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Abstract
In a (k, 2)-Constraint Satisfaction Problem we are given a set of arbitrary constraints on pairs of k-ary
variables, and are asked to find an assignment of values to these variables such that all constraints
are satisfied. The (k, 2)-CSP problem generalizes problems like k-coloring and k-list-coloring. In the
Unique (k, 2)-CSP problem, we add the assumption that the input set of constraints has at most
one satisfying assignment.

Beigel and Eppstein gave an algorithm for (k, 2)-CSP running in time O ((0.4518k)n) for k > 3
and O (1.356n) for k = 3, where n is the number of variables. Feder and Motwani improved upon
the Beigel-Eppstein algorithm for k ≥ 11. Hertli, Hurbain, Millius, Moser, Scheder and Szedlák
improved these bounds for Unique (k, 2)-CSP for every k ≥ 5.

We improve the result of Hertli et al. and obtain better bounds for Unique (k, 2)-CSP for k ≥ 5.
In particular, we improve the running time of Unique (5, 2)-CSP from O (2.254n) to O (2.232n) and
Unique (6, 2)-CSP from O (2.652n) to O (2.641n).

Recently, Li and Scheder also published an improvement over the algorithm of Hertli et al. in
the same regime as ours. Their improvement does not include quantitative bounds, we compare the
works in the paper.
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1 Introduction

The general Constraint Satisfaction Problem, in which we are asked to find an assignment to
a set of variables that satisfies a list of arbitrary constraints, is NP-Complete. Furthermore, it
is widely believed that a substantial improvement over the naive exhaustive search is unlikely
for the general CSP problem and even for special cases of it like The Boolean Satisfiability
Problem (SAT). Nevertheless, when the structure of the input is restricted in a certain
manner, there are known improvements in the form of moderately exponential algorithms.
These are algorithms that still have an exponential running time, yet achieve an exponential
improvement over the exhaustive search bounds.

The study of moderately exponential algorithms for NP-Complete problems is extensive. In
fact, exponential yet better-than-naive algorithms for NP-Complete problems were known for
some problems, for example The Travelling Salesman Problem, long before the definition of NP.
A survey of Woeginger [19] covers and refers to dozens of papers exploring such algorithms for
many problems including satisfiability, graph coloring, knapsack, TSP, maximum independent
sets and more. Subsequent review article of Fomin and Kaski [5] and book of Fomin and
Kratsch [6] further cover the topic of exact exponential-time algorithms.

Two of the most notable problems for which the study of moderately exponential al-
gorithms was fruitful are k-satisfiability (usually abbreviated as k-SAT) and graph coloring.

For satisfiability, the running time of the trivial algorithm enumerating over all possible
assignments is O∗(2n). No algorithms solving SAT in time O∗ ((2 − ε)n) for any ε > 0 are
known, and a popular conjecture called The Strong Exponential Time Hypothesis [3] states
that no such algorithm exists. On the other hand, for every fixed k there exists a constant
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εk > 0 such that k-SAT (i.e., SAT on formulas in CNF form with at most k literals in every
clause) can be solved in O∗ ((2 − εk)n) time. A result of this type was first published by
Monien and Speckenmeyer in 1985 [13]. A long list of improvements for the values of εk

were published since, including the celebrated 1998 PPSZ algorithm of Paturi, Pudlák, Saks
and Zane [15] and the recent improvement over it by Hansen, Kaplan, Zamir and Zwick [7].
The PPSZ bound was originally obtained only for the case of input formulas with a unique
satisfying assignment, its analysis was extended to the general case more than a decade later
by Hertli [8].

For graph coloring, i.e, the problem of deciding whether a graph is k-colorable, the naive
exhaustive search algorithm takes O(kn) time. Nevertheless, it is known that computing
the chromatic (or coloring) number of a graph (i.e., the smallest k for which the graph is
k-colorable) can be done in exponential time that does not depend on k. The first such
result was an O∗(3n) algorithm of Lawler [10]. A long line of works followed until finally
an algorithm computing the chromatic number in O∗(2n) time was devised by Björklund,
Husfeldt and Koivisto in 2009 [2]. This is conjectured to be optimal. For k ≤ 6 there are
algorithms solving k-colorability exponentially faster than O(2n) [1][20]. It is currently not
known even if 7-coloring can be solved exponentially faster than the general O(2n) bound of
computing the coloring number. One of the biggest open problems in this field is whether
k-coloring can be solved in O∗ ((2 − εk)n) time for every fixed k.

Both examples are special cases of the more general Constraint Satisfaction Problem. In an
(a, b)-formula, we have n variables such that each of them can take a value in [a] := {1, . . . , a}
and a list of constraints such that each constraint may depend on at most b variables. Every
such constraint can be equivalently replaced by a disjunction of at most ab constraints of the
form (x1 ̸= c1 ∨ x2 ̸= c2 ∨ . . . ∨ xb ̸= cb) where x1, . . . , xb are (not necessarily distinct)
variables and c1, . . . , cb ∈ [a] are possible values. Thus, we can think of every (a, b)-formula
as a list of constraints of that form. In the (a, b)-CSP problem we are given a (a, b)-formula
and need to decide whether or not there is an assignment to the variables that satisfies all
constraints. In the Unique (a, b)-CSP problem we add the assumption that if there is such an
assignment it is unique. Note that k-SAT is the same as (2, k)-CSP, and that k-coloring is a
special case of (k, 2)-CSP. We later elaborate on the close relation between the (k, 2)-CSP
and k-coloring problems.

In this paper we focus on obtaining better algorithms for Unique (k, 2)-CSP.

1.1 Possible running time
Denote by ca,b the infimum of constants c such that (a, b)-CSP on formulas with n variables
can be solved in O ((c + o(1))n) time. Naively, ca,b ≤ a as we can simply try all an possible
assignments to the variables. A simple improvement comes from the use of down-sampling.
Given a (a, b)-formula we may randomly restrict each variable to a′ < a uniformly chosen
values. Each satisfying assignment is not ruled out by the restriction with probability

(
a′

a

)n

.
After this down-sampling step, we are left with a (a′, b)-formula. Thus, for every a′ < a

we have ca,b ≤ a
a′ · ca′,b. In particular, ca,b ≤ a

2 c2,b. As we know that k-SAT can be solved
exponentially faster than O(2n) for every fixed k, we have that c2,b < 2 and in particular the
strict inequality ca,b < a holds for every a, b.

On the other hand, (a, b)-CSP is clearly NP-Complete for every a > 1 except of the special
case of (a, b) = (2, 2) (which is the polynomial 2-SAT). The Exponential Time Hypothesis
[3] states that there exists some constant c > 0 such that 3-SAT takes Ω(2cn) time to solve.
Traxler [18] showed that assuming the Exponential Time Hypothesis, there exists some c′ > 0
such that ck,2 > kc′ . Namely, even for b = 2 the (k, 2)-CSP problem becomes strictly more
complex as k increases.
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Table 1 Comparisons of the exponent base in Unique (k, 2)-CSP algorithms.

k Downsampling+2SAT PPZ FM [4] BE [1] PPSZ [9] Our algorithm
3 1.5 1.818 1.365 1.434 -
4 2 2.214 1.808 1.849 -
5 2.5 2.606 2.259 2.254 2.232
6 3 2.994 2.711 2.652 2.641
7 3.5 3.381 3.163 3.045 3.042

1.2 (k, 2)-CSP and k-Coloring
Consider the following hierarchy of three problems:

k-Coloring: given a graph with n vertices, determine whether it is k-colorable.
k-List-Coloring: given a graph with n vertices and a list of at most k allowed colors
(from a possibly larger universe of colors) for each vertex, determine if there is a proper
coloring of the graph such that each vertex is colored with one of the allowed colors in its
list.
(k, 2)-CSP: given n variables that can admit values from [k] and a list of arbitrary
constraints involving one or two variables each, determine if there is an assignment of
values to the variables that satisfies all constraints.

Each problem is a special case of the next one. Every instance of k-coloring is also an
instance of k-list-coloring where all lists are simply [k]. Every instance of k-list-coloring is
also an instance of (k, 2)-CSP. Nevertheless, while k-coloring and k-list-coloring can both
be solved in O∗(2n) time regardless of k [2], Traxler’s reduction [18] shows that there is
some constant k0 such that for every k > k0 we have ck,2 ≥ 2. Let k0 be the minimal such
constant. It is currently known that c4,2 < 2 and thus k0 ≥ 4.

In [20] it was recently shown that if k-list-coloring can be solved in O∗ ((2 − ε)n) time
for some ε > 0 then (k + 2)-coloring can also be solved in O∗ ((2 − ε′)n) for some ε′ > 0. In
particular, (k0 + 2)-coloring can be solved exponentially faster than O(2n). As k0 ≥ 4, this
resulted in the first O∗ ((2 − ε)n) time algorithms for 5-coloring and 6-coloring. This gives a
strong motivation for improving upper bounds for (k, 2)-CSP, with the goal of improving
the bound on k0. In particular, showing that (5, 2)-CSP can be solved in O∗ ((2 − ε)n) time
would result in the first O∗ ((2 − ε)n) time algorithm for 7-coloring.

1.3 Previous results
By the down-sampling argument we can reduce (k, 2)-CSP to the polynomial (2, 2)-CSP (i.e.,
2-SAT) and get an expected running time of O

((
k
2
)n
)

. Beigel and Eppstein [1] gave an
algorithm for (k, 2)-CSP running in time O ((0.4518k)n) for k > 3 and O (1.356n) for k = 3.
Feder and Motwani [4] give a (k, 2)-CSP algorithm based on the k-SAT PPZ algorithm, which
is the predecessor of the PPSZ one. They improve on the bound of Beigel and Eppstein only
for k ≥ 11. Hertli, Hurbain, Millius, Moser, Scheder and Szedlák [9] improved the bounds
for Unique (k, 2)-CSP for every k ≥ 5. Several other works [17] [11] [16] focus on the case
where b > 2.

1.4 Our contribution
We present an algorithm that improves on the result of Hertli et al. and obtain better
bounds for Unique (k, 2)-CSP for k ≥ 5. In particular, we improve the running time of
Unique (5, 2)-CSP from O (2.254n) to O (2.232n) and Unique (6, 2)-CSP from O (2.652n)
to O (2.641n). Our result is compared to the previous ones in Table 1.

ESA 2022
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We obtain our result by combining the strengths of both PPSZ and the Beigel-Eppstein
algorithms. Intuitively, we make the following insight regarding PPSZ-type algorithms.
Throughout the run of the PPSZ algorithm, it slowly manipulates the CSP formula. For
every k′ < k there is some time-point such that if we stop the algorithm at that point then
the formula roughly looks like a (k′, 2)-CSP formula. Furthermore, the rest of the algorithm
run would have looked similar to running PPSZ on a (k′, 2)-formula. Thus, for k ≥ 5 we
may stop the run of the PPSZ algorithm when the formula looks similar to a (4, 2)-CSP or
(3, 2)-CSP formula, and then switch to using the Beigel-Eppstein algorithm which is faster
than PPSZ for k ≤ 4.

In Section 2 we give an extensive overview of the previous results we need to use. Then in
Section 3 we introduce our algorithm and obtain the improved bounds. In Section 4 we sketch
possible improvements to the analysis of Section 3 and show that even with a completely
ideal analysis of our algorithm we would improve the bound for k = 5 from O(2.232n)
only to O(2.223n). Thus, to prove that k0 ≥ 5, if true, additional algorithmic tools are
necessary. In Section 5 we conclude our work, discuss more possible uses for the PPSZ-related
observations, and present open problems.

1.5 Comparison with a recent work of Li and Scheder
Recently, Li and Scheder [12] also published an improvement for the PPSZ-type algorithm of
Hertli et al. for Unique CSP. Their algorithm does not use the Beigel-Eppstein algorithm
and just modifies the PPSZ-type algorithm itself in a different manner to ours. They prove
that this modification gives an exponential improvement over the bounds of Hertli et al., but
do not give a quantitative bound of this improvement. We could not find a way to compute
such a bound from their paper, but suspect this improvement is very small.

Li and Scheder also observe that during the run of the PPSZ-type algorithm when the
number of color choices of a variable is very low (in their algorithm, when it reaches 2),
then there are better ways to settle the value of the variable than continuing the run of the
PPSZ algorithm. In their case, they do so by randomly picking one of the two colors for the
variable.

Our work can be seen as a refinement of this idea in two different ways. First, we cut off
the PPSZ run with small color sets yet larger than two. Second, we resolve the remaining
instance with a variant of the Beigel-Eppstein algorithm, which is much better than a random
choice.

2 Relevant overview of previous work

In this section we give an overview of all previous results that are used in our algorithm. We
repeat and refine some of the theorems used in these papers for their later use in Section 3.

2.1 The algorithm of Beigel and Eppstein
The algorithm of Beigel and Eppstein [1] solves a CSP by performing a series of local
reductions that either reduce the number of variables in the CSP or the number of allowed
values in some of the variables.

An example for such a local reduction that is of particular interest to us follows.

▶ Lemma 1 (Lemma 2 of [1]). Let (V, F ) be a CSP in which each variable x ∈ V has k(x)
allowed values. Let x be a variable with k(x) = 2, then there exists a set F ′ of additional
constraints, each of size two, such that (V, F ) is satisfiable if and only if (V \ {x}, F ∪ F ′) is
satisfiable, with the same number of allowed values for each variable y ̸= x.
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The result claimed in [1] is that their algorithm solves (3, 2)-CSPs in time O (1.3645n)
and (k, 2)-CSPs for k > 3 in time O ((0.4518k)n). Note that 1.3645 > 1.3554 = 0.4518 · 3. In
fact, the result proved in their paper is slightly stronger than that. The following Theorem
follows from [1].

▶ Theorem 2 (Section 5 of [1]). Let (V, F ) be a CSP with |V | = n3 + n4 variables such
that n3 variables have three allowed values and n4 variables have four allowed values, then
we can solve it in time O (1.3645n3 · 1.8072n4).

The claimed results follow from Theorem 2 immediately. For (3, 2)-CSPs we simply
have n3 = n, n4 = 0 and for (k, 2)-CSPs with k > 3 we down-sample each variable to 4 out
of its k possible values and then use the theorem with n3 = 0, n4 = n, with a total expected
run-time of O

((
k
4
)n · 1.8072n

)
= O ((0.4518k)n). Nevertheless, for our use we need to fully

use the power of Theorem 2 and we even slightly refine it with the following statement, from
now on referred to as the extended BE algorithm.

▶ Theorem 3. Denote by

BE(i) :=


1 if i ≤ 2
1.3645 if i = 3
0.4518 · i if i ≥ 4

.

Let (V, F ) be a CSP in which each variable x ∈ V has k(x) allowed values. Let ni be the
number of variables x in V such that k(x) = i. Then, we can solve (V, F ) in O (

∏
i BE(i)ni)

expected time.

Proof. The n1 variables with a single possible value can be ignored. The n2 variables with
two possible values can be eliminated using Lemma 1. For every i > 4 we use down-sampling
to reduce the number of allowed values to four. We finally apply Theorem 2. ◀

2.2 The PPZ and PPSZ-type algorithms
In this section we present an overview of [4] and [9]. We state theorems of both papers and
their variants that are useful for our analysis, and adapt some of their notation. Throughout
the section we discuss only instances with a unique satisfying assignment.

▶ Definition 4 (D-implication). Let F be a (k, 2)-CSP formula over a set V of variables,
x ∈ V be a variable, c ∈ [k] be a possible value, α0 a partial assignment, and D ∈ N. We say
that α0 D-implies x ≠ c and write α0 |=D (x ̸= c) if there is a subset of constraints G ⊆ F

of size |G| ≤ D such that G ∧ α0 implies (x ̸= c).

By enumeration, we can check whether α0 |=D (x ̸= c) in O
(
|F |D · poly(n)

)
time, which

is polynomial in n, k if D is a constant and sub-exponential in n even if D is a slow-enough
growing function of n. For the rest of the section we fix D.

▶ Definition 5 (Eligible values). Let F be a (k, 2)-CSP formula over a set V of variables, α0
a partial assignment, and x ∈ V \ V (α0) a variable which value is not assigned in α0. We
denote by

A (x, α0) := {c ∈ [k] | α0 ̸|=D (x ̸= c)}

the set of all possible values for x that are not ruled out by D-implication from α0.

ESA 2022
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We can now describe the PPSZ algorithm (adapted from SAT [14] to CSP in [9]). Given
a (k, 2)-CSP F , we begin with α0 = ∅ the empty assignment and incrementally add variables
to it, hoping to finish with a satisfying assignment. In particular, we choose a permutation π

of the variables V uniformly at random, and then choose an assignment for the variables of V

one-by-one according to the order of π. When we reach a variable x, we compute A (x, α0) in
sub-exponential time, pick a uniformly random c ∼ U (A (x, α0)), and extend α0 by setting
α0(x) = c.

Algorithm 1 The PPSZ algorithm.

Pick a uniform random permutation π of the set V of variables;
Set α0 = ∅;
for x ∈ V in the order dictated by π do

Draw c ∼ U (A (x, α0)) uniformly;
Set α0(x) := c;

Return α0;

Algorithm 1 runs in sub-exponential time and returns some assignment α0 to all variables
of V . It is clear that the probability of α0 to satisfy F , assuming that F is satisfiable, is
at least k−n. We next prove that for formulas F with exactly one satisfying assignment
α, the probability that Algorithm 1 produces the satisfying assignment α0 = α is in fact
exponentially larger. For the rest of the section we assume that F has a unique satisfying
assignment and denote it by α.

▶ Definition 6 (Ultimately eligible values). Let F be a (k, 2)-CSP formula uniquely satisfied
by α, π be a permutation of its variables V and x ∈ V some variable.
We let Vπ,x := {y ∈ V | π(y) < π(x)} be the set of all variables appearing before x in
π, απ,x := α

∣∣
Vπ,x

be the partial assignment resulting by restricting α to Vπ,x and then we
denote by A (x, π) := A (x, απ,x) the set of all possible values for x that are not ruled out
by D-implication when we reach x in a PPSZ iteration with permutation π, given that all
previous variables were set correctly.

We observe that Algorithm 1 returns α if and only if it draws the correct value for every
variable. In particular, for a specific permutation π the probability of success is exactly∏

x∈V
1

|A(x,π)| . For a random permutation then, the probability of success is

Eπ

[∏
x∈V

1
|A (x, π) |

]
≥ k

−
∑

x∈V
Eπ [logk |A(x,π)|]

where we use Jensen’s inequality. In particular, it is enough to give an upper bound on
Eπ [logk |A (x, π) |] that holds for every variable x.

2.3 The PPZ-type algorithm of Feder and Motwani
In the PPZ-type variant of Feder and Motwani [4], a simpler variant where D = 1 is presented
and analysed. Namely, a possible value c for a variable x is ruled out if and only if a
variable y appeared before x in the permutation and was assigned a value c′ such that the
constraint (x ̸= c ∨ y ̸= c′) appears in the list of constraints. When we reach the variable x,
we uniformly guess a value for it out of all values that are not ruled out in that manner.
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▶ Lemma 7. Let (V, F ) be the sets of variables and constraints in a Unique (k, 2)-CSP.
Denote by φ the unique satisfying assignment of (V, F ). For every variable x ∈ V and every
value φ(x) ̸= c′ ∈ [k] other than the value x is assigned in φ, there exists a variable y =
yx,c′ ∈ V \ {x} such that (x ̸= c′ ∨ y ̸= φ(y)) ∈ F .

Proof. Assume by contradiction that there exists a variable x and a value c′ ≠ φ(x) for
which (x ̸= c′ ∨ y ̸= φ(y)) /∈ F for every variable y. Consider the assignment φ′ such
that φ′(x) = c′ and φ′(y) = φ(y) for every y ̸= x. It is a satisfying assignment as well,
and φ′ ̸= φ which contradicts the uniqueness assumption. ◀

Instead of uniformly drawing a permutation π ∼ S|V | of the variables, we (equivalently)
independently draw a time value π(x) ∼ U ([0, 1]) uniformly for every variable x, and let π

be the permutation induced by the order of the time values π(x) for x ∈ V .
We observe that if π(yx,c′) < π(x) then c′ /∈ A (x, π). In particular, if π(x) = p ∈ [0, 1]

then for every c′ ̸= φ(x) with probability at least p we have that c′ /∈ A (x, π).

▶ Lemma 8. For every variable x, we have

Eπ [logk |A (x, π) | | π(x) = p] ≤
k−1∑
i=0

(
k − 1

i

)
(1 − p)i

pk−1−i logk (1 + i) .

Proof. For the analysis, we may assume that we rule out values only by the constraints
involving x and one of the variables yx,c′ for c′ ≠ φ(x). This holds since ruling out more
variables can only decrease the size of A (x, π).

If the variables yx,c′ are distinct for all c′ ̸= φ(x), then the right hand side of the lemma’s
statement is exactly the expected size of A (x, π), conditioned on π(x) = p. This is simply the
expectation of logk (1 + i) where i ∼ Binomial (k − 1, 1 − p) is a binomial random variable.

Generally, let Ac′ be the indicator for the event that π(yx,c′) > p. We need to upper
bound E[logk

(
1 +

∑
c′ ̸=φ(x) Ac′

)
]. Let A′

c′ be independent Bernoulli random variables with
probability (1−p) to be 1 and probability p to be 0. By concavity of the function logk(1+z) and
Jensen’s inequality it follows that E[logk

(
1 +

∑
c′ ̸=φ(x) Ac′

)
] ≤ E[logk

(
1 +

∑
c′ ̸=φ(x) A′

c′

)
],

which concludes our proof. The complete proof of the last statement appears in [9] as
Lemma A.1. ◀

Denote by S′
k,2 :=

∫ 1
0
∑k−1

i=0
(

k−1
i

)
(1 − p)i

pk−1−i logk (1 + i) dp. By Lemma 8,
E [logk |A (x, π) |] =

∫ 1
0 Eπ [logk |A (x, π) | | π(x) = p] dp ≤ S′

k,2, this concludes the analysis
of the Feder-Motwani PPZ-type algorithm.

▶ Theorem 9 ([4]). The success probability of a PPZ iteration is at least k−S′
k,2 .

2.4 The PPSZ-type algorithm of Hertli et al.
In the PPSZ algorithm analysed in [9] more involved D-implications are considered. In the
analysis for D = 1, we noticed that for every variable x and every value c′ ̸= φ(x) there
exists some variable yx,c′ such that if π(yx,c′) < π(x) then c′ /∈ A (x, π).

We say that a variable y is decided with respect to some partial assignment α0
if |A (y, α0) | = 1, i.e., if α0 already D-implies the correct value of y in φ. The main
observation is that if in time p := π(x) the variable yx,c′ is decided then c′ /∈ A (x, π). The
variable yx,c′ is necessarily decided if π(yx,c′) < p but can also be decided if it is yet to
appear in the permutation. Thus, the probability of yx,c′ being decided at time p is strictly
larger than p.

ESA 2022
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We give an intuitive reasoning for the probability of a variable being decided. Denote
by qk(p) the probability that a variable x is decided by time p. The variable x is decided by
time p if π(x) < p or alternatively if for every c′ ≠ φ(x) the variable yx,c′ is by itself decided
at time p. In particular, qk(p) is a solution to the recurrence qk(p) = p + (1 − p)qk(p)k−1.
We thus denote by qk(p) the smallest non-negative real solution to that recurrence, it can be
analytically computed for every k as it is simply a root of a polynomial.

This intuitive argument is of course not complete and lacks many technical details.
Nevertheless, this statement does hold, and the following strengthening of Lemma 8 and
Theorem 9 are proven in [9].

▶ Lemma 10 (A.1 in [9]). For every variable x, we have

Eπ [logk |A (x, π) | | π(x) = p] ≤
k−1∑
i=0

(
k − 1

i

)
(1 − qk (p))i

qk (p)k−1−i logk (1 + i) .

Denote by Sk,2 :=
∫ 1

0
∑k−1

i=0
(

k−1
i

)
(1 − qk (p))i

qk (p)k−1−i logk (1 + i) dp.

▶ Theorem 11 (Correctness of [9]). Let F be a Unique (k, 2)-CSP formula, then for every
variable x it holds that Eπ [logk |A (x, π) |] ≤ Sk,2 + εD, where εD is some error parameter
that depends only on D and goes to 0 as D goes to infinity.

3 Faster Unique (k, 2)-CSP algorithm

On a very high-level, our algorithm combines Hertli et al.’s PPSZ (Section 2.2) with the
BE algorithm (Section 2.1). We begin by illustrating our idea intuitively (initially ignoring
some crucial technical details to be discussed later). Consider a run of the PPSZ algorithm,
as described in Section 2.2. For the early variables in the permutation π, it is very likely
that |A (x, π) | = k, since α0 assigns values to very few variables. On the other hand, for the
last variables in the permutation, it is very likely that |A (x, π) | = 1. It turns out that in
any point throughout the run of a PPSZ iteration, the sizes |A (x, α0) | for the remaining
variables x ∈ V \ V (α0) are quite concentrated. Furthermore, after most of the variables
have |A (x, α0) | ≈ k′ < k the remaining portion of the PPSZ iteration strongly resembles a
PPSZ algorithm for (k′, 2)-CSP formulas. As we see in Table 1, for k < 5 PPSZ behaves
worse on (k, 2)-CSP formulas than the BE algorithm.

Thus, in our algorithm, we begin with an iteration of PPSZ but halt it somewhere in the
middle of the permutation when the sizes |A (x, α0) | are concentrated in 1, 2, 3, 4. At that
point, we use the extended BE algorithm shown in Section 2.1.

We set some parameter t ∈ [0, 1] to be chosen later and consider the following algorithm.

Algorithm 2 Our algorithm.

Pick a uniform random permutation π of the set V of variables;
Denote by π<t the prefix of π of size t|V | and by V<t the variables appearing in it;
Set φ = ∅;
for x ∈ V<t in the order dictated by π<t do

Draw c ∼ U (A (x, φ)) uniformly;
Set φ(x) := c;

Run the extended BE algorithm on the remaining CSP F ;
Return the solution φ;
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Consider an iteration of Algorithm 2. Denote by Ri the number of variables that appeared
in V<t and had |A (x, π) | = i. Denote by φ′ the partial assignment constructed by time t.
Let Bi be the number of variables that did not appear in V<t and had |A (x, φ′) | = i.

▶ Lemma 12. The success probability of Algorithm 2 is
∏k

i=1 i−Ri ·
∏k

i=5
( 4

i

)Bi .

Proof. The probability of all PPSZ assignments to be correct is
∏k

i=1 i−Ri , as follows from
Section 2.2. The probability of the random down-sampling to not rule out the correct
assignments is

∏k
i=5
( 4

i

)Bi . ◀

▶ Lemma 13. The running time of Algorithm 2 is O
(
1.3645B3 · 1.8072B4+...+Bk

)
.

Proof. The running time of the (partial) PPSZ iteration is polynomial. The running time of
the BE algorithm is O(1.3645n3 · 1.8072n4). ◀

Note that all Ri and Bi are fully determined by the choice of π. Thus, for a spe-
cific choice of π, if we repeatedly run Algorithm 2 with π we expect finding a solution
after

(∏k
i=1 i−Ri ·

∏k
i=5
( 4

i

)Bi
)−1

iterations. In particular, after

(
k∏

i=1
i−Ri ·

k∏
i=5

(
4
i

)Bi
)−1

· O
(
1.3645B3 · 1.8072B4+...+Bk

)
=

k∏
i=1

iRi ·
∏

i

BE (i)Bi

computational steps. At this point, we would like to bound the expected running time
when picking a random π with

∏k
i=1 iE[Ri] ·

∏
i BE (i)E[Bi]. Unfortunately, as we consider the

running time and not a success probability (as in the PPSZ algorithm), we need an inequality
of the opposite direction to Jensen’s inequality. Fortunately, this inequality essentially still
holds in this case.

▶ Lemma 14 (Wrong direction Jensen’s inequality is still kind-of right). Let A be an algorithm
with expected running time 2X conditioned on the value of a random variable X. There exists
an algorithm A′ that successfully executes A with probability at least 0.99 and has an expected
running time of O

(
2E[X] · E [X]

)
.

Proof. We apply Markov’s inequality twice. First, to observe that

Pr (X > E[X] + 1) ≤ 1
1 + 1

E[X]
= 1 − 1

E[X] + 1 .

Hence, if we run A independently for 6 (E [X] + 1) times, then with probability at least 1 −
e−6 > 1 − 1

200 at least one of these runs has X ≤ E [X] + 1. Second, conditioned on any
value of X, with probability at least 1 − 1

200 algorithm A finishes in less than 200 · 2X

computational steps. Thus, by union bound, if we run algorithm A for 6 (E [X] + 1) times,
and terminate each run after 400 · 2E[X] computational steps, then at least one run of A
finishes with probability at least 0.99. ◀

▶ Corollary 15. We find a satisfying assignment with probability greater than 0.99 in time

O⋆

(
k∏

i=1
iE[Ri] ·

∏
i

BE (i)E[Bi]

)
. (⋆)
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We give a simpler analysis leading to slightly sub-optimal bounds. In Section 4 we sketch
the possible improvements to the analysis presented here, and also present a clear limit to
the improvements that can be achieved by this algorithm.

We slightly abuse notation by equating the numbers Ri, Bi with the sets of variables they
are counting. Let x be a variable. For the analysis we can assume that the algorithm rules
out values for x only due to the constraints involving x and some yx,c′ . This holds as ruling
out more values can only improve the success probability of each iteration.

We first consider the case in which the variables yx,c′ for every c′ ̸= φ(x) are all distinct.

▶ Lemma 16. For each variable x, we have

E

[
k∑

i=1
Pr (x ∈ Ri) · logk i

]
≤
∫ t

0

k−1∑
i=0

(
k − 1

i

)
(1 − qk (p))i

qk (p)k−1−i logk (1 + i) dp.

Proof. This follows immediately from Lemma 10. ◀

▶ Lemma 17. Let x be a variable for which yx,c′ are distinct for all c′ ̸= φ(x). Then,

E

[
k∑

i=3
Pr (x ∈ Bi) · logk EB (i)

]
≤ (1 − t) ·

k∑
i=3

(
k − 1

i

)
(1 − t)i

tk−1−i · logk EB (i) .

Proof. For simplicity, we analyse this part with a PPZ-type analysis (rather than PPSZ-type
one), this is further discussed in Section 4. The probability that x /∈ V<t is (1 − t), and
the probability that exactly i out of the (k − 1) variables yx,c′ do not appear in V<t is(

k−1
i

)
(1 − t)i

tk−1−i. ◀

Denote by

cost(k, t) :=
∫ t

0

k−1∑
i=0

(
k − 1

i

)
(1 − qk (p))i

qk (p)k−1−i logk (1 + i) dp

+ (1 − t) ·
k∑

i=3

(
k − 1

i

)
(1 − t)i

tk−1−i · logk EB (i) .

If all variables had completely distinct yx,c′ ’s, then by Lemma 16 and Lemma 17 we would
have that (⋆) and in particular the running time of our algorithm is bounded by O

(
kcost(k,t)n

)
for any choice of t. This would give us O(2.22936n) for k = 5, t = 0.23 and O(2.64001n)
for k = 6, t = 0.35. We now deal with the case in which these are not distinct.

In the proof of Lemma 8 we faced the same problem and solved it by a simple application
of Jensen’s inequality to the concave function logk(1 + i). Unfortunately, the function
logk EB (i) is not concave (for i = 1, . . . , k) due to its values on i = 1, 2. Indeed, the
left-hand side of the inequality in Lemma 17 is higher than the right-hand side if these
variables are not distinct. On the other hand, when these variables are not distinct then the
term of Lemma 16 is much smaller.

Consider the expression

E

[
k∑

i=1
Pr (x ∈ Ri) · logk i +

k∑
i=3

Pr (x ∈ Bi) · logk EB (i)
]

(⋆⋆)

again. This time, we will assume that the variables yx,c′ are not all distinct. Denote
by k′ := |{yx,c′ | c′ ̸= φ(x)}| < k −1 the number of such distinct variables, and by j1, . . . , jk′

their cardinalities (note that
∑k′

i=1 ji = k − 1). Consider the following expression.



O. Zamir 92:11

E
[ ∫ t

0

∑
b1,...,bk′ ∈{0,1}

qk (p)k′−
∑k′

i=1
bi · (1 − qk (p))

∑k′

i=1
bi · logk

1 +
k′∑

i=1
jibi

 dp (⋆ ⋆ ⋆)

+ (1 − t) ·
∑

b1,...,bk′ ∈{0,1}

tk′−
∑k′

i=1
bi · (1 − t)

∑k′

i=1
bi · logk EB

1 +
k′∑

i=1
jibi

].
Expression (⋆ ⋆ ⋆) is a generalized form of cost(k, t) and thus upper bounds (⋆⋆) by the same
arguments. Completely analysing the behaviour of Expression (⋆ ⋆ ⋆) for different partitions
is rather technically involved and thus we simply enumerate over the few possible cases (for
small values of k). In Section 4 we further discuss the possible improvements to the analysis
of this section.

▶ Theorem 18. We solve Unique (6, 2)-CSP in O (2.641n) time.

Proof. For the choice t = 0.37 we have that cost(6, 0.35) = log6(2.64001), this choice
of t minimizes cost(6, t). We verify that for t = 0.35 Expression (⋆ ⋆ ⋆) is always lower
than cost(6, 0.35) and thus finish, as this implies that for every variable Expression (⋆⋆) is
bounded by cost(6, 0.35).

For the partition (j1, j2, j3, j4) = (2, 1, 1, 1) the value of (⋆ ⋆ ⋆) in t = 0.35 is log6(2.62023).
For the partition (j1, j2, j3) = (2, 2, 1) the value of (⋆ ⋆ ⋆) in t = 0.35 is log6(2.61171).
For the partition (j1, j2, j3) = (3, 1, 1) the value of (⋆ ⋆ ⋆) in t = 0.35 is log6(2.58391).
For the partition (j1, j2) = (3, 2) the value of (⋆ ⋆ ⋆) in t = 0.35 is log6(2.60366).
For the partition (j1, j2) = (4, 1) the value of (⋆ ⋆ ⋆) in t = 0.35 is log6(2.54819).
For the partition (j1) = (5) the value of (⋆ ⋆ ⋆) in t = 0.35 is log6(2.55566). ◀

▶ Theorem 19. We solve Unique (5, 2)-CSP in O (2.232n) time.

Proof. For the choice t = 0.23 we have that cost(5, 0.23) = log5(2.22936), this choice of t

minimizes cost(5, t). This time, unfortunately, for t = 0.23 Expression (⋆ ⋆ ⋆) is not always
lower than cost(5, 0.23). In particular, it is for every partition except of (j1) = 4.

For the partition (j1, j2, j3) = (2, 1, 1) the value of (⋆ ⋆ ⋆) in t = 0.23 is log5(2.21658).
For the partition (j1, j2) = (2, 2) the value of (⋆ ⋆ ⋆) in t = 0.23 is log5(2.21983).
For the partition (j1, j2) = (3, 1) the value of (⋆ ⋆ ⋆) in t = 0.23 is log5(2.20499).
For the partition (j1) = (4) the value of (⋆ ⋆ ⋆) in t = 0.23 is log5(2.24925).

Denote by α the fraction of variables for which the yx,c′ variables are all the same
(i.e., variables with the only problematic partition). With the choice t = 0.23 the running
time of our algorithm on a formula is O

((
2.22936(1−α) · 2.24925α

)n
)

. On the other hand,
if α is large we can simply run the regular PPSZ algorithm and gain much. We see that
by setting t = 1 and computing Expression (⋆ ⋆ ⋆) for the same partition (j1) = (4),
gives a value of log5(2.01077). Thus, running regular PPSZ would give us a running time
of O

((
2.25303(1−α) · 2.01077α

)n
)

. We can therefore try both options (t = 0.23 or t = 1)
simultaneously and thus get the running time of the faster one. Both expressions balance
at α = 0.08612, giving us a running time of O (2.23107n). ◀

Computation identical to this of Theorem 18 gives running time of O (3.042n) for k = 7
with t = 0.44.

ESA 2022
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4 Improvements and Limitations

In this section we sketch a possible improvement to the analysis of Section 3. The purpose
of this section is not to tighten the upper bound but to explain the limitations of our
algorithm and to convince that even with a tight analysis of Algorithm 2 it will achieve
running times that are only slightly better than these we get in Section 3. In particular, if
getting O ((2 − ε)n) time for (5, 2)-CSP is possible, new algorithmic tools are likely required.

Consider the expression
∏k

i=1 iE[Ri] ·
∏

i EB(i)E[Bi] (⋆) proven in Section 3 to upper bound
the running time of our algorithm. In Lemma 16 we give a likely tight bound for the term
involving E[Ri], yet in Lemma 17 we settle for a PPZ-type bound for E[Bi] in which we
consider only the events in which the variables yx,c′ themselves appear before time t and not
the events in which they are decided by that time. The reason for this discrepancy becomes
clear in the rest of the analysis. Due to the non-concave objective function in i, we can no
longer assume independence between the events of each yx,c′ being decided. Nevertheless,
later in Theorem 18 and Theorem 19 we observe that while the term involving E[Bi] indeed
gets worse with dependencies, the other term involving E[Bi] gets significantly better with
them and thus can cover for those dependencies. Ideally, then, the simple PPZ-type bound
of t in Lemma 17 can be replaced with the PPSZ-type bound of qk(t) in the total bound.
This would result in the following tighter cost function.

˜cost(k, t) :=
∫ t

0

k−1∑
i=0

(
k − 1

i

)
(1 − qk (p))i

qk (p)k−1−i logk (1 + i) dp

+ (1 − t) ·
k∑

i=3

(
k − 1

i

)
(1 − qk (t))i

qk (t)k−1−i · logk EB (i) .

With this ideal cost function, we would get running times of O (2.223n) for Unique
(5, 2)-CSP (for t = 0.32) and O (2.628n) for Unique (6, 2)-CSP (for t = 0.46).

5 Conclusions and Open Problems

In Section 3 we presented an algorithm for Unique (k, 2)-CSP with a running time of O(2.232n)
for k = 5. In Section 4 we argued that even with an ideal analysis, the bound we get for k = 5
is only the slightly better O(2.223n). Thus, it remains open and would likely require new
algorithmic tools to show that (5, 2)-CSP can be solved in O ((2 − ε)n) time, or alternatively
to rule out the existence of such algorithm by reductions to popular conjectures. More
generally, we raise the following open problem.

▶ Open Problem. What is the maximal k such that (k, 2)-CSP can be solved in O ((2 − ε)n)
time?

The main algorithmic observation in this paper is in fact a general insight regarding
the behaviour of PPSZ-type algorithms. The Beigel-Eppstein algorithm [1] only works for
(k, 2)-CSP. On the other hand, the PPSZ-type algorithm [9] generalizes to b > 2 and is in fact
currently the fastest algorithm for Unique (a, b)-CSP with b > 2 and any a. Using the tools
we introduced in this paper, it should be possible to turn any faster algorithm for (a, b)-CSP
for a specific (a, b) into a faster (a′, b)-CSP algorithm for all a′ > a.

Another follow-up question is whether our algorithm can be generalized to the non-unique
(k, 2)-CSP case.
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