B to the right of Bi,j such that δ(B) < δ(Bi,j), we
use βh(Bi,j) for such a B that is the closest to Bi,j. In other words, βh(Bi,j) is Bi′,j for
the least i′ satisfying i < i′ and δ(Bi′,j) < δ(Bi,j). Similarly, if there exists a block B above
Bi,j such that δ(B) < δ(Bi,j), then βv(Bi,j) is Bi,j′ for the least j′ satisfying j < j′ and
δ(Bi,j′) < δ(Bi,j).

3.1 Computing DTW Distance with Graphs
It is well known [40] that one can turn the problem of computing DTW(x, y) for two given
strings x and y into a problem of finding the shortest distance between two given vertices in
some graph, as follows.

Let x = (a1, . . . , am) and y = (b1, . . . , bn). We can construct a directed graph G0 =
⟨V0, E0⟩ such that
1. there is a vertex vi,j ∈ V0 for each pair (i, j) ∈ [m] × [n], and
2. there is a directed edge e(vi1,j1 , vi2,j2) of length δ(ai1 , bj1) connecting vi1,j1 to vi2,j2

whenever (i2, j2) is a successor of (i1, j1).

ESA 2022

90:10 Approximating DTW Distance Between RLE Strings

We use GDTW (x, y) for this graph G0 and use v and e to range over V0 and E0, respectively.
We may also refer to each vertex vi,j ∈ V0 simply as point (i, j) if there is no risk of confusion.
Clearly, |V0|, the size of V0, is mn, and |E0|, the size of E0, is bounded by 3mn (since each
point can have at most 3 successors).

As every warping path is naturally mapped to a path in the graph GDTW (x, y) and vice
versa, we can use P to range over both warping paths in TDTW (x, y) and paths in GDTW (x, y)
without risking confusion. Given a (non-empty) warping path P in TDTW (x, y), we use
len(P) for the length of the corresponding path of P in GDTW (x, y), which equals the cost
of P minus the cost associated with the last point in P . Therefore, finding the value of
DTW(x, y) is equivalent to finding the shortest distance from v1,1 to vm,n, which can be
done by running some version of Dijkstra’s shortest distance algorithm. Alternatively, since
GDTW (x, y) is acyclic, one can use dynamic programming to find the shortest distance, in
which case the running time becomes O(mn). This yields the classic dynamic-programming
solution for computing DTW(x, y) [40].

The basic strategy that we use in this paper to design a DTW approximation algorithm
can be outlined as follows. Let G0 = ⟨V0, E0⟩ be the graph GDTW (x, y) given above. We try
to construct a graph G = ⟨V, E⟩ such that V ⊆ V0 holds and the length of each edge e in E

that connects a vertex v1 to another vertex v2 equals the shortest distance from v1 to v2 as
is defined in G0. Let dist0 and dist be the shortest distance functions on the graphs G0 and
G, respectively. We attempt to prove that

dist0(v1,1, vm,n) ≤ dist(v1,1, vm,n) ≤ α · dist0(v1,1, vm,n)

for some approximation ratio α > 1 (e.g., α = 1 + ϵ for ϵ > 0). By running a shortest-path
algorithm on G, we are able to compute dist(v1,1, vm,n) and thus obtain an α-approximation
algorithm for DTW(x, y). As the time complexity of such an algorithm can be bounded by
O(|E|) plus the time needed for constructing G, the key to finding a fast algorithm is try to
minimize |E|, the size of E (while ensuring that the construction of G can be done in O(|E|)
time).

4 A (1+ϵ)-Approximation Algorithm for DTW

In this section, we present and analyze a (1 + ϵ)-approximation algorithm for approximating
the DTW distance between two run-length encoded strings in near-quadratic time.

Let x = (a1, . . . , am) and y = (b1, . . . , bn) be two non-empty strings. Following Section 3.1,
our approach will be to construct a graph G = ⟨V, E⟩ based on GDTW (x, y), reducing the
problem of computing a (1 + ϵ)-approximation of DTW(x, y) to finding the shortest distance
between the vertex v1,1 and the vertex vm,n in G.

We begin by describing the notions of h-to-v paths and v-to-h paths. The role that these
will play in our algorithm is that we will show how to decompose any full path P into a
concatenation P1 + P2 + · · · of h-to-v and v-to-h paths.

▶ Definition 9. Let x and y be two non-empty strings. A horizontal-to-vertical (h-to-v)
path in TDTW (x, y) is a path that connects a point on the lower boundary of a block Bi,j1

to another point on the right boundary of Bi,j2 . An h-to-v component in a full path is a
maximal h-to-v path that is not contained in any longer h-to-v path in the same full path. A
vertical-to-horizontal (v-to-h) path can be defined similarly.

Z. Xi and W. Kuszmaul 90:11

p1

p2

p3

q1 q2

p′
3 = snap(p3)

p′
1

p′
2 = snap(p2)

q′
1

q′
2

q′
3

Figure 2 For illustrating h-to-v path approximation.

Note that an h-to-v path matches characters from a single run in x to characters from
(possibly multiple) runs in y. We now make the (standard) observation that, when we are
comparing a single run to characters to a multi-run string, DTW behaves in a very natural
way:

▶ Observation 10. Let x = (a1, . . . , am) and y = (b1, . . . , bn) be two non-empty strings.
Assume that x is a run of some letter a0, that is, a0 = ai for 1 ≤ i ≤ m.
1. If m ≤ n, then we have: DTW(x, y) = Σn

j=1δ(a0, bj). This case corresponds to a path of
the form D ⊕ U , where D consists of only d-steps and U only v-steps.

2. If m ≥ n, then we have: DTW(x, y) = Σn
j=1δ(a0, bj) + (m − n) · δ(a0, b0), where b0 is

some bj closest to a0, that is, δ(a0, b0) equals the minimum of δ(a0, bj) for 1 ≤ j ≤ n.
This case corresponds to a path of the form D1 ⊕ H ⊕ D2, where D1 and D2 consist of
only d-steps and H only h-steps. It should be further noted that, in this case, H can be
assumed to travel along the lower boundary of some block, without loss of generality.

We say that a path connecting p and q is optimal if its cost is the least among all the paths
connecting p and q. By merging the two cases in Observation 10, we can assume that each
optimal h-to-v path is of the form D1 ⊕ H ⊕ D2 ⊕ U , where any of the four sub-components
can vanish. From now on, we can use a 5-tuple (p1, q1, q2, p2, p3) (which may also be written
as p1q1q2p2p3) to refer to an h-to-v path, where p1q1 is D1, q1q2 is H, q2p2 is D2, and p2p3
is U . Similarly, each optimal v-to-h path is of the form D1 ⊕ U ⊕ D2 ⊕ H, and we use a
corresponding 5-tuple representation to refer to a v-to-h path as well.

Next we argue that any full path P0 can be decomposed into h-to-v and v-to-h paths.

▶ Lemma 11. Let x and y be two non-empty strings. Given a full path P0 in TDTW (x, y),
we have P0 = P1 + · · · + PR where Pr is an h-to-v path for each odd 1 ≤ r ≤ R and Pr is a
v-to-h path for each even 1 ≤ r ≤ R.

Proof. The proof follows directly from the defintions of h-to-v paths and v-to-h paths. For
brevity, we defer the full proof to the extended version of the paper [41]. ◀

Given two non-empty strings x = (a1, . . . , am) and y = (b1, . . . , bn), we outline as follows
a strategy for approximating DTW(x, y). Let P0 be an optimal full path on TDTW (x, y) such
that cost(P0) = DTW(x, y). By Lemma 11, we have P0 = P1 + · · · + PR, where P1 is an
h-to-v path and P1, . . . , PR are a sequence of alternating h-to-v paths and v-to-h paths. Let
us choose an h-to-v path Pr for some 1 ≤ r ≤ R. By Observation 10, we can assume that Pr

is of the form of solid lines depicted in Figure 2.5

5 The meaning of the dashed lines in the figure is to be explained later.

ESA 2022

90:12 Approximating DTW Distance Between RLE Strings

In more detail, the path Pr moves diagonally from a point p1 on the lower boundary of a
block B1 until it meets the lower boundary of another block; it moves horizontally along that
lower boundary for some distance; it then moves diagonally to reach a point p2 on the right
boundary of another block B2 (which is either B1 or sits above B1); and finally it moves
vertically to reach a point p3 on the right boundary of another block B3 (which is either B2
or sits above B2). Note that the horizontal moves contained in Pr must be inside a block
where those moves cost the least.6

Let G0 = ⟨V0, E0⟩ be the graph GDTW (x, y) described in Section 3.1 for computing
DTW(x, y). We may use a point (that is, an integer pair) to refer to the corresponding vertex
in V0. We may also use a path P in TDTW (x, y) to denote its counterpart in G0.

Given ϵ > 0, we will construct a graph G = ⟨V, E⟩ such that:
The point (1, 1) is in V and V ⊆ V0 holds.
Every point in V is on a boundary. Each point in V that is on either a right or upper
boundary is connected by an edge to the next snap point on the same boundary (if there
is one).
If there is a step (either an h-step, v-step, or d-step) connecting two boundary points
p1 and p2 in E0, then there is also a step connecting snap(p1) and snap(p2) in E, where
snap(p1) (resp. snap(p2)) is the nearest point in V above or to the right of p1 (resp. p2)
on the same boundary as p1.
For each h-to-v (resp. v-to-h) path P from p1 to p2 (depicted by some solid lines in
Figure 2) in G0 and any point p′

1 in G to the right of p1 (resp. above p1) such that
p1 and p′

1 are on the same block boundary, there exists a path P ′ (depicted by some
dashed lines in Figure 2) in G connecting p′

1 and the point p′
2 = snap(p2) in G such that

dist(P ′) ≤ (1 + ϵ)dist0(P), where dist and dist0 are the shortest distance functions on the
graphs G and G0, respectively.

We remark that our construction of G will repeatedly make use of the following basic fact.

▶ Observation 12. Let ∆(t) = ⌊(1 + ϵ)t⌋ for integers t ≥ 0. For each integer d ≥ 1, we have
a (1 + ϵ)-approximation of d that is of the form ∆(t). In other words, d ≤ ∆(t) ≤ (1 + ϵ) · d

holds for some t.

We now describe how to construct the graph G. We construct the set V of vertices as
follows:
1. Each vertex in G0 corresponding to a corner point in TDTW (x, y) should be added into

V . There are at most 4kℓ such vertices, where k = ∥x∥ and ℓ = ∥y∥.
2. Assume (i, j) is the lower-left corner of block B.

If a point (i + 1 + ∆(t), j) is on the lower boundary of B for some t ≥ 0, then this point
should be added into V . There are at most log1+ϵ(m) such points for the block B.
If a point (i, j + 1 + ∆(t)) is on the left boundary of B for some t ≥ 0, then this point
should be added into V . There are at most log1+ϵ(n) such points for the block B.

3. Assume (i, j) is the upper-left corner of block B. If a point (i + ∆(t), j) is on the upper
boundary of B for some t ≥ 0, then this point should be added into V . There are at most
log1+ϵ(m) such points for the block B.

4. Assume (i, j) is the lower-right corner of block B. If a point (i, j + ∆(t)) is on the right
boundary of B for some t ≥ 0, then this point should be added into V . There are at most
log1+ϵ(n) such points for the block B.

6 If there are several blocks in which such horizontal moves can take place, we simply assume that the
moves are inside the lowest of these blocks.

Z. Xi and W. Kuszmaul 90:13

The points in V are referred to as snap points. Given a snap point p′ on the upper or
right boundary of some block, if p′q′ is a d-step for some point q′, then q′ is also a snap
point. This can be readily verified by inspecting the construction of V . Also, for each block
B, there are at most O(log(m + n)/ϵ) points added to V . Therefore, |V |, the size of V , is
O(kℓ · log(m + n)/ϵ) or simply Õ(kℓ/ϵ).

▶ Definition 13. Given a point p ∈ V0 on a horizontal boundary of a block B, we use
snaph(p) for the point p′ ∈ V such that p′ is p if p ∈ V or p′ is the closest point to the right
of p that is on the same boundary of B. The existence of such a point is guaranteed as all of
the corner points are included in V . Similarly, snapv(p) can be defined for each point p on a
vertical boundary of a block.

We can use snap(p) for either snaph(p) or snapv(p) without confusion: If both snaph(p) and
snapv(p) are defined for p, then p must be a corner of some block B, implying p = snaph(p) =
snapv(p) since p ∈ V holds. We argue as follows that finding snap(p) for each given p can be
done in Õ(1) time.7

▶ Definition 14. Let x = (a1, . . . , am) be a string and x̂ = (a′
1ˆm1, . . . , a′

kˆmk) be its RLE
representation. Let Mr be m1 + · · · + mr for each 0 ≤ r < k. For each 1 ≤ i ≤ m, we use îx

for the pair (i0, i1) such that i = Mi0 + i1 for 1 ≤ i1 ≤ mi0+1.

We may use î for îx if x can be readily inferred from the context.
It is worth taking a moment to verify that we can compute îx efficiently. Assume that

an array storing Mr for 0 ≤ r < k is already built (in O(k) time). Given i ∈ [m], we can
perform binary search on the array to find i0 in O(log(k)) time such that Mi0 < i ≤ Mi0+1;
we can then compute îx as (i0, i − Mi0).

It is also worth verifying that we can compute snap(p) in Õ(1) time. Given a point
p = (i, j) on a boundary of some block B in TDTW (x, y), we can compute îx = (i0, i1) in
O(log(k)) time. Similarly, we can compute ĵy = (j0, j1) in O(log(ℓ)) time. We can locate
the block B as Bi0+1,j0+1, and then find snap(p) in O(1) time (assuming log1+ϵ(i1) and
log1+ϵ(j1) can be computed in O(1) time). Therefore, given p, we can compute snap(p) in
Õ(1) time.

Having established that we can compute î and snap(p) efficiently, we are nearly ready to
describe the construction of the edges E. Our final task before doing so is to establish a bit
more notation for how to talk about blocks.

Please recall that βh(Bi,j) (resp. βv(Bi,j) refers to the closest block Bi′,j (resp. Bi,j′)
such that δ(Bi′,j) < δ(Bi,j) (resp. δ(Bi,j′) < δ(Bi,j)) holds. If there is no such a block,
βh(Bi,j) (resp. βh(Bi,j)) is undefined.

▶ Definition 15. We refer to Bi1,j , · · · , BiS ,j as a βh-sequence if Bis+1,j = βh(Bis,j) for 1 ≤
s < S. Let β∗

h(x, y) be the length of a longest βh-sequence. Clearly, we have β∗
h(x, y) ≤ ∥x∥.

Similarly, we refer to Bi,j1 , · · · , Bi,jS
as a βv-sequence if Bi,js+1 = βv(Bi,js

) for 1 ≤ s < S.
Let β∗

v(x, y) be the length of a longest βv-sequence. Clearly, we have β∗
v(x, y) ≤ ∥y∥. Let

β∗(x, y) = max(β∗
h(x, y), β∗

v(x, y)).

Observe that if the underlying distance function δ on letters is from Hamming space,
then β∗(x, y) ≤ 2 for any x and y. Slightly more generally, if δ is bounded by a constant,
then β∗(x, y) is bounded by the same constant plus one. Later in the section, in the proof of
Theorem 21, we will also see an important (and much more general) case where β∗(x, y) is
guaranteed to be Õ(1).

7 We slightly abuse the Õ notation here as the parameters m and n for the implicit log-terms are not
explicitly mentioned.

ESA 2022

90:14 Approximating DTW Distance Between RLE Strings

We are now ready to explain the construction of the set E of edges for connecting vertices
in V . The basic idea is to construct E in such a way that, for any constructed path p′

1q′
1q′

2q′
3p′

2
(as is depicted in Figure 2), there should be a path in G going from p′

1 to p′
2 whose cost

is at most the cost of the path in G0 – this allows for the graph G to capture all such
paths, and ultimately allows for G to be used in our approximation algorithm. Formally, the
construction of E can be performed with the following steps:
1. Note that the corner points in V0 are all in V . The edges connecting these corner points

in E0 should be added into E.
2. Given a point p′

1 ∈ V on the upper boundary of a block B, if there is a d-step from p′
1 to

p′
2 (on the lower boundary of the block above B), then p′

2 is in V and an edge from p′
1 to

p′
2 should be added into E whose length equals δ(B).

3. Given a point p′
1 ∈ V on the right boundary of a block B, if there is a d-step from p′

1
to p′

2 (on the left boundary of the block to the right of B), then p′
2 is in V and an edge

from p′
1 to p′

2 should be added into E whose length equals δ(B).
4. If two points p′

1 = (i1, j1) and p′
2 = (i2, j2) in V are on the same horizontal or vertical

boundary of a block B such that p′
2 is the closest point above or to the right of p′

1, then an
edge from p′

1 to p′
2 should be added into E whose length equals (i2 − i1) · δ(B) (horizontal)

or (j2 − j1) · δ(B) (vertical).
5. Let p′

1 be a point in V on the lower boundary of a block B1. This step adds into E edges
between p′

1 and certain chosen snap points q′
4 such that there are h-to-v paths connecting

p′
1 and q′

4.
Let us use B1

1 , . . . , BS
1 for the sequence where B1 = B1

1 and Bs+1
1 = βv(Bs

1) for 1 ≤ s < S

and βv(BS
1) is undefined. Clearly, S is bounded by β∗

v(x, y) (according to the definition
of β∗

v(x, y)). Let B′
1 range over B1

1 , . . . , BS
1 .

Let q′
1 = (i′

1, j′
1) be the point on the lower boundary of B′

1 such that the path connecting
p′

1 and q′
1 consists of only d-steps. Let snapsh(q′

1) be the set consisting of the point q′
1,

the points on the lower boundary of B′
1 of the form (i′

1 + ∆(t), j′
1) for some t ≥ 0, and the

lower-right corner point of B′
1. For each q′

2 ranging over the set snapsh(q′
1), there exists

at most one point q′
3 on the right boundary of some B2 (which is either B′

1 or sits above
B′

1) such that the path connecting q′
2 and q′

3 consists of only d-steps. As this q′
3 may not

be in V , we choose q′
4 to be snapv(q′

3), which is in V by definition. Note that the path
p′

1q′
1q′

2q′
3q′

4 is an h-to-v path in TDTW (x, y). We add into E an edge between p′
1 and q′

4
for each q′

4. The length of each added edge connecting p′
1 and q′

4 is the shortest distance
between p′

1 and q′
4, which, by Lemma 17, can be computed in Õ(1) time.

There is one q′
1 for each B′

1, and there are at most log1+ϵ(m) many of q′
2 for each q′

1, and
there is at most one q′

3 for each q′
2 and one q′

4 for each q′
3. Therefore, for each p′

1, there
are at most β∗

v(x, y) · log1+ϵ(m) edges added into E.
6. Let p′

1 be a point in V on the left boundary of a block B1. This step adds into E edges
between p′

1 and certain chosen snap points q′
4 such that there are v-to-h paths connecting

p′
1 and q′

4. We omit the details that are parallel to those in the previous step. There are
at most β∗

h(x, y) · log1+ϵ(n) edges added into E for each p′
1.

Let us take a moment to discuss how to efficiently compute the lengths of the edges added
to E during the construction of G = ⟨V, E⟩. That is, how to construct and determine the
cost of each dotted path p′

1q′
1q′

2q′
3q′

4 depicted in Figure 2. (Note that q′
4 = snapv(q′

3) is not
shown in the figure.)

▶ Lemma 16. Let x and y be two non-empty strings. For k = ∥x∥ and ℓ = ∥y∥,
1. we can compute βh(B) for all the blocks B in TDTW (x, y) in O(kℓ · log(k)) time, and
2. we can compute βv(B) for all the blocks B in TDTW (x, y) in O(kℓ · log(ℓ)) time.

Z. Xi and W. Kuszmaul 90:15

Proof. We defer the full proof to the extended version of the paper [41]. ◀

▶ Lemma 17. For each h-to-v path (p′
1, q′

1, q′
2, q′

3, q′
4), its length can be computed in Õ(1)

time if the five snap points p′
1, q′

1, q′
2, q′

3, and q′
4 are given.

Proof. We defer the full proof to the extended version of the paper [41]. ◀

For brevity, we omit the obvious lemma parallel to Lemma 17 that is instead on computing
the lengths of v-to-h paths in Õ(1) time.

We are now in a position to state and prove the main theorems of the paper. As noted
earlier, the basic idea behind our (1 + ϵ)-approximation algorithms is to compute a path-
distance through the graph G = (V, E), and show that this distance closely approximates
DTW(x, y).

We begin by stating a theorem that parameterizes its running time by β∗(x, y) – we will
then apply this result to obtain fast running times in the cases where the distance function δ

outputs either O(log n)-bit integer values (Theorem 21) or {0, 1}-values (Theorem 22).

▶ Theorem 18. Let x = (a1, . . . , am) and y = (b1, . . . , bn) be two non-empty strings, and let
x̂ and ŷ denote the run-length encoded versions of the two strings. There exists a (1 + ϵ)-
approximation algorithm (ApproxDTW) for each ϵ > 0 that takes x̂ and ŷ as its input
and returns a value ˜DTW(x, y) satisfying DTW(x, y) ≤ ˜DTW(x, y) ≤ (1 + ϵ) · DTW(x, y).
Moreover, the worst-case time complexity of this algorithm is Õ(kℓ · β∗(x, y)/ϵ2) for k = ∥x∥
and ℓ = ∥y∥, where β∗(x, y) is defined in Definition 15.

Proof. The analysis of the approximation ratio follows as in Section 2. ◀

4.1 Time-Bound for Polynomially-Bounded Letter Distances
In this section, we present a variant of the algorithm ApproxDTW for approximating
DTW(x, y) under the general condition that the distances between letters are integer values
bounded by some polynomial of the lengths of x and y. The time complexity of this variant,
which takes x̂ and ŷ as its input to compute DTW(x, y), is Õ(kℓ/ϵ3) for k = ∥x∥ and ℓ = ∥y∥.

▶ Definition 19. Let δ be a distance function on letters such that δ(a, b) ≥ 1 if δ(a, b) ̸= 0.
Given ϵ1 > 0, we use δϵ1 for the distance function such that δϵ1(a, b) = 0 if δ(a, b) = 0, or
δϵ1(a, b) = cpow(1 + ϵ1, δ(a, b)) if δ(a, b) ≥ 1, where cpow(1 + ϵ1, α) equals (1 + ϵ1)t for the
least integer t such that α ≤ (1 + ϵ1)t holds.

Please note that δ(a, b) ≤ δϵ1(a, b) ≤ (1 + ϵ1) · δ(a, b) holds for any letters a and b.

▶ Lemma 20. Let DTW(δ) be the DTW distance function where the underlying distance
function for letters is δ. Given ϵ1 > 0, we have the following inequality for each pair of
strings x and y:

DTW(δϵ1)(x, y) ≤ (1 + ϵ1) · DTW(δ)(x, y)

Proof. Let P be an optimal full path such that its length based on δ equals DTW(δ)(x, y).
We know that the length of P based on δϵ1 is bounded by (1 + ϵ1) · DTW(δ)(x, y) since
δϵ1(a, b) ≤ (1 + ϵ1) · δ(a, b) holds for any letters a and b. As DTW(δϵ1)(x, y) is bounded by
the length of P based on δϵ1 , we have the claimed inequality. ◀

ESA 2022

90:16 Approximating DTW Distance Between RLE Strings

Let ϵ1 > 0 and ϵ2 > 0. By Lemma 20, every (1+ϵ2)-approximation algorithm for DTW based
on δϵ1 is a (1 + ϵ1) · (1 + ϵ2)-approximation algorithm for DTW based on δ. For each ϵ > 0, if
we choose, for example, ϵ1 = ϵ/2 − ϵ2/2 and ϵ2 = ϵ/2, then we have (1 + ϵ1) · (1 + ϵ2) < 1 + ϵ,
implying that every (1 + ϵ2)-approximation algorithm for DTW based on δϵ1 is a (1 + ϵ)-
approximation algorithm for DTW based on δ.

▶ Theorem 21. Let x = (a1, . . . , am) and y = (b1, . . . , bn) be two non-empty strings.
Assume that the underlying distance function δ satisfies (1) δ(a, b) ≥ 1 if δ(a, b) ̸= 0 and

(2) δ(a, b) is poly(m+n) for any letters a in x and b in y. There exists a (1+ϵ)-approximation
algorithm for each ϵ > 0 that takes x̂ and ŷ as its input and returns a value w satisfying
DTW(x, y) ≤ w ≤ (1 + ϵ) · DTW(x, y). And the worst-case time complexity of this algorithm
is Õ(kℓ/ϵ3) for k = ∥x∥ and ℓ = ∥y∥.

Proof. Let ϵ1 = ϵ/2 − ϵ2/2 and ϵ2 = ϵ/2. By Theorem 18, ApproxDTW (as is presented in
the proof of Theorem 18) takes x̂ and ŷ as input and returns a (1 + ϵ2)-approximation of
DTW(δϵ1)(x, y). And the time complexity of the algorithm is Õ(kℓ · β∗(x, y)/ϵ2

2).
Note that there are only O(log1+ϵ1(m + n))-many distinct values of δϵ1(a, b) for a and b

ranging over letters in x and y, respectively. Hence, for the underlying distance function δϵ1

on letters, β∗
h(x, y) is O(log1+ϵ1(m+n)) and β∗

v(x, y) is also O(log1+ϵ1(m+n)), which implies
that β∗(x, y) is O(log1+ϵ1(m + n)) or simply Õ(1/ϵ1). Therefore, we can use ApproxDTW
to compute a (1 + ϵ2)-approximation of DTW(δϵ1)(x, y) in Õ(kℓ/ϵ1ϵ2

2) time. Since any
(1 + ϵ2)-approximation of DTW(δϵ1)(x, y) is a (1 + ϵ)-approximation of DTW(δ)(x, y), we
are done. ◀

4.2 Time-Bound for Constant-Bounded Letter Distances

Assume that there exists a constant N such that δ(a, b) is an integer less than N for each
pair a and b in Σ. For instance, (Σ, δ) satisfies this condition if it is Hamming space (for
which N can be set to 2).

▶ Theorem 22. Assume that δ(a, b) are O(1) for a, b ∈ Σ. Then ApproxDTW, the (1 + ϵ)-
approximation algorithm for DTW given in the proof of Theorem 18, runs in Õ(kℓ/ϵ2) time
for k = ∥x∥ and ℓ = ∥y∥, where x̂ and ŷ are the input of the algorithm.

Proof. This theorem follows from Theorem 18 immediately since β∗(x, y) is O(1). ◀

5 Conclusion

We have presented in this paper an algorithm for approximating the DTW distance between
two RLE strings. Trading accuracy for efficiency, this algorithm is of (near) quadratic-time
complexity and thus, as can be expected, asymptotically faster than the exact DTW algorithm
of cubic-time complexity [21], which is currently considered the state-of-art of its kind.

It will be interesting to further investigate whether there exist asymptotically faster
approximation algorithms for DTW than the one presented in this paper. In particular, it
seems both interesting and challenging to answer the open question as to whether there
exists a (near) quadratic-time algorithm for computing the (exact) DTW distance between
two RLE strings.

Z. Xi and W. Kuszmaul 90:17

References
1 John Aach and George M Church. Aligning gene expression time series with time warping

algorithms. Bioinformatics, 17(6):495–508, 2001.
2 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results for

lcs and other sequence similarity measures. In 56th Annual Symposium on Foundations of
Computer Science (FOCS), pages 59–78. IEEE, 2015.

3 Pankaj K. Agarwal, Kyle Fox, Jiangwei Pan, and Rex Ying. Approximating dynamic time
warping and edit distance for a pair of point sequences. In 32nd International Symposium on
Computational Geometry, SoCG 2016, June 14-18, 2016, Boston, MA, USA, pages 6:1–6:16,
2016. doi:10.4230/LIPIcs.SoCG.2016.6.

4 Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Polylogarithmic approximation
for edit distance and the asymmetric query complexity. In Proceedings of the 51st Annual
Symposium on Foundations of Computer Science (FOCS), pages 377–386. IEEE, 2010.

5 Alexandr Andoni and Negev Shekel Nosatzki. Edit distance in near-linear time: It’s a constant
factor. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS),
pages 990–1001. IEEE, 2020.

6 Alexandr Andoni and Krzysztof Onak. Approximating edit distance in near-linear time. SIAM
J. Comput., 41(6):1635–1648, 2012.

7 Alberto Apostolico, Gad M Landau, and Steven Skiena. Matching for run-length encoded
strings. IEEE, 1997.

8 Ora Arbell, Gad M Landau, and Joseph SB Mitchell. Edit distance of run-length encoded
strings. Information Processing Letters, 83(6):307–314, 2002.

9 Ziv Bar-Yossef, T.S. Jayram, Robert Krauthgamer, and Ravi Kumar. Approximating edit
distance efficiently. In Proceedings of 45th Annual Symposium on Foundations of Computer
Science (FOCS), pages 550–559. IEEE, 2004.

10 Joshua Brakensiek and Aviad Rubinstein. Constant-factor approximation of near-linear edit
distance in near-linear time. In Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, pages 685–698, 2020.

11 Vladimir Braverman, Moses Charikar, William Kuszmaul, David Woodruff, and Lin Yang. The
one-way communication complexity of dynamic time warping distance. Manuscript submitted
for publication, 2018.

12 Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In 56th Annual Symposium on Foundations of Computer
Science (FOCS), pages 79–97. IEEE, 2015.

13 Horst Bunke and János Csirik. Edit distance of run-length coded strings. In Proceedings of
the 1992 ACM/SIGAPP Symposium on Applied computing: Technological challenges of the
1990’s, pages 137–143, 1992.

14 EG Caiani, A Porta, G Baselli, M Turiel, S Muzzupappa, F Pieruzzi, C Crema, A Malliani,
and S Cerutti. Warped-average template technique to track on a cycle-by-cycle basis the
cardiac filling phases on left ventricular volume. In Computers in Cardiology 1998, pages
73–76. IEEE, 1998.

15 Diptarka Chakraborty, Debarati Das, Elazar Goldenberg, Michal Kouckỳ, and Michael Saks.
Approximating edit distance within constant factor in truly sub-quadratic time. Journal of
the ACM (JACM), 67(6):1–22, 2020.

16 Diptarka Chakraborty, Elazar Goldenberg, and Michal Kouckỳ. Streaming algorithms for
embedding and computing edit distance in the low distance regime. In Proceedings of the 48th
Annual Symposium on Theory of Computing (STOC), pages 712–725. ACM, 2016.

17 Moses Charikar, Ofir Geri, Michael P Kim, and William Kuszmaul. On estimating edit
distance: Alignment, dimension reduction, and embeddings. In 45th International Colloquium
on Automata, Languages, and Programming (ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2018.

ESA 2022

https://doi.org/10.4230/LIPIcs.SoCG.2016.6

90:18 Approximating DTW Distance Between RLE Strings

18 Kuan-Yu Chen and Kun-Mao Chao. A fully compressed algorithm for computing the edit
distance of run-length encoded strings. Algorithmica, 65(2):354–370, 2013.

19 Raphaël Clifford, Pawel Gawrychowski, Tomasz Kociumaka, Daniel P Martin, and Przemyslaw
Uznanski. Rle edit distance in near optimal time. In 44th International Symposium on
Mathematical Foundations of Computer Science (MFCS 2019). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2019.

20 Alexander De Luca, Alina Hang, Frederik Brudy, Christian Lindner, and Heinrich Hussmann.
Touch me once and i know it’s you!: implicit authentication based on touch screen patterns.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages
987–996. ACM, 2012.

21 Vincent Froese, Brijnesh J. Jain, Maciej Rymar, and Mathias Weller. Fast exact dynamic time
warping on run-length encoded time series. CoRR, abs/1903.03003, 2019. arXiv:1903.03003.

22 Omer Gold and Micha Sharir. Dynamic time warping and geometric edit distance: Breaking the
quadratic barrier. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl,
editors, 44th International Colloquium on Automata, Languages, and Programming, ICALP
2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 25:1–25:14. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.ICALP.2017.25.

23 Guan Shieng Huang, Jia Jie Liu, and Yue Li Wang. Sequence alignment algorithms for
run-length-encoded strings. In International Computing and Combinatorics Conference, pages
319–330. Springer, 2008.

24 Michal Kouckỳ and Michael Saks. Constant factor approximations to edit distance on far input
pairs in nearly linear time. In Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, pages 699–712, 2020.

25 William Kuszmaul. Dynamic time warping in strongly subquadratic time: Algorithms for the
low-distance regime and approximate evaluation. In Christel Baier, Ioannis Chatzigiannakis,
Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata,
Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132
of LIPIcs, pages 80:1–80:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/LIPIcs.ICALP.2019.80.

26 William Kuszmaul. Binary dynamic time warping in linear time. arXiv preprint, 2021.
arXiv:2101.01108.

27 Gad M. Landau, Eugene W. Myers, and Jeanette P. Schmidt. Incremental string comparison.
SIAM Journal on Computing, 27(2):557–582, 1998.

28 T. Warren Liao. Clustering of time series data – A survey. Pattern Recognit., 38(11):1857–1874,
2005. doi:10.1016/j.patcog.2005.01.025.

29 Jia Jie Liu, Guan-Shieng Huang, Yue-Li Wang, and Richard CT Lee. Edit distance for
a run-length-encoded string and an uncompressed string. Information Processing Letters,
105(1):12–16, 2007.

30 Veli Mäkinen, Esko Ukkonen, and Gonzalo Navarro. Approximate matching of run-length
compressed strings. Algorithmica, 35(4):347–369, 2003.

31 William J Masek and Michael S Paterson. A faster algorithm computing string edit distances.
Journal of Computer and System sciences, 20(1):18–31, 1980.

32 J Mitchell. A geometric shortest path problem, with application to computing a longest
common subsequence in run-length encoded strings. Tech-nical Report, Department of Applied
Mathemat-ics, SUNY StonyBrook, NY, 1997.

33 Lindasalwa Muda, Mumtaj Begam, and Irraivan Elamvazuthi. Voice recognition algorithms
using mel frequency cepstral coefficient (MFCC) and dynamic time warping (DTW) techniques.
arXiv preprint, 2010. arXiv:1003.4083.

34 Mario E Munich and Pietro Perona. Continuous dynamic time warping for translation-invariant
curve alignment with applications to signature verification. In Proceedings of 7th International
Conference on Computer Vision, volume 1, pages 108–115, 1999.

http://arxiv.org/abs/1903.03003
https://doi.org/10.4230/LIPIcs.ICALP.2017.25
https://doi.org/10.4230/LIPIcs.ICALP.2019.80
https://doi.org/10.4230/LIPIcs.ICALP.2019.80
http://arxiv.org/abs/2101.01108
https://doi.org/10.1016/j.patcog.2005.01.025
http://arxiv.org/abs/1003.4083

Z. Xi and W. Kuszmaul 90:19

35 Saul B. Needleman and Christian D. Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of molecular biology,
48(3):443–453, 1970.

36 Yoshifumi Sakai and Shunsuke Inenaga. A faster reduction of the dynamic time warping
distance to the longest increasing subsequence length. arXiv preprint, 2020. arXiv:2005.09169.

37 Yoshifumi Sakai and Shunsuke Inenaga. A reduction of the dynamic time warping distance to
the longest increasing subsequence length. In 31st International Symposium on Algorithms
and Computation (ISAAC 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

38 Nathan Schaar, Vincent Froese, and Rolf Niedermeier. Faster binary mean computation under
dynamic time warping. arXiv preprint, 2020. arXiv:2002.01178.

39 Anooshiravan Sharabiani, Houshang Darabi, Samuel Harford, Elnaz Douzali, Fazle Karim,
Hereford Johnson, and Shun Chen. Asymptotic dynamic time warping calculation with utilizing
value repetition. Knowl. Inf. Syst., 57(2):359–388, 2018. doi:10.1007/s10115-018-1163-4.

40 Taras K. Vintsyuk. Speech discrimination by dynamic programming. Cybernetics, 4(1):52–57,
1968.

41 Zoe Xi and William Kuszmaul. Approximating dynamic time warping distance between
run-length encoded strings. CoRR, abs/2207.00915, 2022. arXiv:2207.00915.

42 Rex Ying, Jiangwei Pan, Kyle Fox, and Pankaj K Agarwal. A simple efficient approxima-
tion algorithm for dynamic time warping. In Proceedings of the 24th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems, page 21. ACM,
2016.

43 Yunyue Zhu and Dennis Shasha. Warping indexes with envelope transforms for query by
humming. In Proceedings of the 2003 ACM SIGMOD international conference on Management
of data, pages 181–192. ACM, 2003.

ESA 2022

http://arxiv.org/abs/2005.09169
http://arxiv.org/abs/2002.01178
https://doi.org/10.1007/s10115-018-1163-4
http://arxiv.org/abs/2207.00915

	1 Introduction
	2 Technical Overview
	3 Preliminaries
	3.1 Computing DTW Distance with Graphs

	4 A (1+epsilon)-Approximation Algorithm for DTW
	4.1 Time-Bound for Polynomially-Bounded Letter Distances
	4.2 Time-Bound for Constant-Bounded Letter Distances

	5 Conclusion

