
A Unified Approach to Discrepancy Minimization
Nikhil Bansal #

University of Michigan, Ann Arbor, MI, USA

Aditi Laddha #

Georgia Tech, Atlanta, GA, USA

Santosh Vempala #

Georgia Tech, Atlanta, GA, USA

Abstract
We study a unified approach and algorithm for constructive discrepancy minimization based on a
stochastic process. By varying the parameters of the process, one can recover various state-of-the-art
results. We demonstrate the flexibility of the method by deriving a discrepancy bound for smoothed
instances, which interpolates between known bounds for worst-case and random instances.
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1 Introduction

Given a universe of elements U = {1, . . . , n} and a collection S = {S1, . . . , Sm} of subsets
Si ⊆ U , the discrepancy of the set system S is defined as

disc(S) = min
x:U→{−1,1}

max
i∈[m]

∣∣∣ ∑
j∈Si

x(j)
∣∣∣ .

That is, the discrepancy is the minimum imbalance that must occur in at least one of the
sets in S over all bipartitions of U . More generally for an m × n matrix A, the discrepancy
of A is defined as disc(A) = minx∈{−1,1}n ∥Ax∥∞. Note that the definition for set systems
corresponds to choosing A as the incidence matrix of S, i.e., Aij = 1 if j ∈ Si and 0
otherwise. Discrepancy is a well-studied area with several applications in both mathematics
and theoretical computer science (see [14, 17, 28]).

Spencer’s problem. In a celebrated result, Spencer [34] showed that the discrepancy of
any set system with m = n sets is O(

√
n), and more generally O(

√
n log(2m/n)) for m ≥ n.

To show this, he developed a general partial-coloring method (a.k.a. the entropy method),
building on a counting argument of Beck [13], that has since been used widely for various
other problems. A similar approach was developed independently by Gluskin [20]. Roughly,
here the elements are colored in O(log n) phases. In each phase, an Ω(1) fraction of the
elements get colored while incurring a small discrepancy for each row.
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1:2 A Unified Approach to Discrepancy Minimization

Beck-Fiala and Komlós problems. Another central question is the Beck-Fiala problem
where each element appears in at most k sets in S. Equivalently, every column of the incidence
matrix is k-sparse. The long-standing Beck-Fiala conjecture [15] states that disc(S) = O(

√
k).

A further generalization is the Komlós problem, also called the vector balancing problem,
about the discrepancy of matrices A with column ℓ2-norms at most 1. Komlós conjectured
that disc(A) = O(1) for any such matrix. Note that the Komlós conjecture implies the
Beck-Fiala conjecture.

Banaszczyk showed an O(
√

log n) bound for the Komlós problem based on a deep
geometric result [3]. Here, the full coloring is constructed directly (in a single phase), and
this result has also found several applications. The resulting O(

√
k log n) bound for the

Beck-Fiala problem is also the best known bound for general k.1
In contrast, the partial coloring method only gives weaker bounds of O(log n) and

O(k1/2 log n) for these problems – the O(log n) loss is incurred due to the O(log n) phases of
partial coloring.

Limitations of Banaszczyk’s result. Even though Banaszczyk’s method gives better bounds
for the Komlós problem, it is not necessarily stronger, and is incomparable to the partial
coloring method. E.g., it is not known how to obtain Spencer’s O(

√
n) result (or anything

better than the trivial O(
√

n log n) random-coloring bound) using Banaszczyk’s result. A
very interesting question is whether there is a common generalization that unifies both these
results and techniques.

Algorithmic approaches. Both the partial coloring method and Banaszczyk’s result were
originally non-algorithmic, and a lot of recent progress has resulted in their algorithmic
versions. Starting with the work of [4], several different algorithmic approaches are now
known for the partial coloring method [27, 33, 21, 18], based on various elegant ideas from
linear algebra, random walks, optimization and convex geometry.

In further progress, an algorithmic version of the O(
√

log n) bound for the Komlós
problem was obtained by [5], see also [7], and [6] for the more general algorithmic version of
Banaszczyk’s result. In related work, Levy et al. [26] gave deterministic polynomial time
constructive algorithms for the Spencer and Komlós settings matching O(

√
n log(2m/n))

and O(
√

log n) respectively.
A key underlying idea behind many of these results is to perform a discrete Brownian

motion (random walk with small steps) in the {−1, 1}n cube, where the update steps are
correlated and chosen to lie in some suitable subspace. However, the way in which these
subspaces are chosen for the partial coloring method and the Komlós problem are quite
different. We give a high level description of these approaches as this will be crucial later on.

In the partial coloring approach, the walk is performed in a subspace orthogonal to the
tight discrepancy constraints. If the discrepancy for some row Ai reaches its target discrepancy
bound, the update ∆x to the coloring satisfies Ai · ∆x = 0. As the walk continues over time,
the subspace dimension gets smaller and smaller until the walk is stuck. At this point, the
subspace is reset and the next phase resumes.

On the other hand, the algorithm for the Komlós problem does not consider the discrepancy
constraints at all, and chooses a different subspace with a certain sub-isotropic property
which ensures the discrepancy incurred for a row is roughly proportional to its ℓ2 norm,

1 For k = o(log n) an improved bound follows from the 2k − 1 bound by [15].
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while ensuring that the rows with large ℓ2-norm incur zero-discrepancy. In particular, in
contrast to the partial coloring method, all the elements are colored in a single phase, and
the discrepancy constraints are ignored.

The need for a combined approach. Even though the O(
√

k log n) bound for the general
Beck-Fiala problem is based on Banaszczyk’s method, all the important special cases where
the conjectured O(

√
k) bound holds are based on the partial coloring method. For example,

Spencer’s problem with m = O(n) sets corresponds to special case of the Beck-Fiala problem
with k = O(n). So Spencer’s six-deviations result resolves the Beck-Fiala conjecture for this
case, which we do not know how to obtain from Banaszczyk’s result.

The Beck-Fiala conjecture also holds for the case of random set systems with m ≥ n.
In particular, Potukuchi [32] considers the model where each column has 1’s in k randomly
chosen rows and shows that the discrepancy is O(

√
k) with high probability. See also

[19, 9, 22, 1] for related results. Potukuchi’s result crucially relies on the partial coloring
approach, and it is not clear at all how to exploit the properties of random instances in
Banaszcyck’s approach.

Thus a natural question and a first step towards resolving the Beck-Fiala and Komlós
conjecture, and making progress on other discrepancy problems, is whether there exist more
general techniques to obtain both Spencer’s and Potukuchi’s result and the O(

√
k log n)

bound for the Beck-Fiala problem in a unified way.

1.1 Our results
We present a new unified framework that recovers all the results mentioned above, and various
other state-of-the-art results as special cases. Our algorithm is based on a derandomization
of a stochastic process that is guided by a barrier-based potential function. We were inspired
by an elegant idea of Lee and Singh [23] who showed how the barrier function approach can
be used to give a proof of Spencer’s result without any partial coloring phases. A related idea
was also explored in [21]. The barrier function approach itself has been used extensively in
various settings such as graph and matrix sparsification [12, 24], covariance estimation [35],
isoperimetric inequalities [25], bandit algorithms [2] and also in the context of discrepancy
minimization [10, 21, 11].

Given a matrix A, the algorithm starts with the all-zero coloring x0. Let xt ∈ [−1, 1]n be
the coloring at time. The algorithm maintains a barrier bt > 0 over time and defines the
slack of row i at time t as

si(t) = bt −
n∑

j=1
ai(j)xt(j)︸ ︷︷ ︸

current discrepancy

−λ

n∑
j=1

ai(j)2(1 − xt(j)2)︸ ︷︷ ︸
remaining variance

. (1)

Notice that when all xt(j) eventually reach ±1, the remaining variance term is zero and the
slack measures the gap between the discrepancy and the barrier.

We define the potential

Φ(t) =
∑

i

si(t)−p (2)

for some fixed p > 1, that penalizes the rows with small slacks and blows up to infinity if
some slack approaches zero. If we can ensure that the slacks are always positive and the
potential is bounded, then the discrepancy is upper bounded by value of the barrier when
the algorithm terminates.

APPROX/RANDOM 2022



1:4 A Unified Approach to Discrepancy Minimization

At each time step, the algorithm picks a random direction vt that is orthogonal to some
of the rows with the least slack, and satisfies some additional properties, and updates the
coloring by a small amount in the direction vt. The barrier bt is also updated. These updates
are chosen to ensure that the potential does not increase in expectation, and hence all the
slacks stay bounded away from 0. We give a more detailed overview in Section 2.

By changing the parameters p, λ depending on the problem at hand, we obtain several
results using a unified approach.
1. Set coloring [34]. For any set system on n elements and m ≥ n sets, disc(S) =

O(
√

n log(2m/n)).
2. Komlós problem [7]. For any A ∈ Rm×n with columns norms

∥∥Aj
∥∥

2 ≤ 1, disc(A) =
O(

√
log n).

3. Random/Spectral Hypergraphs [32]. Let A ∈ {0, 1}m×n be the incidence matrix of a
set system with n elements and m sets, where element lies in at most k sets and let
γ = maxv⊥1,∥v∥=1 ∥Av∥. Then for m ≥ n, disc(S) = O(

√
k + γ).

4. Gaussian Matrix [16]. For a random matrix A ∈ Rm×n with each entry
Aij ∼ N (0, σ2) independently, with probability at least 1 − (1/m3), disc(A) =
O
(

σ
(√

n +
√

log m
)

·
√

log 2m
n

)
.

More generally, given a matrix A, we state the following result based on optimizing the
various parameters of the algorithm, depending on the properties of A. This allows our
framework to be applied in a black-box manner to a given problem at hand.

▶ Theorem 1. For a A ∈ Rm×n with
∥∥Aj

∥∥
2 ≤ L and |ai(j)| ≤ M for all i ∈ [m], j ∈ [n], let

h : R+ → R+ be a non-increasing function such that for every subset S ⊆ [n] and i ∈ [m],∑
j∈S

ai(j)2 ≤ |S| · h(|S|). (3)

Then, for any p > 1, there exists a vector x ∈ {−1, 1}n such that ∥Ax∥∞ ≤ 5b0 + 2M , where

b0 = min
(√

8(p + 1)(48m)1/p · β, 250L
√

log (2m)
)

. (4)

where β =
∫ n−2

t=0 h(n − t)(n − t)−1/pdt.

Let us see how Theorem 1 directly leads to the results stated above.

Set coloring. As ∥Aj∥2 ≤
√

m, we have L =
√

m, and as
∑

j∈S ai(j)2 ≤ |S|, we can set
h(t) = 1 for all t ∈ [n]. Consider (4) and suppose p ≥ 1.1 so that p/(p − 1) = O(1). Then

β =
∫ n−2

t=0
h(n − t) · (n − t)−1/pdt = O(n1−1/p),

and the first bound in (4) gives b0 = O(pn1/2(m/n)1/p). Setting p = log(2m/n) gives
Spencer’s O(

√
n log(2m/n)) bound.

Interestingly, the above result gives a new proof of Spencer’s six-deviations result based
on a direct single-phase coloring. In contrast, all the previously known proofs of this result
[4, 27, 33, 18] required multiple partial coloring phases.
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Komlós problem. Here L = 1 and the second term in (4) directly gives a O(
√

log m) bound2.
This also implies an O(

√
log n) bound as at most n2 rows can have ℓ1-norm more than 1,

and we can assume that m ≤ n2.
Similarly, bounding h(t) using standard concentration bounds, directly gives the following

results for various models of random matrices.

▶ Theorem 2 (Sub-Gaussian Matrix). Let A ∈ Rm×n with each column drawn independently
from a distribution D, where the marginal of each coordinate is sub-Gaussian with mean 0
and variance σ2. Then, for n ≤ m ≤ 2O(

√
n), disc(A) = O(σ

√
n log(2m/n)), with probability

at least 1 − (1/m2).

▶ Theorem 3 (Random Matrix). Let A ∈ Rm×n, m ≥ n such that every column of A is drawn
independently from the uniform distribution on {x ∈ Rm : ∥x∥2 ≤ 1}. Then disc(A) = O(1)
with probability at least 1 − (1/m2).

1.1.1 Flexibility of the method
An important advantage of the method is it flexibility, which can be used to obtain several
additional results.

Subadditivity. Given A, B ∈ Rm×n, can we bound disc(A + B) given bounds on disc(A)
and disc(B)? Such questions can be directly handled by this framework by considering a
weighted combination of two different potential functions – one for A and another for B.

More precisely, let us define sdisc(A), the Stochastic Discrepancy of a matrix A, to be
the upper bound on discrepancy obtained by the Potential Walk described in Algorithm 1.
For this notion, we have the following approximate subadditivity for arbitrary matrices.

▶ Theorem 4 (Subadditivity of Stochastic Discrepancy). For any two arbitrary matrices
A, B ∈ Rm×n, there exists x ∈ {−1, 1}n such that

|⟨ai, x⟩| ≲ sdisc(A) for every row ai of A, and
|⟨bi, x⟩| ≲ sdisc(B) for every row bi of B.

In particular, this implies that sdisc(A + B) ≲ sdisc(A) + sdisc(B).

Here a ≲ b means that a = O(1)b. The theorem is algorithmic if A, B are given. It also
implies that for any matrix A, we have sdisc(A) ≲ minB(sdisc(B) + sdisc(A − B)).

Similar questions have been studied previously in the context of understanding the
discrepancy of unions of systems [30, 31]. For example, other related quantities such as the
γ2-norm and the determinant lower bound are also subadditive [30, 31], We remark that the
additive bound cannot hold for the (actual) discrepancy or even hereditary discrepancy3,
and a logarithmic loss is necessary. For this reason, the previous additive bounds based on
γ2-norm and the determinant lower bound lose extra polylogarithmic factors when translated
to discrepancy.

A direct application of Theorem 4 is the following.

2 It would be interesting to construct an explicit family of examples where the discrepancy obtained by
our approach is Ω(

√
log n).

3 A classical example due to Hoffman gives two set systems A and B, each with hereditary discrepancy 1,
but their union has discrepancy Ω(log n/ log log n) [29].

APPROX/RANDOM 2022



1:6 A Unified Approach to Discrepancy Minimization

▶ Theorem 5 (Semi-Random Komlós). Let C ∈ Rm×n be an arbitrary matrix with columns
satisfying

∥∥Cj
∥∥

2 ≤ 1 for all j ∈ [n], and R ∈ Rm×n be a matrix with entries drawn i.i.d.
from N (0, σ2). Then, for n ≤ m ≤ 2O(

√
n), with probability at least 1 − (1/m2),

disc(C + R) = O
(√

log n + σ
√

n log(2m/n)
)

.

For m = O(n), the bound above is O(
√

log n + σ
√

n), which is better than the bound of
O(

√
log n(1 + σ

√
n)) obtained by directly applying the best-known bound for the Komlós

problem to C + R.
As another application, consider a matrix C with n columns and two sets of rows, A and

B, where each row in A has entries in {0, 1}, and the column norm of every column restricted
to rows in B is at most 1. Suppose that A has O(n) rows. Applying the framework gives a
coloring with O(

√
n) discrepancy for rows in A and O(

√
log n) for rows in B.4 Notice that

using previous techniques, if we apply the partial coloring method to get O(
√

n) discrepancy
for A, this would give O(log n) for rows of B. On the other hand, if we apply try to obtain
O(

√
log n) discrepancy for B, all the known methods would incur O(

√
n log n) discrepancy

for A.

Relaxing the function h(·). Recall that the function h in Theorem 1, that controls how the
ℓ2 norms of rows decrease when restricted to subsets S of columns, and plays an important
role in the bounds. In many random or pseudo-random instances however, a worst case
bound on h can be quite pessimistic. For example, here even though most rows decrease
significantly when restricted to S, h can remain relatively high due to a few outlier rows. The
following result gives improved bound for such settings where for any subset S of columns,
most row sizes restricted to S do not deviate much from their expectation if S is chosen at
random.

▶ Theorem 6 (Pseudo-Random Bounded Degree Hypergraphs). Let A ∈ {0, 1}m×n such that∥∥Aj
∥∥

1 ≤ k. Suppose there exists β ≤ k s.t. for any S ⊆ [n] and any c > 0, the number of
rows of A with∣∣∣∑

j∈S

ai(j) − ∥ai∥1 · (|S|/n)
∣∣∣ ≥ cβ (5)

is at most c−2|S|. Then disc(A) = O(
√

k + β).

As discussed in [32], one can set β ≤ maxv⊥1,∥v∥=1 ∥Av∥ in (5), which in particular gives
Potukuchi’s result [32] for random k-regular hypergraphs as β = O(k1/2) in this case.

Combining with Theorem 4, this extends to the following semi-random setting. Consider
a random k-regular hypergraph A with n vertices and n edges. Suppose an adversary can
arbitrarily modify A by adding or deleting vertices from edges such that degree of any vertex
changes by at most t. How much can this affect the discrepancy of the hypergraph?

▶ Theorem 7 (Semi-Random Hypergraphs). Consider a random k-regular hypergraph with
incidence matrix A ∈ Rm×n with m ≥ n, and let C ∈ {−1, 0, 1}m×n be an arbitrary matrix
with at most t non-zero entries per column. Then disc(A + C) = O

(√
k +

√
t log n

)
with

probability 1 − n−Ω(1).

4 This answers a question of Haotian Jiang.



N. Bansal, A. Laddha, and S. Vempala 1:7

2 The Framework

Given a matrix A ∈ Rm×n, we start at some x0 and our goal is to reach an xT in {−1, 1}n

with small discrepancy. The basic idea will be to apply a small random update (of size δ)
to xt at step t for T steps, where the update will be chosen with care. We use the slack
function and the potential function defined in (1) and (2) to implement this approach. The
figure below gives a high level description of the algorithm.

Algorithm 1 PotentialWalk.

1 Input: A matrix A ∈ Rm×n, a potential function Φ : R × Rn → R+.
2 Let x0 = 0, t = 0. Let T = (n − 2)/δ2.
3 for t ∈ [T ] do
4 Select vt such that: (i) Eε[Φ(t + 1, xt + εδvt)] ≤ Φ(t, xt), (ii) xt ± δvt ∈ [−1, 1]n,

and (iii) ⟨xt, vt⟩ = 0, where ε is a Rademacher random variable (±1 with
probability 1/2).

5 Let xt+1 = xt + εδvt.
6 Output: xT

2.1 Example: Komlós setting
We first give an overview of the ideas by describing how the framework above works for the
Komlós setting. Recall that here A ∈ Rm×n has columns satisfying

∥∥Aj
∥∥

2 ≤ 1. To minimize
notation, let us assume here that m = n (this is also the hardest case for the problem).

At time t, let Vt = {j ∈ [n] : |xt(j)| < 1−1/2n} and let nt = |Vt|. These are the variables
that are “alive”, and not yet “frozen”. To ensure that xt ∈ [−1, 1]n, the update vt will only
change the variables in Vt. We also set ⟨vt, xt⟩ = 0, which ensures that ∥xt∥2 = δ2t for any
t ∈ [0, T ]. So vt satisfies

vt(j) = 0 for all j ̸∈ Vt and ⟨vt, xt⟩ = 0. (6)

As |xt(j)| ≥ (1 − 1/2n) for all j /∈ Vt, we have (n − nt)(1 − 1/2n)2 ≤
∑

j /∈Vt
xt(j)2 ≤∑

j∈[n] xt(j)2 = δ2t. So the number of alive variables at time t satisfies nt ≥ n − (δ2t)/(1 −
(1/(2n)))2 > n − δ2t − 1.

Blocking large rows. To ensure the two-sided bound |
∑

j ai(j)x(j)| < b0, we create a new
row −ai for each row ai at the beginning. Now, as the squared 2-norm of every column
of A is at most 2, at any time t, the number of rows with

∑
j∈Vt

ai(j)2 > 12 is at most
|Vt|/6 = nt/6. Let us call such rows large (at time t). Otherwise, the row is small. We
additionally constrain vt so that

⟨ai, vt⟩ = 0 for all rows {i :
∑
j∈Vt

ai(j)2 > 12}. (7)

This ensures that a row only starts to incur any discrepancy once it becomes small. So at
step t, we will define the slacks only for small rows and only such rows will contribute to
the potential Φ(t). Let It denote the set of small rows at time t. In the slack function (1),
we will set bt = b0 for all t and λ = 2−5b0. So, at the beginning of the algorithm, when
x0(j) = 0 for all j, we have Φ(0) =

∑
i∈I0

(b0 − λ ·
∑

j∈[n] ai(j)2)−p ≤ |I0|
(b0−12λ)p ≤ n

(
2
b0

)p

.

APPROX/RANDOM 2022



1:8 A Unified Approach to Discrepancy Minimization

At any time t, the change in potential Φ(t+1)−Φ(t) is due to (i) new rows becoming small
and entering It+1 and (ii) and the change slack of rows in It. As each row has discrepancy 0
until it becomes small, the total contribution of step (i) over the entire algorithm is at most
n(2/b0)p. So the main goal will be to show that Φ does not rise due to step (ii). This will
ensure that the potential throughout the algorithm is at most 2n(2/b0)p, which gives the∑

j ai(j)x(j) < b0 for all i.

Bounding the increase in Φ. We now describe the main ideas of the algorithm and
computations for the change in Φ in step (ii). The desired O(

√
log n) will then follow directly

by optimizing the parameters b0 and p in (1).
Let et,i denote a vector in Rn with j-th entry ai(j)2xt(j). At step t, xt changes as

xt+1 − xt = εδ · vt and, by a simple calculation, the approximate change in si(t) is:

si(t + 1) − si(t) ≃ (2λ⟨et,i, vt⟩ − ⟨ai, vt⟩) εδ + λ⟨a(2)
i , v

(2)
t ⟩δ2 ,

where ε is a Rademacher random variable and a(2) denotes the vector with j-th entry a(j)2.
The error terms not included above are all higher powers of δ, and can be ignored for small
enough δ as long as all coefficients are bounded. We formalize this in Section 2.2.

Then, up to second order terms in δ, Φ(t + 1) − Φ(t) ≃ f(t)δ2 + g(t)εδ where,

f(t) = −pλ
∑
i∈I

⟨a(2)
i , v

(2)
t ⟩

si(t)p+1 + p(p + 1)
2

∑
i∈I

(2λ⟨et,i, vt⟩ − ⟨ai, vt⟩)2

si(t)p+2 ,

g(t) = p
∑
i∈I

(2λ⟨et,i, vt⟩ − ⟨ai, vt⟩)
si(t)p+1 .

Note that the expectation of the second term g(t)εδ is zero. So it suffices to prove that
there is a choice of vt such that f(t) ≤ 0. This will ensure the expected change of Φ is at
most zero, and there will be a choice of ϵ that ensures Φ is non-increasing. The difficulty in
making f(t) at most zero is that the positive part (the second term of f(t)) has an extra
factor of si(t) in the denominator. So if some si(t) becomes very small, the positive term
could dominate. To ensure this doesn’t happen, we choose vt to be in a subspace that makes
this positive term zero for the smallest slack indices.

Blocking small slacks. Let Jt be the subset of I corresponding to all but the ⌊nt/12⌋
smallest values of si(t) at time t. Select vt such that

(2λ⟨et,i, vt⟩ − ⟨ai, vt⟩) = 0 for all i ∈ I\Jt, (8)

Then as
∑

i si(t)−p) ≤ Φ(t), and the smallest nt/12 slacks are “blocked”, we have

max
j∈Jt

1
sj(t) ≤

(
Φ(t)

nt/12

)1/p

,

and so,

f(t) ≤ p

(
p + 1

2
∑
i∈Jt

(2λ⟨et,i, vt⟩ − ⟨ai, vt⟩)2

si(t)p+1 max
j∈Jt

sj(t)−1 − λ
∑
i∈I

⟨a(2)
i , v

(2)
t ⟩

si(t)p+1

)

≤ p

(
p + 1

2
∑
i∈Jt

(2λ⟨et,i, vt⟩ − ⟨ai, vt⟩)2

si(t)p+1

(
12Φ(t)

nt

)1/p

− λ
∑
i∈I

⟨a(2)
i , v

(2)
t ⟩

si(t)p+1

)
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In addition to (6) and (8), suppose vt also satisfies

∑
i∈Jt

⟨2λet,i − ai, vt⟩2

si(t)p+1 ≤ 12 ·
∑
i∈Jt

⟨a(2)
i , vt

(2)⟩
si(t)p+1 . (9)

Choosing the update vt. Later in Section 2.2, we will see how to find a vector vt satisfying
(6), (8), (7), and (9). Then,

f(t) ≤ p
∑
i∈Jt

⟨a(2)
i , v

(2)
t ⟩

si(t)p+1

(
6(p + 1)

(
12Φ(t)

nt

)1/p

− λ

)
.

To show that f(t) ≤ 0, it thus suffices to have 6(p + 1) (12Φ(t)/nt)1/p − λ ≤ 0.
As Φ(t)

1
p ≤ 2(2n)1/p/b0 by the inductive hypothesis, and nt ≥ 1, it suffices to have

12(p + 1) (24n)1/p − λ · b0 ≤ 0. Choosing p = log n so that n1/p = O(1), and as λ = 2−5b0,
we can pick b0 = O(

√
log n) to satisfy the above. This gives the desired discrepancy bound.

2.2 The General Framework
We now describe the algorithm more formally. Given a matrix A ∈ Rm×n with

∥∥Aj
∥∥

2 ≤ 1
for all j ∈ [n], extend A such that for each original row ai of A, there are two rows ai and
−ai in A. Additionally, partition every row ai into 2 rows, aS

i and aL
i , with small and large

entries, as follows:

aS
i (j) =

{
0 if |ai(j)| > 1/2λ

ai(j) otherwise
, aL

i (j) =
{

ai(j) if |ai(j)| > 1/2λ

0 otherwise,

where λ is a parameter to be determined later. After this transformation, for any x ∈ Rn,
∥Ax∥∞ = maxi⟨aS

i + aL
i , x⟩, and the squared 2-norm of any column of A is at most 2.

Let I denote the index set of all rows of A, and IS denote the index set of rows of the
first type above.

The step-size of the algorithm is δ and the algorithm will run for T = n−2
δ2 steps. Starting

with x0 = 0, let vt ∈ Rn with ⟨xt, vt⟩ = 0. For t ∈ [T ],

xt =
{

xt−1 + δvt−1 w.p. 1/2,

xt−1 − δvt−1 w.p. 1/2.

As t increases, some variables will start approaching 1 in magnitude. To ensure that
xt ∈ [−1, 1]n, we restrict vt to be in the space of alive variables, defined as Vt = {i ∈ [n] :
|xt(i)| < 1 − 1/(2n).

For any t ∈ [T ], ∥xt∥2 = δ2t as

∥xt∥2 = ∥xt−1 + δvt∥2 = ∥xt−1∥2 + δ2 ∥vt∥2 = δ2(t − 1) + δ2 = δ2t. (10)

Let nt = |Vt| denote the number of alive variables at t. By (10), (n − nt)(1 − ϵ)2 ≤ δ2t, which
gives nt ≥ n − δ2t

(1−1/(2n))2 > n − δ2t − 1.
To select a vt such that for all t ∈ [T ], xt ∈ [−1, 1]n and ⟨ai, xt⟩ is bounded for all rows,

we classify the rows according to how many variables are still “uncolored” in a row.
Let the set of s-Alive rows at time t be defined as It = {i ∈ IS :

∑
j∈Vt

ai(j)2 ≤ 20}.
The choice of 20 here is arbitrary, and large enough constant works.

We can now define the slack and the potential function.

APPROX/RANDOM 2022
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Slack. For any i ∈ I, the slack function is defined as

si(t) = bt − ⟨ai, xt⟩ − λ ·
n∑

j=1
ai(j)2(1 − xt(j)2).

We call bt the barrier, and for t ∈ [T ], we also move it as bt = bt−1 +δ2dt−1, for some function
dt. We set λ = cb0 where c = 1/42 and b0 is the initial barrier.

Potential function. The potential function has a parameter p > 1 and is defined as

Φ(t) =
∑
i∈It

si(t)−p.

We will only consider slacks for alive rows and ensure that they are always positive.
Moreover, we will consider only the small s-Alive rows as the rows in IL will be easily
handled. To ensure that si(t) does not become too “small” for any s-Alive row, the choice of
vt should not decrease the smallest slacks. This motivates the following definitions.

Blocked rows: Let Ct be the subset of It corresponding to the ⌊nt/12⌋ smallest values of
si(t).
Let Jt = It\Ct. These are the “large slack” rows.

To prove that all the slacks are positive, we will upper bound the potential throughout
by bounding the change in Φ(t) at each step. Note that Φ(t) will experience jumps whenever
a new index gets added to It, however the total contribution of jumps is easily shown to be
bounded (see Lemma 19) and can essentially be ignored. To bound the one-step change in Φ,
we use the second order Taylor expansion of Φ(t + 1) centered at Φ(t). Details of this can be
found in the arXiv version of this paper [8].

2.3 Algorithm and Analysis
Recall that et,i denotes the vector in Rn with j-th entry ai(j)2xt(j). We can now state the
algorithm for selecting vt.

Algorithm 2 Algorithm for Selecting vt.

1 Initialize x0 ← 0
2 for t = 1, . . . , T = n−2

δ2 do
3 Let Wt = {w ∈ Rn : w(i) = 0, ∀i /∈ Vt} // restrict to alive variables
4 Let Ut = {w ∈ Wt : ⟨w, 2λet,i − ai⟩ = 0, ∀i ∈ Ct and ⟨w, xt⟩ = 0}

// restrict to large slack rows
5 Let Yt = {w ∈ Wt : ⟨w, ai⟩ = 0, ∀i ∈ I\It} // restricted to s-Alive rows
6 Let Gt denote the subspace

Gt =

{
w ∈ Wt :

∑
i∈Jt

⟨(2λet,i − ai), w⟩2

si(t)p+1 ≤ 40
∑
i∈Jt

⟨a(2)
i , w(2)⟩

si(t)p+1

}
(11)

7 Consider the subspace Zt = Ut ∩ Yt ∩ Gt and let W = {w1, w2, . . . , wk} be an
orthonormal basis for Zt. Choose

vt = arg min
w∈W

∑
i∈Jt

⟨2λet,i − ai, w⟩2si(t)−(p+1). (12)
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We now re-state our main theorem. In words, the assumption of the theorem is that there
is a non-decreasing function h(.) such that for any row, the squared norm in any subset of
coordinates S is proportional to h(|S|) times the size of the subset S. Under this condition,
we can bound the discrepancy as a function of h.

▶ Theorem 1. For a A ∈ Rm×n with
∥∥Aj

∥∥
2 ≤ L and |ai(j)| ≤ M for all i ∈ [m], j ∈ [n], let

h : R+ → R+ be a non-increasing function such that for every subset S ⊆ [n] and i ∈ [m],∑
j∈S

ai(j)2 ≤ |S| · h(|S|). (3)

Then, for any p > 1, there exists a vector x ∈ {−1, 1}n such that ∥Ax∥∞ ≤ 5b0 + 2M , where

b0 = min
(√

8(p + 1)(48m)1/p · β, 250L
√

log (2m)
)

. (4)

where β =
∫ n−2

t=0 h(n − t)(n − t)−1/pdt.

The case when h(t) = h is often useful, for which case we have following corollary.

▶ Corollary 8. For a matrix A ∈ Rm×n with ∥Aj∥ ≤ L and |ai(j)| ≤ M for all i ∈ [n], j ∈ [m],
let h be such that for every subset S ⊆ [n] and every i ∈ [m],

∑
j∈S ai(j)2 ≤ |S| · h. Then,

disc(A) ≤ 5b0 + 2M , where b0 = min(26
√

hn log(2m/n), 250L
√

log (2m)).

Roadmap of the proof. The first main lemma below (Lemma 10) establishes that there
is a large feasible subspace from which vt as defined above can be chosen. Using this we
prove Lemma 11, which bounds the change in potential. This will allow us to bound the
discrepancy of each row and hence prove Theorem 1.

A key fact used for proving Lemma 10 is the following lemma in [7].

▶ Lemma 9 ([7]). Let G, H ∈ Rm×n be matrices such that |Gij | ≤ α|Hij | for all i ∈ [m] and
j ∈ [n]. Let K = diag(H⊤H). Then for any β ∈ (0, 1], there exists a subspace W ⊆ Rn such
that dim(W ) ≥ (1 − β)n, and ∀w ∈ W, w⊤G⊤Gw ≤ α2

β · w⊤Kw.

We now arrive at the main Lemma.

▶ Lemma 10 (Subspace Dimension). For all t ∈ T , dim(Zt) ≥ ⌈2nt/3⌉.

Setting the parameters. To show the two bounds in (4), we will set the parameters bt, dt

(the change in bt) and p in two ways:

Case 1: dt = 4(p + 1) · h(nt) · max
i∈Jt

si(t)−1 for all t ∈ [T ], and p, b0 arbitrary (13)

Case 2: p = 2 log(2m), b0 = 840(p + 1) · max
j∈Jt

sj(t)−1 and dt = 0 for all t ∈ [T ]. (14)

Bounding the potential. The next lemma shows that in both these cases, the potential
function remains bounded.

▶ Lemma 11 (Bounded Potential). In either of the cases given by (13) and(14), we have
that Φ(t) ≤ 4m(2/b0)p, for all t = 0, . . . , T .

The next lemma gives a bound on the minimum value of slack for any active row, given
the bound on potential function.

APPROX/RANDOM 2022



1:12 A Unified Approach to Discrepancy Minimization

▶ Lemma 12. For any t ∈ {0, . . . , T}, if Φ(t) ≤ 4m(2/b0)p, then maxi∈Jt si(t)−1 ≤
2
b0

(
48m
nt

) 1
p .

▶ Lemma 13. For any t ∈ [T ], the choice of vt satisfies

∑
i∈Jt

⟨2λet,i − ai, vt⟩2

si(t)p+1 ≤
∑
i∈Jt

8h(nt)
si(t)p+1 . (15)

These lemmas will allow us to prove the main theorem (see Appendix).

3 Applications

3.1 Set Coloring

We bound the discrepancy of a set system (U, S) with |U | = n, |S| = m, and m ≥ n. As
∥Aj∥2 ≤

√
m, we have L =

√
m, and as

∑
j∈S ai(j)2 ≤ |S|, we can set h(t) = 1 for all t ∈ [n].

Consider (4) and suppose p ≥ 1.1 so that p/(p − 1) = O(1). Then

β =
∫ n−2

t=0
h(n − t) · (n − t)−1/pdt = O(n1−1/p),

and the first bound in (4) gives b0 = O(pn1/2(m/n)1/p). Setting p = log(2m/n) gives
Spencer’s O(

√
n log(2m/n)) bound.

3.2 Vector Balancing

We now consider the discrepancy a matrix A ∈ Rm×n with column ℓ2-norms at most 1.
Here L = 1 and the second term in (4) directly gives a O(

√
log m) bound. This also

implies an O(
√

log n) bound as at most n2 rows can have ℓ1-norm more than 1, and we
can assume that m ≤ n2. In particular, for a row ai with ∥ai∥2 < 1/n1/2, we have
|⟨ai, x⟩| ≤ ∥ai∥1 ≤

√
n ∥ai∥2 < 1 and it can be ignored. The sum of squares of elements in

A is at most n the number of rows with ∥ai∥2 > 1/n1/2 is at most n2.

3.3 Sub-Gaussian Matrices and Random Matrices

We give the proofs for these application in the appendix.

4 Flexibility of the Method

An advantage of the potential function approach is its flexibility. We describe two illustrative
applications. In Section A.2 we show how the bounds for matrices A and B obtained using
the framework can be used to directly give bounds for C = A+B by combining the potentials
for A and B in a natural way.

In Section 4.1 we consider how the requirement on the function h(·) in Theorem 1 can be
relaxed, and use it to bound the discrepancy of sparse hypergraphs (the Beck-Fiala setting)
satisfying a certain pseudo-randomness condition.
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4.1 Discrepancy of Sparse Pseudo-random Hypergraphs

In this section, we consider 0/1 matrices that satisfy a certain regularity property, namely,
for most rows, the sum of their entries in any subset of columns is close to the sum of the
full row scaled by the fraction of columns in the subset. This property is satisfied, e.g., by
the matrices that correspond to sparse random hypergraphs. In particular, we show the
following.

▶ Theorem 6 (Pseudo-Random Bounded Degree Hypergraphs). Let A ∈ {0, 1}m×n such that∥∥Aj
∥∥

1 ≤ k. Suppose there exists β ≤ k s.t. for any S ⊆ [n] and any c > 0, the number of
rows of A with∣∣∣∑

j∈S

ai(j) − ∥ai∥1 · (|S|/n)
∣∣∣ ≥ cβ (5)

is at most c−2|S|. Then disc(A) = O(
√

k + β).

Proof outline. At a high level the proof is similar to that of Theorem 4, using a weighted
potential function. However, rather than just two potentials, we will have to consider a
combination of O(log n) potentials, and it will take some care to make sure this doesn’t create
an overhead in the discrepancy. We note that the main algorithm remains: at each step
choose a vector in a subspace defined by a set of constraints based on the current vector xt.

We next discuss the details of the algorithm and the proof of Theorem 6. The full proof
can be found in the arXiv version of this paper [8].

Partitioning rows according to ℓ1-norm. First, extend A such that for each original row
ai, there are two rows ai and −ai in A. Since our goal is to prove discrepancy O(

√
k),

we can ignore all rows will ℓ1-norm less than
√

k. Then m ≤ n
√

k because the number of
rows with ℓ1-norm greater than

√
k is at most 2nk/

√
k = 2n

√
k. Let N = ⌈log2 n/k⌉ and

Q = {0} ∪ [N ]. Partition the rows of A into based on their initial ℓ1-norm into |Q| = N + 1
classes:

A0 = {i ∈ I :
√

k ≤ ∥ai∥1 < 2k}.
For each i ∈ [N ], let Ai = {i ∈ I : 2ik ≤ ∥ai∥1 < 2i+1k}.

The sum of ℓ1-norms of rows in A is at most 2nk, therefore for any i, 2ik|Ai| ≤ 2nk and
|Ai| ≤ 21−in.

We create N + 1 potential functions {Φi(t)}N
i=0, one associated with each row partition.

The potential functions use the same p, b0 parameters, and λ = cb0 with c = 1/42, but have
different rate of change of barrier functions dq(·), based on q. We will run Algorithm 2 on
each partition separately but use the same xt and vt at each step. In this case, we can select
parameters to ensure that each potential function is decreasing in expectation (see Lemma
18). However, there might not exist a vector vt that ensure that moving in vt direction
decreases all the potential functions simultaneously. To deal with this, we use a weighted
combination of Φq as the potential function:

Φ(t) = 1
k

· Φ0(t) +
∑
q≥1

22q · Φq(t). (16)
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4.1.1 A suitable subspace

To identify the constrained subspace for the PotentialWalk (Algorithm 6), we use the following
definitions. The set of Active rows is defined as It = {i ∈ I :

∑
j∈Vt

|ai(j)| ≤ 12k}. For each
class q, let hq : R+ → R be a non-increasing function such that for every subset S ⊆ n, at
most nt/16 rows i from class Aq violate the condition∑

j∈S

|ai(j)| ≤ |S| · hq(|S|). (17)

While following the general framework from Section 2.2, we make three crucial changes:
Move orthogonal to rows with large deviation. At step t, the ℓ1 norm of row ai will
be close to (nt/n) · ∥ai∥1 for most rows. Let ai,t denote a vector in Rn with j-th entry
1j∈Vt

ai(j), i.e., ai,t is row ai restricted to the alive coordinates at time t. Then the set of
large deviation rows consists of rows that deviate significantly from this expected value

Bt = {i ∈ I : | ∥ai,t∥1 − ∥ai∥1 · (nt/n)| ≥ 4β}. (18)

For any t ∈ [T ], (5) implies that dim(Bt) ≤ ⌊nt/16⌋.
Ignore Dead rows. As soon as the ℓ1-norm of some row becomes less than 8β, we drop it
from the potential function. The set of dead rows at step t is defined as

Dt = {i ∈ I : ∥ai,t∥1 ≤ 8β}. (19)

For a dead row, rather than keeping track of its discrepancy using a slack function, we
uniformly bound the the additional discrepancy gained by a row after it becomes dead.
Block rows based on their initial size. For q ∈ Q, let Cq

t be the subset of Aq ∩ It

corresponding to the ⌊2i−8n2
t /n⌋ smallest values of {si(t) : i ∈ Aq ∩ It}, and let J q

t =
Ai\{Cq

t ∪ Dt}.
We are ready to state the algorithm for selecting vt.

Algorithm 3 Algorithm for Selecting vt.

1 Let hq(nt) = 2q+2/n and wq(t) = 25− q
4

(
n
nt

)1/4

2 for t = 1, . . . , T do
3 Let Wt = {w ∈ Rn : w(i) = 0, ∀i ∈ Vt} // restrict to alive variables
4 Let Ut = {w ∈ Wt : ⟨w, 2cb0et,i − ai⟩ = 0, ∀i ∈ Ct and ⟨w, xt⟩ = 0}

// restrict to large slack rows
5 Let Yt = {w ∈ Wt : ⟨w, ai⟩ = 0, ∀i ∈ I\It} // move orthogonal to large norm

rows
6 Let Gt = {w ∈ Wt : ⟨ai, w⟩ = 0, ∀i ∈ Bt}

// move orthogonal to large deviation rows
7 Let Zt = Ut ∩ Yt ∩ Gt and let W = {w1, . . . , wk} be an orthonormal basis for Zt

8 Let vt ∈ W such that for all q ∈ Q,∑
i∈J q

t

⟨2cb0et,i − ai, vt⟩2si(t)−p−1 ≤ 8wq(t) · hq(nt)
∑

i∈J q
t

si(t)−p−1. (20)
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4.2 Proof Outline
The following lemma bounds the number of active classes at step t.

▶ Lemma 14. At step t, the following two conditions hold: (i) The number of classes q for
which Aq ∩ {It\{Bt ∪ Dt}} ≠ ∅ is at most log(16n/nt) and (ii) hq(t) = 2q+2k/n satisfies (17)
for all q ∈ Q.

So at any step t, the set of active rows is from the first log2(16n/nt) classes of rows.
It also helps us define two important parameters associated with a row class q. At step t,
consider a q ∈ Q with Aq ∩ {It\{Bt ∪ Dt}} ≠ ∅.

Since n−δ2t−1 < nt ≤ 16 ·2−qn, for q ≥ 1, let tq := max
{

0, nδ−2 (1 − 16 · 2−q − 1/n)
}

.
Similarly, let t0 := nδ−2 (1 − 16k−1/2 − 1/n

)
.

On the other hand, q must satisfy 2q ≤ 16n
nt

. Let qt := arg maxi≥0
{

2i ≤ 16 · (n/nt)
}

.

The next two lemmas are analogous to Lemma 10 and Lemma 13, respectively.

▶ Lemma 15. For any t ∈ [T ], it holds that dim(Zt) ≥ ⌈nt/2⌉.

▶ Lemma 16. For all t ∈ [T ], there exists vt ∈ Zt such that ∀q ∈ Q,∑
i∈J q

t

⟨2cb0et,i − ai, vt⟩2si(t)−p−1 ≤ 8wq(t) · hq(nt)
∑

i∈J q
t

si(t)−p−1 . (21)

Note that for any row i ∈ Aq, at t ≤ tq, ⟨2cb0ei,t − ai, vt⟩ = 0. So, we can set dq
t = 0 for

rows in class q. Lemma 11 and Lemma 16 imply that for all the potential functions to be
decreasing, it suffices to have

dq(t) =
{

0 if t ≤ tq

4(p + 1) · wq(t) · hq(nt) · maxi∈J q
t

si(t)−1 otherwise.
(22)

The next lemma helps us bound the rate of change of bq(t), which eventually gives a
bound on bq(T ) in Theorem 6.

▶ Lemma 17. For any t ∈ {0, . . . , T}, if Φ(t) ≤ 8n
(

2
b0

)p

( 16n
nt

), then

max
j∈J q

t

sj(t)−1 ≤

k1/p · 21+15/p

b0

(
n
nt

)3/p

if q = 0
21+(15−3q)/p

b0

(
n
nt

)3/p

if q ≥ 1.
(23)

▶ Lemma 18. For p = 8 and dq given by (22), for all t ∈ [T ], we have Φ(t) ≤ 27n2

nt
·
(

2
b0

)p

.

Proof of Theorem 6. If row i ∈ Aq becomes dead after step t − 1, then

|⟨ai, xT ⟩| ≤ |⟨ai, xt⟩| + |⟨aS
i , xT − xt⟩| ≤ bt(q) + 2

∑
j∈Vt

|ai(j)| ≤ bT (q) + 16β.

Substituting the bound on maxi∈J t
q

si(t)−1 from (23), and using wq(t) = 25−q/4 · (n/nt)1/4

and hq(t) = 2q+2/n, equation (22) gives dq(t) = 0 for t < tq, and

dq(t) =

9k · 23q/8+14

nb0

(
n

n−δ2t−1

)5/8
if q ≥ 1 and t ≥ tq

9k
9
8 · 214

nb0

(
n

n−δ2t−1

)5/8
if q = 0 and t ≥ t0.
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For any q ≥ 1, summing up dq(·),

bq(T ) = b0 + δ2
T −1∑
t=tq

dq(0) ≤ δ2
∫ T

t=tq

9k · 23q/4+12+(15−3q)/8

nb0

(
n

n − δ2t − 1

)5/8
dt

≤ b0 +
∫ n−2

t=δ2tq

9k · 23q/8+14

nb0

(
n

n − t − 1

)5/8
dt = b0 + 220k

b0
.

For b0 = 210
√

k, bq(T ) ≤ 211
√

k for all q ≥ 1. Similar calculation for q = 0 show that
b0 = 210

√
k and bT (0) = 211

√
k suffice.

Let x ∈ {−1, 1}n be obtained from xT by the rounding x(j) = sign(xT (j)). Since T =
(n − 2)/δ2, ∥xT ∥2 = n − 2 with |xT (j)| ≤ 1 for all j ∈ [n]. After rounding xT to x, ∥x∥2 = n

and |⟨ai, x⟩| ≤ |⟨ai, xT ⟩| + |⟨ai, x − xT ⟩| ≤ 2bT + 16β +
∑

j |x(j) − xT (j)| ≤ bT + 16β + 2. ◀

Random and Semi-random Sparse Hypergraphs. This gives an alternate proof of the
result [32] of Potukuchi that disc(H) = O(

√
k) for regular random k-regular hypergraph H,

on n vertices and m edges with m ≥ n and k = o(m1/2). In particular, Potukuchi showed
that such hypergraphs satisfy condition (5) with high probability.

Proof of Theorem 7. By the subadditive property of stochastic discrepancy, disc(A + C) ≤
O(

√
k) + O(

√
t log n). However, this bound is not algorithmic because it requires running

the algorithm separately on A and Ac − A. ◀
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A Appendix: Proof of main theorem

Proof of Lemma 11. We will prove this by induction. Clearly, this holds at t = 0 as
Φ(0) ≤ 2m(2/b0)p. For the inductive step, we will show that for any j = 0, . . . , T − 1, if
Φ(j) ≤ 4m(2/b0)p then

Φ(j + 1) ≤ Φ(j) + 1
Tbp

0
+ |Ij+1\Ij | ·

(
2
b0

)p

. (24)

Note that |Ij+1\Ij | is the number of additional rows in IS that may become alive at step j.
This gives the result by induction as summing (24) over j = 0, . . . , T − 1 will give

Φ(t + 1) ≤ Φ(0) +
T −1∑
j=0

1
Tbp

0
+
(

2
b0

)p T −1∑
j=0

|Ij+1\Ij | ≤ 2m ·
(

2
b0

)p

+ 1
bp

0
≤ 4m ·

(
2
b0

)p

. (25)

We now focus on proving (24) for j = t.
By the induction hypothesis, Φ(t) ≤ 4m (2/b0)p. By Lemma 19, one of the signs for xt+1

gives E(Φ(t + 1)) − Φ(t) ≤ f(t) + 1
T nbp

0
+ |It+1\It| ·

(
2
b0

)p

, where

f(t) = −pδ2
∑
i∈It

dt + λ⟨a(2)
i , v

(2)
t ⟩

si(t)p+1 + p(p + 1)δ2

2
∑
i∈It

(2λ⟨et,i, vt⟩ − ⟨ai, vt⟩)2

si(t)p+2 .

So to prove (24), it suffices to show that f(t) ≤ 0. We first consider the case when bt, dt and
p are given by (13). As 2λ⟨et,i, vt⟩ − ⟨ai, vt⟩ = 0 for all i /∈ Jt, f(t) satisfies

f(t) ≤ −pδ2
∑
i∈Jt

dt + λ⟨a(2)
i , v

(2)
t ⟩

si(t)p+1 + p(p + 1)δ2

2 max
j∈Jt

sj(t)−1 ·
∑
i∈Jt

(⟨2λet,i − ai, vt⟩)2

si(t)p+1 .

(26)

By a simple averaging argument described in Lemma 13, we also have that

∑
i∈It

(2λ⟨et,i, vt⟩ − ⟨ai, vt⟩)2

si(t)p+1 ≤
∑
i∈It

8h(nt)
si(t)p+1 . (27)

Plugging (27) in (26) gives

f(t) ≤ −pδ2
∑
i∈Jt

dt

si(t)p+1 + p(p + 1)δ2

2 max
j∈Jt

sj(t)−1 ·
∑
i∈Jt

8h(nt)
si(t)p+1 . (28)

Therefore, if dt satisfies equation (13), then f(t) ≤ 0.
We now consider the case in (14). As vt ∈ Gt, we have

∑
i∈Jt

(2λ⟨et,i, vt⟩ − ⟨ai, vt⟩)2

si(t)p+1 ≤ 40 ·
∑
i∈Jt

⟨a(2)
i , vt

(2)⟩
si(t)p+1 . (29)

Next, as dt = 0 and λ = b0/42, (26) and (29) give

f(t) ≤
∑
i∈Jt

pδ2⟨a(2)
i , v

(2)
t ⟩

si(t)p+1 ·
(

− b0

42 + 20(p + 1) · max
j∈Jt

sj(t)−1
)

.

So if b0 satisfies equation (14), then f(t) ≤ 0. ◀
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Proof of Lemma 12. By the definition of Jt, for any i ∈ Jt, there are at least ⌊nt/12⌋ + 1
indices j in It such that sj(t) ≤ si(t). Therefore,

max
i∈Jt

1
si(t)

≤
(

12Φ(t)
nt

) 1
p

≤ 2
b0

(
48m

nt

) 1
p

, (30)

where the last inequality follows by the assumption, Φ(t) ≤ 4m(2/b0)p. ◀

Proof of Lemma 13. Using (a+b)2 ≤ 2(a2+b2), and as |2λet,i(j)| = |2λai(j)2xt(j)| ≤ |ai(j)|
as |ai(j)| ≤ 1/2λ for any j and i ∈ IS , we have that for any w,

∑
i∈Jt

⟨2λet,i − ai, w⟩2

si(t)p+1 ≤
∑
i∈Jt

2⟨ai, w⟩2 + 2⟨2λet,i, w⟩2

si(t)p+1 ≤ 4
∑
i∈Jt

⟨ai, w⟩2

si(t)p+1 .

Let Wt = {w1, . . . , wk} be an orthonormal basis for Zt and k = dim(Zt). As Zt ⊆ Vt,

∑
i∈Jt

∑k
j=1⟨ai, wj⟩2

si(t)p+1 ≤
∑
i∈Jt

∑
j∈Vt

ai(j)2

si(t)p+1 ≤ nt

∑
i∈Jt

h(nt)
si(t)p+1 .

where the second inequality uses that
∑

j∈Vt
ai(j)2 ≤ nt · h(nt) by the definition of h.

As k ≥ ⌈nt/2⌉, this gives

1
k

k∑
j=1

∑
i∈Jt

⟨2λet,i − ai, wj⟩2

si(t)p+1 ≤ nt

k

∑
i∈Jt

4h(nt)
si(t)p+1 ≤

∑
i∈Jt

8h(nt)
si(t)p+1 .

The result now follows as vt in (12) minimizes
∑

i∈Jt
⟨2λet,i − ai, wj⟩2si(t)−p−1 over all

wj ∈ Wt. ◀

Proof of Lemma 10. To lower bound the dimension of Zt we lower bound the dimensions
of Ut, Yt and Gt.

First, we have dim(Ut) ≥ nt−dim(Ct)−1 ≥ ⌈11nt/12⌉−1. Second, at time t, as the sum of
ℓ2-norm square of all columns is at most 2nt, we have that

∑
i∈I
∑

j∈Vt
ai(j)2 ≤ 2nt. So the

number of rows ai with
∑

j∈Vt
ai(j)2 ≥ 20 is at most ⌊nt/10⌋ and dim(Yt) ≥ nt − ⌊nt/10⌋ =

⌈9nt/10⌉.
We now bound dim(Gt) by applying Lemma 9. Let G denote the matrix with columns j

corresponding to variables in Vt and rows i restricted to i ∈ Jt with (i, j) entry (2λet,i(j) −
ai(j))si(t)−(p+1)/2.

Let H be the matrix with entries ai(j) · si(t)−(p+1)/2 for i ∈ Jt} and j ∈ Vt. As
|aij | ≤ 1/(2λ) for i ∈ It, we have

|Gij | = |2λai(j)2xt(j) − aj(i)| ≤ |2λai(j)2xt(j)| + |aj(i)| ≤ 2|aj(i)| = 2|Hij |.

Let K = diag(H⊤H). Then, using Lemma 9 with α = 2 and β = 1/10, we get that there
is a subspace Gt with dim(Gt) ≥ ⌈9nt/10⌉ such that Gt = {w ∈ Wt : w⊤G⊤Gw ≤ 40·w⊤Kw},
which by the definition of G and H is equivalent to that given by (11).

Putting together the bounds on the dimensions of these subspaces gives,

dim(Zt) ≥ dim(Ut ∩ Yt ∩ Gt) ≥ ⌈11nt/12⌉ − 1 + ⌈9nt/10⌉ + ⌈9nt/10⌉ − 2nt ≥ ⌈2nt/3⌉.◀

Proof of Theorem 1. Recall that we divide each row a of A as a = aS + aL. We will bound
⟨aL, xT ⟩ and ⟨aS , xT ⟩ separately.
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Let t1 denote the earliest when the squared norm of aL (restricted to the alive variables)
is at most 20, and let n1 be number of non-zeros in aL restricted to the set Vt1 . As
|aL(j)| ≥ 1/(2λ) for each j, the number of non-zero variables n1 in aL at time t1 is at most
80λ2, as n1/(4λ2) ≤

∑
j∈Vt1

aL(j)2 ≤ 20. Moreover, as aL incurs zero discrepancy until t1,
the overall discrepancy satisfies

|⟨aL, xT ⟩| = |⟨aL, xt1⟩| + |⟨aL, xT − xt1⟩| ≤
√

n1 · (
∑

j∈Vt1

aL(j)2)1/2 ≤ 80λ ≤ 3b0. (31)

Henceforth, we focus on the rows aS . We first show that the slacks are always positive.
Let γ = b0/4(4m)

1
p . By Lemma 11, for all t ∈ [T ], Φ(t) ≤ 4m(2/b0)p < γ−p. This implies

that |si(t)| ≥ γ for all i ∈ IS
t and t ∈ [T ]. In one step of the algorithm,

|si(t) − si(t − 1)| ≤ δ2dt−1 + |⟨ai, xt⟩ − ⟨ai, xt−1⟩|
≤ δ2dt−1 + |δ⟨ai, vt−1⟩| ≤ 20nδ ≤ 2γ.

So, if si(t − 1) ≥ γ and Φ(t) < γ−p, then si(t) ≥ 0, i.e., the slack si(t) cannot go from being
greater than γ to less than −γ in a single step. So, for every i ∈ IS and t ∈ [T ], si(t) ≥ γ and
⟨ai, xT ⟩ ≤ bT . Together with (31) this gives, |⟨a, xT ⟩| ≤ |⟨aS , xT ⟩| + |⟨aL, xT ⟩| ≤ bT + 3b0.

Let x ∈ {−1, 1}n be obtained from xT by the rounding x(j) = sign(xT (j)). As T =
(n − 2)/δ2, ∥xT ∥2 = n − 2 with |xτ (j)| ≤ 1 for all j ∈ [n]. After rounding xT to x, we have
∥x∥2 = n. For any row a of A, the discrepancy is bounded by

|⟨a, x⟩| = |⟨a, xT ⟩| + |⟨a, x − xT ⟩| ≤ |⟨a, xT ⟩| + M

n∑
j=1

|x(j) − xT (j)| ≤ bT + 3b0 + 2M.

We now consider the two cases for b0, dt, p. If the second case given by (14), then by (30),
b0 ≤ 1680(p + 1) · (48m/nt)1/p/b0. As nt ≥ 1 for all t ∈ [T ] and p = log(2m), we have
(48m/nt)1/p ≤ 10e, and setting b0 = 250

√
log(2m) suffices. Since dt = 0, bT = b0 and

∥Ax∥∞ ≤ 4b0 + 2M .
In the first case given by (13), then by (30), we have dt = 8(p + 1)(48m)

1
p · h(nt)

b0n
1/p
t

for all
t ∈ [T ]. Summing dt over t gives

bT − b0 = δ2
T −1∑
t=0

dt = 8(p + 1)(48m)
1
p δ2 ·

T −1∑
t=0

h(nt)/(b0n
1/p
t ).

As nt > n − δ2t − 1 ≥ and h is non-increasing, δ2 ·
∑T −1

t=0 h(nt)n−1/p
t ≤ β, so that bT ≤

b0 + 8(p + 1)(48m)1/pβ/b0. Optimizing b0 = (8(p + 1)(48m)1/pβ)1/2 gives that bT = 2b0 and
thus ∥Ax∥∞ ≤ bT + 3b0 + 2M ≤ 5b0 + 2M , giving the desired result.

◀

Proof of Corollary 8. For a constant h, we have β =
∫ n−2

0 (n−t)−1/phdt ≤ n1−1/ph/(1−1/p).
Choosing p = log(2m/n) to optimize the first term in (4) gives the result. ◀

A.1 Sub-Gaussian Matrices and Random Matrices
Let X be a random variable with E(X) = 0. X is called Sub-Gaussian with variance σ2 if
its moment generating function satisfies E(esX) ≤ eσ2s2/2 for all s ∈ R. For a Sub-Gaussian
random variable, E(X2) ≤ 4σ2.
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Proof of Theorem 2. As ai(j) is a Sub-Gaussian with variance σ2, ai(j)2 − E(ai(j)2) is a
mean zero and sub-exponential random variable with parameter 16σ2 [36].

For any S ⊆ [n] with |S| = s, Bernstein’s inequality for sub-exponential random vari-
ables [36] (Theorem 2.8.1) gives that,

Pr(
∑
j∈S

ai(j)2 − E(ai(j)2) ≥ st) ≤ exp(− min(s2t2/16σ4, st/16σ2)). (32)

Setting t = 96σ2 (log(ne/s) + (log m)/s) and as E(ai(j)2) ≤ 4σ2, and taking a union bound
over all the rows and all possible subsets of s columns, we get that,∑

j∈S

a2
i (j) ≤ 100σ2|S| (log(ne/|S|) + log m)/|S|)) . (33)

for every S ⊆ [n], i ∈ [m], with probability at least 1 − 1/2m2.
Similarly, as ai(j) is sub-Gaussian with mean 0 and variance σ2, with probability at least

1 − 1/2m2, we have |ai(j)| ≤ 3σ
√

log(mn) for all i ∈ [m], j ∈ [n], and thus the ℓ2-norm of a
column is at most L = 3

√
mσ
√

log(mn) and M = 3σ
√

log mn. By (33), we can set

h(t) = 100σ2
(

log
(ne

t

)
+ log m

t

)
.

A direct computation gives β =
∫ n−2

0 h(n − t)(n − t)−1/pdt = O(σ2(n1−1/p + p log m)).
Using Theorem 1 with p = 2⌈log(2m/n)⌉, gives b0 = O(σ(p(m/n)1/p(n + n1/pp log m))1/2) =
O(σn1/2 log(2m/n)).

Thus, with high probability ∥Ax∥∞ ≤ (5b0 + 2M) = O(σ
√

n log(2m/n)). ◀

Proof of Theorem 3. Consider a random vector X chosen uniformly at random from the
unit ball, {x ∈ Rm : ∥x∥2 ≤ 1}. Then every coordinate of X is sub-Gaussian with variance
σ2 = C/

√
m, where C is a constant [36] (Theorem 3.4.6, Ex 3.4.7). The result now follows

from Theorem 5. ◀

A.2 Subadditive Stochastic Discrepancy
Proof of Theorem 4. Let Φ1(t), Φ2(t) be the potential functions corresponding to A and
B, respectively. Let the parameters for Algorithm 2 on A be b1

0, p1, d1
t , h1(·) and for B be

b2
0, p2, d2

t , h2(·).
Note that it might not be possible to select an update vt at time t, that ensures that

both Φ1(t + 1) ≤ Φ1(t) and Φ2(t + 1) ≤ Φ2(t) hold, but we can find a vt for which a weighted
sum of Φ1(t) and Φ2(t) decreases at every step.

Consider the potential function Φ(t) =
(
b1

0/2
)p1 Φ1(t) + (b2

0/2)p2Φ2(t). We apply the
same algorithmic framework. For t = 1, . . . , T , select vt such that E(Φ(t + 1)) ≤ Φ(t), and
select the sign of ε for which Φ(t + 1) ≤ Φ(t), and set xt+1 = xt + ϵδvt. To this end, it suffices
to find a vt such that E(Φ1(t + 1)) ≤ Φ1(t) and E(Φ2(t + 1)) ≤ Φ2(t).

Let Z1
t and Z2

t be the feasible subspaces at step t for A and B respectively from Algorithm
2. We will search for vt in Zt = Z1

t ∩ Z2
t . By Lemma 10, dim(Z1

t ), dim(Z2
t ) ≥ ⌈2nt/3⌉.

Therefore, dim(Zt) = dim(Z1
t ∩ Z2

t ) ≥ ⌈2nt/3⌉ + ⌈2nt/3⌉ − nt ≥ nt/3.
Using Lemma 13 on A and B, along with Markov’s inequality implies that there exists a

vector w ∈ Zt such that

∑
i∈I1

t

⟨2cb1
0et,i − ai, w⟩2

si(t)p1+1 ≤
∑
i∈I1

t

25h1(nt)
si(t)p1+1 and

∑
i∈I2

t

⟨2cb2
0et,i − ai, w⟩2

si(t)p2+1 ≤
∑
i∈I2

t

25h2(nt)
si(t)p2+1 .
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(34)

Comparing (34) with (15), the functions h1(·) and h2(·) only increase by a constant factor
when compared to running Algorithm 2 on A and B independently. So it suffices to multiply
d1

t and d2
t by 4 to ensure that by Lemma 11,

E[Φ1(t)] − Φ1(t − 1) ≤ 1
Tn(b1

0)p1
and E[Φ2(t)] − Φ2(t − 1) ≤ 1

Tn(b2
0)p2

. (35)

Plugging (35) in the definition of Φ(t), we get E[Φ(t)] − Φ(t − 1) ≤ 2/(Tn). So one of the
two choices of xt gives Φ(t) − Φ(t − 1) ≤ 2/(Tn). Summing over t,

Φ(t) ≤ Φ(0) + 2
n

≤
(

b1
0
2

)p1

Φ1(0) +
(

b2
0
2

)p2

Φ2(0) + 2
n

.

By Lemma 19, Φ1(0) ≤ 2m ·(2/b1
0)p1 and Φ2(0) ≤ 2m ·(2/b2

0)p2 , thus Φ(t) ≤ Φ(0)+2/n ≤ 5m.
For a row i ∈ J ℓ

t for ℓ ∈ {1, 2}, we have (⌊nt/12⌋ + 1) · (bℓ
0/2)pℓ · si(t)−pℓ ≤ Φ(t) ≤ 5m, which

implies that for any t, and ℓ ∈ {1, 2},

max
i∈J ℓ

t

si(t)−1 ≤ 2
bℓ

0

(
60m

nt

) 1
pℓ

. (36)

Upon comparing (36) with (30), notice that maxk∈J 1
t

sk(t)−1 and maxk∈J 2
t

sk(t)−1 are
only a constant factor larger when compared to running Algorithm 2 on A and B separately,
and hence the discrepancies for both A and B are only a constant factor larger. ◀

B Appendix: Bounding the step size

▶ Lemma 19. For A ∈ Rm×n,
Φ(0) +

∑
t |It+1\It| ·

(
2
b0

)p

≤ 2m ·
(

2
b0

)p

.

For all t ∈ {0, 1, . . . , T − 1}, if Φ(t) ≤ 27m2
(

2
b0

)p

and dt = O(pn · maxi∈Jt
si(t)−1), then

for step size δ2 ≤ (Cn2m6p4)−1,

E(Φ(t + 1)) − Φ(t) ≤ f(t) + 1
Tnbp

0
+ |It+1\It| ·

(
2
b0

)p

, where

f(t) = −pδ2
∑
i∈It

dt + cb0⟨a(2)
i , v

(2)
t ⟩

si(t)p+1 + p(p + 1)δ2

2
∑
i∈It

⟨2cb0et,i − ai, vt⟩2

si(t)p+2 .
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