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——— Abstract

We study the problems of adjacency sketching, small-distance sketching, and approximate distance
threshold (ADT) sketching for monotone classes of graphs. The algorithmic problem is to assign
random sketches to the vertices of any graph G in the class, so that adjacency, exact distance
thresholds, or approximate distance thresholds of two vertices u, v can be decided (with probability
at least 2/3) from the sketches of u and v, by a decoder that does not know the graph. The goal is
to determine when sketches of constant size exist.

Our main results are that, for monotone classes of graphs: constant-size adjacency sketches exist
if and only if the class has bounded arboricity; constant-size small-distance sketches exist if and only
if the class has bounded expansion; constant-size ADT sketches imply that the class has bounded
expansion; any class of constant expansion (i.e. any proper minor closed class) has a constant-size
ADT sketch; and a class may have arbitrarily small expansion without admitting a constant-size
ADT sketch.
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1 Introduction

A common type of problem, with many theoretical and practical uses in computer science, is
to assign short labels to each of n elements of a space, so that certain “local” information
can be deduced from the labels. The Boolean hypercube graph of size n = 2¢, with vertex
set {0,1}¢ and edges (z,y) where z,y € {0, 1}¢ differ on exactly 1 coordinate, has the trivial
but useful property that one can assign to each vertex = € {0,1}? a label of d = logn bits,
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so that any function f(z,y) on vertex pairs can be decided given only the labels of x and y.
Sometimes, the label size can be improved drastically by allowing randomized labels, which
we refer to as sketches. For example:

1. Adjacency in the hypercube can be computed (with probability at least 2/3) from sketches

of constant size (which follows from the Hamming distance communication protocol [42]);
2. Distinguishing between dist(z,y) < r and dist(z,y) > r can be done with sketches of size

depending only on r (which also follows from the Hamming distance protocol);

3. Distinguishing between dist(z,y) < r and dist(z,y) > ar (for constant « > 1) can be

done with sketches of size independent of r and n [51].

We call these adjacency sketches, small-distance sketches, and approzimate distance threshold
(ADT) sketches, respectively (see Section 1.2 for formal definitions). It is natural to ask which
classes of graphs, other than the hypercubes, admit similarly efficient sketches. Motivated by
a connection between communication complexity, sketching, and graph labelling schemes,
recent work [40] asked which hereditary classes of graphs admit constant-size adjacency
sketches, and also gave some examples of constant-size (i.e. independent of the number of
vertices) small-distance sketches, including for planar graphs, answering a question of [38].
Sketches for deciding dist(z,y) < r vs. dist(x,y) > ar are well-studied, and characterizing
the metrics which admit this type of sketch is a well-known open problem [62, 10, 46, 61],
but little is known about the natural case of path-distance metrics in graphs.

We study the relationships between these three types of sketches for the important special
case of monotone classes of graphs. A class of graphs is a set of (labelled!) graphs closed
under isomorphism. It is hereditary if it is closed under taking induced subgraphs, and
monotone if it is closed under taking subgraphs. Monotone graph classes are ubiquitous:
typical examples include minor-closed classes, graphs avoiding some subgraph H, or graphs
with bounded chromatic number.

In this paper, we completely determine the monotone graph classes which admit constant-
size adjacency sketches and constant-size (i.e. independent of the number of vertices) small-
distance sketches, and show that constant-size (i.e. independent of the number of vertices and
the parameter ) ADT sketches imply the existence of constant-size small-distance sketches.
We show that the classes which admit constant-size adjacency sketches are exactly the classes
with bounded arboricity, and the classes which admit constant-size small-distance sketches
are exactly the classes with bounded ezpansion?. Classes which admit constant-size ADT
sketches must also have bounded expansion, and any class with constant expansion (i.e. any
proper minor-closed class) has a constant-size ADT sketch, but on the other hand a class
can have expansion growing arbitrarily slowly and yet does not admit a constant-size ADT
sketch. We describe these results in more detail below.

1.1 Motivation & Prior Work

Labelling schemes and sketches are important primitives for distributed computing, stream-
ing, communication, data structures for approximate nearest neighbors, and even classical
algorithms (see e.g. [47, 30, 63, 60, 20], and [4, 44, 10, 61, 11] and references therein). As
such, a great deal of research has been done on finding other spaces having nice sketching
and labelling properties.

! Standard terminology is that a labelled n-vertex graph is one with vertex set [n]; not to be confused
with informative labelling schemes.

2 We mean bounded expansion in the sense of sparsity theory [57], which is distinct from expansion in
the context of expander graphs.



L. Esperet, N. Harms, and A. Kupavskii

One direction of research investigates the metric spaces which admit approximate distance
threshold (ADT) sketches, of the third type described above, as defined in [62]. This is
a well-known open problem in sublinear algorithms (see e.g. [10, 46, 61]). Here, n points
X C X in a metric space (X, dist), should be assigned random sketches sk : X — {0,1}* such
that dist(z,y) < r or dist(x,y) > ar can be determined (with probability at least 2/3) from
sk(z) and sk(y). The goal is to obtain sketches whose size depends only on a. This problem
is fairly well-understood when the metric is a norm: there is a constant-size sketch for the
¢, (quasi-)norm, for any 0 < p < 2 [44], so any metric that can be embedded into such an

¢, is sketchable; conversely, sketching a norm is equivalent to embedding it into £1_. [11].

Outside of norms, the problem is less well-understood: there are sketchable metrics that are
not embeddable into ¢1_. [48].
Another direction of research investigates the classes F of graphs that admit (deterministic)

labelling schemes for various functions, generally called informative labelling schemes [60].

The most well-studied labelling schemes are for adjacency, introduced in [47, 55]. The main
open problem is to identify the hereditary classes of graphs that admit adjacency labelling
schemes of size O(logn). A solution was suggested in [47] and later conjectured in [63], but
recently refuted in a breakthrough of [41], leaving the problem wide open. Randomized
adjacency labelling (i.e. adjacency sketching) was studied in [24, 38, 40]. It was observed in
[38, 40] that a constant-size sketch implies an O(logn) labelling scheme, as desired in the
above open problem, and it was further observed in [40] that the set of hereditary graph
classes which admit constant-size adjacency sketches is equivalent to the set of Boolean-valued
communication problems that admit constant-cost public-coin protocols, whose structure is
unknown [37]. This raises the following question, which was the main motivation of [40]:

» Question 1. Which hereditary classes of graphs admit constant-size adjacency sketches?

Perhaps the next most commonly studied graph labelling problem is distance labelling [31],
where the goal is to compute dist(x, y) from the labels (see e.g. [7, 9, 25, 32]). Intermediate
between distance and adjacency labelling is the decision version of distance labelling: for
given r, decide whether dist(z,y) < r from the labels. We call this small-distance labelling,
following the terminology of [6, 29]. For r = 1, this coincides with adjacency labelling. The
natural generalization of constant-size adjacency sketches is to ask for small-distance sketches
whose size depends only on r; it was shown in [38] that such sketches exist for trees, and
in [40] that they exist for any Cartesian product graphs and any stable® class of bounded
twin-width (including, for example, planar graphs or any proper minor-closed class; see [27]).

» Question 2. Which hereditary classes of graphs admit small-distance sketches whose size
depends only on r?

It is common to weaken distance labelling to approzimate distance labelling [28], where the
goal is to approximate dist(z,y) up to a constant factor (see e.g. [65, 1, 8]). The decision
version is to distinguish, for a given r, between dist(z,y) < r and dist(z,y) > ar; we will
call this problem «-approzimate distance threshold (ADT) labelling and sketching. This is a
similar formulation as the distance sketching problem mentioned above, with the n points
from the metric space X’ being replaced with a size n graph from a class F. Despite significant
interest in distance sketching and labelling, the only prior work explicitly relating the two, or
studying randomized ADT labelling, appears to be the unpublished manuscript [10] (although
there is extensive literature on the related problem of embedding graph metrics into normed

3 See [40] for a discussion of stability, which is not necessary for the current paper.
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spaces [54, Chapter 15]; embedding planar graphs into ¢; with constant distortion is a major
open problem [35]). This raises the following question, which is a special case of the open
problem of identifying sketchable metrics:

» Question 3. Which classes of graphs admit constant-size ADT sketches?

It holds by definition (see definitions below) that a small-distance sketchable class F is
adjacency sketchable, but the relationships between other types of sketching are otherwise
unclear, a priori. It seems reasonable to suspect that these three types of sketching require
similar conditions on the graph class F; so we ask:

» Question 4. What is the relationship between adjacency, small-distance, and ADT sketch-
ing?

1.2 Our Results

In this paper, we resolve Questions 1, 2, and 4 for monotone classes of graphs, and make

progress towards Question 3. The sketches we obtain usually do not assume that the classes

under consideration are monotone, but our lower bounds crucially rely on this assumption.

We first formally define the main three types of sketchability that we are concerned with.

We will generalize these definitions in Section 2.2. For a graph class F, we say:

1. F admits an adjacency sketch of size s(n) if there is a function D : {0,1}*x{0,1}* — {0,1}
such that VG € F with size n, there is a random function sk : V/(G) — {0, 1}*(") satisfying

Va,y € V(G) : Pr[D(sk(x),sk(y)) =1 <= =x,y are adjacent] > 2/3.

F is adjacency sketchable if it admits an adjacency sketch of constant size.

2. F admits a small-distance sketch of size s(n,r) if for every r € N there is a function
D, :{0,1}* x {0,1}* — {0, 1} such that VG € F with size n, there is a random function
sk : V(G) — {0,1}*(™") satisfying

Va,y € V(Q) : Pr[D,(sk(z),sk(y)) =1 < distg(x,y) <r] >2/3.

F is small-distance sketchable if it admits a small-distance sketch of size independent of
n.

3. For constant « > 1, F admits an a-ADT sketch of size s(n) if for every r € N there is a
function D, : {0,1}* x {0,1}* — {0, 1} such that VG € F with size n, there is a random
function sk : V/(G) — {0,1}*" satisfying

Vz,y € V(G) : dist(z,y) < r = Pr[D,(sk(x),sk(y)) =1] > 2/3
dist(z,y) > ar = Pr[D,(sk(x),sk(y)) =0] > 2/3.

For a constant « > 1, we say that F is a-ADT sketchable if F admits an a-ADT sketch
with size independent of n. F is ADT sketchable if there is a constant o > 1 such that F
is a-ADT sketchable.
Our results imply the following hierarchy, which answers Question 4 for monotone classes of
graphs. Let ADJ be the adjacency sketchable monotone graph classes, SD the small-distance
sketchable monotone graph classes, and ADT the ADT sketchable monotone graph classes.
Then

ADT C SD C ADJ.

That SD C ADJ follows by definition, and SD # ADJ is witnessed by the arboricity-2 graphs
(as observed in [38]). Our contribution to this hierarchy is ADT C SD (which does not
necessarily hold for non-monotone classes), a complete characterization of the sets SD and
ADJ, and some results towards a characterization of ADT.
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1.2.1 Adjacency Sketching

We resolve Question 1 for monotone classes by showing that they are adjacency sketchable if
and only if they have bounded arboricity. A graph G has arboricity k if its edges can be
partitioned into k forests. A class F has arboricity k if all graphs G € F have arboricity at
most k. If there exists some constant k such that F has arboricity k, we say F has bounded
arboricity.

» Theorem 1.1. Let F be a monotone class of graphs. Then F is adjacency sketchable if
and only if F has bounded arboricity.

All proofs for adjacency sketching are in Section 3. Using standard random hashing and
the adjacency labelling scheme of [47], it is easy to see that any class of bounded arboricity
is adjacency sketchable; this was stated explicitly in [38, 40] (the latter giving slightly
improved sketch size). We prove the converse for monotone classes (which does not hold
for hereditary classes in general [40]). We use the probabilistic method to find a subgraph
of small discrepancy in any class of unbounded arboricity, inspired by the recent proof of
[36, 37] that refuted the main conjecture of [40], and we find that the subgraphs of the
hypercube are an easier-to-define counterexample to the conjecture of [40]).

It is interesting that the hashing-based sketch uses randomization only to compute
EQuALITY subproblems; i.e. it can be simulated by a constant-cost deterministic commu-
nication protocol with access to a unit-cost EQUALITY oracle. This type of sketch is called
equality-based in [40]. Equality-based sketches imply some structural properties of the graph
class, such as the strong Erdds-Hajnal property [37]. Recent work has studied the power of
the EQUALITY oracle and found that it does not capture the full power of randomization
[15, 37, 40]; in particular, the Boolean hypercubes (and any Cartesian product graphs) are
adjacency sketchable, but not with an equality-based sketch [37, 40]. Our result shows that
EQUALITY captures the power of randomization for sketching monotone classes of graphs. In
fact, it is only necessary to compute a disjunction of equality checks, which we think of as
the simplest possible type of sketch.

We remark that sketches (especially small-distance or ADT sketches) which compute a
disjunction of equality checks can be used to obtain locality-sensitive hashes, a widely-used
algorithmic tool introduced in [45]. Almost all of our positive results are of this type. See
Remark 2.6.

1.2.2 Small-Distance Sketching

We answer Question 2 by proving that the monotone graph classes that are small-distance
sketchable are exactly those with bounded expansion (as in [57]; see our Definition 2.2).
Informally, bounded expansion means that the edge density of a graph increases only as a
function of r when contracting subgraphs of radius r into a single vertex. Many graph classes
of theoretical and practical importance have bounded expansion, including bounded-degree
graphs, proper minor-closed graph classes, and graphs of bounded genus [57], along with
many random graph models and real-world graphs [17].

To state our theorem, we briefly describe another type of sketch that generalizes small-
distance sketching, called first-order sketching. A graph class F is first-order sketchable if
any first-order (FO) formula ¢(z,y) over the vertices and edge relation of the graph (with
two free variables whose domain is the set of vertices) is sketchable (see Section 2.2). This
type of sketch was introduced in [40] and generalizes small-distance sketching, along with
(for example) testing whether vertices x,y belong to a subgraph isomorphic to some fixed
graph H. We show that, for monotone graph classes, first-order sketchability is equivalent to
small-distance sketchability. All proofs for small-distance sketching are in Section A.

18:5
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» Theorem 1.2. Let F be a monotone class of graphs. Then the following are equivalent:
1. F is small-distance sketchable;

2. F is first-order sketchable;

3. F has bounded expansion.

The implications (3) = (2) = (1) do not require monotonicity. (2) = (1) holds
by definition. The proof of (3) = (2) is straightforward, but relies on a structural result
of [26] whose proof is highly technical. We actually get the stronger result that any first-order
transduction of a class with bounded expansion is first-order sketchable, which improves the
results of [40]. It was proved in [40], using structural results of [27], that any stable class
of bounded twin-width is first-order sketchable. A stable class has bounded twin-width if
and only if it is a transduction of a class of bounded sparse twin-width [27]. Every class of
bounded sparse twin-width has bounded expansion, but the converse does not hold (e.g. for
cubic graphs) [14], so our result generalizes the result of [40]. It essentially follows from using
the structural results of [26] instead of [27].

Our proof of (1) = (3) (Section A.4) requires our proof of Theorem 1.1 and some
results in sparsity theory [50, 57]. We actually prove a stronger statement: for any monotone
class F, the existence of a sketch for deciding dist(z,y) < r vs. dist(x,y) > 5r — 1, with size
depending only on r, implies bounded expansion. Under a conjecture of Thomassen [64],
we can replace the constant 5 with any arbitrarily large constant; see the remark after
Conjecture A.17. Note that, even with a constant-factor gap between distance thresholds,
this problem is distinct from ADT sketching, since the small-distance sketch size is allowed
to depend on r. If we could replace the constant 5 with any arbitrarily large constant, this
would immediately imply ADT C SD.

We also present a more direct proof of (3) = (1), without going through first-order
sketching, that allows for quantitative results. Going through first-order sketching (as was
also done in [40]) proves the existence of a function f(r) bounding the sketch size, without
giving it explicitly. We obtain explicit bounds in terms of the weak coloring number [57],
written as wcol,.(F) for any r € N (Definition A.2). Using known bounds on the weak
coloring number [66], we obtain the following corollary. As was the case for adjacency
sketching, we observe that this proof (unlike the more general one for first-order sketching)
produces sketches that only use randomization to compute a disjunction of EQUALITY checks,
establishing that this extremely simple type of sketch suffices for monotone classes.

» Corollary 1.3. Any graph class F with bounded wcol,.(F) admits a small-distance sketch
of size O(r + wcol, (F) log(wcol,(F))). In particular, planar graphs admit a small-distance
sketch of size O(r3logr), and the class of Ki-minor-free graphs admits a small-distance
sketch of size O(r*~tlogr). Furthermore, planar graphs admit a small-distance labelling
scheme of size O(r3logn) and K-minor-free graphs admit a small-distance labelling scheme
of size O(r'~tlogn).

1.2.3 Approximate Distance Sketching

In light of Theorem 1.2, a reasonable question is whether ADT sketching for monotone classes
is also determined by expansion. Our first result is that bounded expansion is necessary. All
proofs on approximate distance sketching are omitted here due to space limitations, but can
be found in the full version of the paper.

» Theorem 1.4. If a monotone class F is ADT sketchable, then it has bounded expansion.
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Combined with Theorem 1.2, this proves ADT C SD. Our proof uses a recent and fairly
involved result in extremal graph theory [53], along with the theory of sparsity [57], to show
that an a-ADT sketch for a monotone class F of unbounded expansion could be used to get
a constant-size sketch for deciding dist(x,y) < 1 vs. dist(z,y) > « in arbitrary graphs, which
(as we show) is a contradiction.

We are then concerned with the converse. We show that the class of max-degree 3 graphs,
which has expansion exponential in r [56], is not ADT sketchable. After proving this theorem,
we learned of an unpublished result [10] which proves a ©(log(n)/a) bound for one-way
communication of the a-ADT problem on degree-3 expander graphs. This could be used
in place of our theorem to get the same qualitative (constant vs. non-constant) results, but
not the quantitative bound: note that communication complexity cannot give sketching or
labelling lower bounds better than ©(logn).

» Theorem 1.5. For any o > 1, any a-ADT sketch for the class of graphs with maximum
1

degree 8 has size at least Q(nda™%), for any constant € > 0.

This establishes that ADT # SD (and negatively answers open problem 2 of [2] about
approximate distance labels for bounded-degree graphs, which [10] does not). But max-
degree 3 graphs have exponential expansion. Smaller bounds on the expansion are associated
with structural properties: for example, in monotone classes, polynomial expansion is
equivalent to the existence of strongly sublinear separators [19]. One may then wonder if
smaller bounds on the expansion suffice to guarantee ADT sketchability. We prove that
this is not the case for two natural examples: subgraphs of the 3-dimensional grid (with
polynomial expansion [57]), and subgraphs of the 2-dimensional grid with crosses (with linear
expansion [18]) are not ADT sketchable. For this we require our Theorem 1.5.

» Proposition 1.6. For the class of subgraphs of the 3-dimensional grid (the Cartesian
product of 3 paths), and the class of subgraphs of the 2-dimensional grid (the strong product
of 2 paths), an a-ADT sketch requires size at least n®*(1/),

We strengthen this result by showing that one can obtain monotone classes of graphs with
expansion that grows arbitrarily slowly, which are not ADT sketchable.

» Theorem 1.7. For any function p tending to infinity, there exrists a monotone class of
expansion r — p(r) that is not ADT sketchable. Moreover, for any € > 0, there exists a
monotone class F of expansion r — O(r®), such that, if F admits an a-ADT sketch of size
s(n), then we must have s(n) = n1/®),

We conclude with a brief discussion of upper bounds for ADT sketching. A number of
concepts have been introduced in the literature that can be used to obtain ADT sketches,
including sparse covers [12] and padded decompositions [49].

Using the sketches obtained from sparse covers, combined with results of [23] on sparse
covers (based on [49, 22]), we obtain the following, which complements our Theorem 1.7;
note that the graph classes with constant expansion are exactly the proper minor-closed
classes [57].

» Corollary 1.8. For any t > 4, the class of K¢-minor-free graphs has a O(2%)-ADT sketch
of size O(t?logt). The sketch is equality-based and has one-sided error. As a consequence,
every monotone class of constant expansion is ADT sketchable.

18:7
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It is also relatively straightforward to obtain ADT sketches from padded decompositions,
with an interesting difference. These sketches may not have one-sided error and, unlike all
other positive examples of sketches in this paper, they may not be equality-based. On the
other hand, they are extremely small. We can use constructions of padded decompositions
due to [52, 3] to obtain the following remarkable corollary:

» Corollary 1.9. For any t > 4, the class of Ki-minor-free graphs has an O(t)-ADT sketch
of size 2. For g > 0, the class of graphs embeddable on a surface of Fuler genus g has an
O(log g)-ADT sketch of size 2.

1.3 Discussion & Open Problems

The main problem left open by this paper is Question 3 for monotone classes of graphs;
we have shown that a constant bound on the expansion implies ADT sketchability, while
arbitrarily small non-constant bounds do not, but this does not rule out a monotone, ADT
sketchable class with non-constant expansion.

We have examples showing that ADT sketching does not imply small-distance sketching,
in general. But our examples are not even hereditary. Is there a hereditary class that is ADT
sketchable, but not small-distance or adjacency sketchable?

Our Theorem 1.2 shows that bounded expansion implies first-order sketchability, and
that for monotone classes the converse also holds. We showed more generally that classes of
structurally bounded expansion are first-order sketchable. To extend our study of sketchability
beyond monotone classes, it would be interesting to investigate whether the converse of
this statement holds: does first-order sketchability of a hereditary class imply structurally
bounded expansion?

In the preprint of this paper, we asked whether the class of subgraphs of hypercubes
is a counterexample to the Implicit Graph Conjecture (IGC), which asks for deterministic
adjacency labels of size O(logn). This conjecture was refuted recently in [41] by a non-
constructive argument, and it would be interesting to find a more natural class that refutes
the conjecture. The induced subgraphs of hypercubes are adjacency sketchable and therefore
admit adjacency labels of size O(logn) (see e.g. [40]), but our Corollary 3.6 shows that the
subgraphs are not adjacency sketchable. Prior work (e.g. [16]) has not succeeded in finding
labeling schemes of size O(logn) for this class. These observations made it plausible to us
that efficient labeling schemes for this class do not exist. However, efficient adjacency labels
for this class have since been found in [21]. A related question is whether we may characterize
the monotone classes of graphs which admit adjacency labeling schemes of size O(logn).

We have focused on determining whether there exists a constant « such that a class is
a-ADT sketchable. It is also of interest to obtain sketches for arbitrarily small @ > 1, with
sketch size depending on «. One strategy is to embed the graph isometrically into £1, but
this is not always the best option. We obtained a (1 + €)-ADT sketch for the class of forests
with size O (% log %), but this result appeared earlier in [10]; this sketch is more efficient
than the one obtained by embedding the trees isometrically in ¢;. We remark that a class
(monotone or not) that admits a (14 &)-ADT sketch for € < 1 must also admit an adjacency
sketch.

Finally, we point out an interesting conjecture of [37], that all constant-cost public-coin
communication problems contain a large monochromatic rectangle. In our terminology, using
the equivalence between constant-cost communication and adjacency sketching from [40], this
conjecture states that all adjacency sketchable graph classes have the strong Erdos-Hajnal

property.
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2 Preliminaries

2.1 Notation

Throughout the paper, log denotes the logarithm base 2, while In denotes the natural
logarithm.

We will write 1[E] for the indicator variable for the event E, which takes value 1 if E is true.
Given a graph G, the length of a path P in G is the number of edges of P. Given two
vertices z,y € V(G), we define distg(z,y) to be the infimum of the length of a path between
z and y in G; we define distg(z,y) = oo if there exists no path between 2 and y. Notice that
(V(@),distg) is a metric space (with possibly infinite distances between pairs of vertices if G
is disconnected).

The girth of a graph G is defined as the size of a shortest cycle in G (if G is acyclic, its girth
is infinite).

2.2 Distance and First-Order Sketching

We will require more general notions of sketching than those introduced above. For a class F of
graphs, we will say that a sequence { f¢ }ger of partial functions fo : V(G)xV(G) — {0, 1, %}
is a partial function f parameterized by graphs G € F. We will write f to refer to this
sequence.

For a graph class F, we define an f-sketch for F as a decoder D : {0,1}*x{0,1}* — {0,1},
such that for every G € F the following holds. There is a probability distribution over
functions sk : V(G) — {0, 1}*, such that for all =,y € V(G),

fa(z,y) # * = Pr[D(sk(z),sk(y)) = fa(z,y)] = 2/3.
We define the size of the sketch as

sk
Jhax sup max Isk(z)],

where the supremum is over the set of functions sk : V(G) — {0,1}* in the support of the
distribution defined for G, and |sk(z)| is the number of bits of sk(z). We will say that a class
F is f-sketchable if there exists an f-sketch for F with size that does not depend on the
number of vertices n.

For a graph class F, we also define an f-labelling scheme for F similar to above, except
that for every G € F there is a deterministic function £ : V(G) — {0,1}* such that for all
z,y € V(G),

fG(xvy) #*x = D(E(x)ag(y)) = f(;(x,y) .
The following simple proposition (observed in [38, 40]) relates sketches to labelling schemes:

» Proposition 2.1. If F admits an f-sketch of size s(n), then it admits an f-labelling scheme
of size O(s(n)logn).

We now define certain important types of f-sketches. Let F be a class of graphs. For any
r1 < g, a distance-(r1,13) sketch for F is an f-sketch, as defined above, when for any graph
G we define the function
1 ifdistg(z,y) <m
falz,y) =<0 if distg(x,y) > ro

x  otherwise.
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The size of such a sketch may depend on r1, r, the number of vertices n, or other graph
parameters.

Recall the definitions of adjacency sketchable, small-distance sketchable, and ADT sketch-
able. It is clear that:

1. A class F is adjacency sketchable if it is distance-(1, 1) sketchable;
2. A class F is small-distance sketchable if for every r > 1 it is distance-(r,r) sketchable.
3. A class F is a-ADT sketchable if for every r > 1 it is distance-(r, ar) sketchable, and

furthermore the size of the sketch does not depend on r.

Following [40], we will also define FO-sketchable classes, for which we require some terminology
(see e.g. [59] for more on the following terminology). A relational vocabulary 3 is a set of
relation symbols, with each R € ¥ having an arity arity(R) € N\ {0}. A ¥-structure A
consists of a domain A, and for each relation symbol R € ¥ an interpretation RA C Aty ()
which is a relation. Fix a countably infinite set X of variables. Atomic formulas of vocabulary
> are of the form

x =y for z,y € X; or,

R(xy,...,zy) for x1,...,2, € X, R € ¥ and r = arity(R), which evaluates to true when

(x1,...,2,) € R.

First-order (FO) formulas of vocabulary ¥ are inductively defined as either atomic formulas,
or a formula of the form —¢,¢ A, ¢ V ¢, or dx.¢ or Vx.ip, where ¢ and 1 are each FO
formulas. A free variable of a formula ¢ is one which is not bound by a quantifier. We will
write ¢(x1,za,...,x) to show that the free variables of ¢ are z1,...,2 € X. For a value
u € A, we write ¢[u/x] for the formula obtained by substituting the constant u for the free
variable x.

Let ¢(xz,y) be any formula with two free variables and relational vocabulary ¥ =
{E',Ryq,...,R;} where E’ is symmetric of arity 2 and each R; is unary (i.e. of arity 1).
We will say that a graph class F is ¢-sketchable if it is f-sketchable for any f chosen as
follows. For any graph G = (V, E), we choose any Y-structure with domain V' where FE is the
interpretation of the symbol E’. Then set fo(u,v) =1 if and only if ¢(u/x,v/y) evaluates
to true.

We remark that for any graph G, there are many ways to choose a X-structure with
domain V with E being the interpretation of E’. To be first-order sketchable, a class F must
be f-sketchable for every such choice of functions fg. A concrete example is that, for any
r € N, we can choose the formula

d(z,y) = ur, uz, ..y ur—1 : (B (2, u1) Ve = un)A(E (w1, u2) Vur = ua) A A(E (ur, y) Vi = y),

which evaluates to true if and only if distg(z,y) < r.

2.3 Bounded expansion

Here we introduce the notion of expansion from sparsity theory, as discussed in [57].

» Definition 2.2 (Bounded Expansion). Given a graph G and an integer r > 0, a depth-r
minor of G is a graph obtained by contracting pairwise disjoint connected subgraphs of radius
at most r in a subgraph of G. For any function f, we say that a class of graphs G has
expansion at most f if any depth-r minor of a graph of G has average degree at most f(r)
(see [57] for more details on this notion). We say that a class G has bounded expansion if
there is a function f such that G has expansion at most f.

Note that, for example, every proper minor-closed family has constant expansion.
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2.4 Equality-Based Labelling Schemes and Sketches

An equality-based labelling scheme is one which assigns to each vertex a deterministic
label, comprising a data structure of size s that holds k “equality codes’} which can be
used only for checking equality. These labelling schemes: 1) capture the constant-cost
randomized communication protocols that can be simulated by a constant-cost deterministic
communication protocol with access to an EQUALITY oracle (as studied in e.g. [15, 13, 37, 40]);
and 2) capture a common type of adjacency labels, including those of [47] for bounded
arboricity graphs (see [40] for others).

One might formalize these schemes in a few ways; we slightly adapt the definition from [40].
This definition is intended to simplify notation rather than optimize label size, since we care
mainly about constant vs. non-constant.

» Definition 2.3 (Equality-Based Labeling Scheme). Let F be a class of graphs and let
f:NxNxF —{0,1,+} be a partial function. An (s,t,k)-equality-based f-labelling scheme
for F is an algorithm D, called a decoder, which satisfies the following. For every G € F
with vertex set [n] and every x € [n], there is a sequence of the form

to(z) = [(p1(2) | 1(2)), (p2(2) | (), - -, (pe() | Gi(2))],

where the vectors p;(x) € {0,1}* are called the prefixes, and the entries of the vectors
q:(z) € N* are called equality codes (which we may assume are positive integers). We must
have Zle Ipi(x)] < s and 22:1 |@;(x)| <k (recall that given a vector v of binary numbers or
integers, |v| denotes the number of entries of v). We insist on the fact that k bounds the total
number of equality codes associated with any verter x, but not necessarily the total number of
bits needed to store these codes (see Example 2.4 below, where k = 2 but storing the codes
would require 2logn bits per vertex). On inputs Lg(x),lc(y), the algorithm D chooses a
Junction Dy p(y), where p(x) = (p1(x),...,p(x)), and outputs

Dp(2),p(y)(Qa,y)

where

Qay(i1,12, 51, J2) = 1[(Giy (2))j, = (G0 (%)) 0] (1)

is the set of equality values for every pair of equality codes. It is required that, for every
G e F and xz,y € V(GQ),

f(r,y,G) #+ = Dp(m),p(y)(Qz,y) = f(z,y,G).

We make the further distinction of calling a labelling scheme (s, k)-disjunctive if it is an
(s,t, k)-equality-based labelling scheme, where each function Dyg p(y) s simply a disjunction
over o subset of values Q (i1, 12,1, j2).

When an element (p;(x) | ¢i(z)) in an equality-based label has p;(z) of size 0, we will write
(= | ¢i(z)); similarly, we write (p1(z) | —) when §;(z) is empty.

» Example 2.4. The adjacency labelling scheme of [47] for forests can be written as an
equality-based labelling scheme. For each x in an n-vertex forest G with arbitrarily rooted
trees, which we assume has vertex set [n], we assign the label g (z) = [(— | (z,p(z)))] where
p(z) is the parent of x if it has one, or 0 otherwise. Here ¢) (x) = (x, p(z)) € N2. The decoder
simply outputs the disjunction of p(z) = y or p(y) = z, so in fact this is a (0, 1, 2)-disjunctive
labeling scheme.
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An equality-based labelling scheme is easily transformed into a standard deterministic
labelling scheme or a sketch. The following simple proposition was observed in [40]. We
sketch the proof for the sake of clarity.

» Proposition 2.5. Let F be a class of graphs and f : N x N x F — {0,1,*} be a partial
function. If there is an (s,t,k)-equality-based f-labelling scheme for F then there is an
f-sketch for F of size at most O(s +t + klogk). If the scheme is disjunctive, the sketch
has one-sided error: when f(x,y,G) = 1, the sketch will produce the wrong output with
probability 0.

Proof sketch. Choose a random function ¢ : N — [w] for w = 3k%. For any vertex x of a
graph G, replace each vector ¢;(z) = (¢;1(x), ..., qim(x)) with (£(g;1(2)), ..., &(gim(x))).
We have replaced each of the (at most) k equality codes (g;(x)); with £((gi(x));), using
klogw = O(klog k) bits in total. The sketch has size O(s+t+ klog k) since we must include
each p;(z) (using s bits in total), the O(klog k) bits for the equality codes, and O(t) bits to
encode the symbols ( | ).

For two vertices «,y, write @S, (i1, iz, 1. j2) = 1[E((@ (2))s) = £((d (v));a)]). Since
there are at most k equality codes in each label, there are at most k? equality comparisons.
By the union bound, the probability that any of these comparisons have

1[6((6711 (x))m) = 5((6']1 (y))m)] 7& 1[(@;1 (ﬁ))lz = ((le (y))Jz]

is at most k% - (1/w) = 1/3, so with probability at least 2/3 all of the comparisons made
by the decoder have the correct value, so the decoder will be correct. Note that when
(@i, ()i, = (@5, (¥)),, the random values under £ will be equal with certainty. We conclude
from this that disjunctive schemes will produce sketches with one-sided error. |

» Remark 2.6. Disjunctive labelling schemes with s = 0 (i.e. the p values are empty) can
be transformed into locality-sensitive hashes (LSH) [45]. A (r1,72,71,72)-LSH must map
any two points x,y with dist(z,y) < r1 to the same hash value with probability at least 71,
and map any two points z,y with dist(z,y) > 72 to the same hash value with probability at
most g, where r; < ro and 71 > 3. By boosting the success probability of each EQUALITY
check in the disjunction, and then sampling a uniformly random term from the disjunction,
one obtains an LSH with distance parameters that depend on the original sketch. All of the
equality-based sketches presented in this paper, except the first-order sketches, are of this
form.

3 Adjacency Sketching

In this section, we prove Theorem 1.1, and include the additional equivalent statement that
F admits a constant-size disjunctive adjacency sketch. We think of disjunctive sketches as
the simplest possible use of randomization in a sketch, with the theorem establishing that
the simplest possible sketches are sufficient for monotone classes.

» Theorem 3.1. Let F be a monotone class of graphs. Then the following are equivalent:
1. F is adjacency sketchable.

2. F admits a constant-size disjunctive adjacency labelling scheme.

3. F has bounded arboricity.

A disjunctive labelling scheme for graphs of arboricity k& can be obtained from the adjacency
labelling scheme of [47], as in Example 2.4. This leads to a sketch of size O(klogk) by
Proposition 2.5, which was improved slightly in [40]:
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» Proposition 3.2 ([40]). Let F be any class with arboricity at most k. Then F admits a
(0,1, k + 1)-disjunctive adjacency labelling scheme, and an adjacency sketch of size O(k).

Therefore, to prove Theorem 3.1, it suffices to prove (1) = (3), which we will prove by
contrapositive. This proof will use the notion of discrepancy from communication complexity.
Our proof is inspired by the recent proof of Hambardzumyan, Hatami, & Hatami [37],
which refuted the main conjecture of [40]. Our proof also leads to another, more natural
counterexample to the conjecture of [40]: the class of subgraphs of the hypercube.

Consider a graph G = (V,E), let f : V xV — {0,1,*} be a partial function, and let
1 be a probability distribution over V' x V' that is supported on pairs (z,y) which satisfy
flz,y) # *. Let X, Y C V. Then we define the discrepancy of R=X x Y as

Diseu (G, R) = |Prl(z,9) € RN S~ ()] = Pl(w,) € R f0)])

where (z,y) is drawn from p. The discrepancy of G under p is defined as
Disc,, f(G) = max Disc,, (G, R),

where the maximum is over all sets R = X x Y with X,Y C V. The following lemma is
essentially a restatement of a standard lower-bound technique in communication complexity.

» Lemma 3.3. Let G = (V,E) be any graph on n vertices, let F be any class of graphs
containing G, and let f be a partial function parameterized by graphs in F. Let p be any
probability distribution over V x V' supported on a subset of {(x,y) : fa(x,y) # *}. Then
any f-sketch for F, has size at least %log m.

o f

A spanning subgraph of a graph G = (V, E) is a subgraph of G with vertex set V. Our
next lemma will give a lower bound on the adjacency sketch size for the class G of spanning
sugraphs of a graph G of minimum degree d. We will actually prove the lower bound for a
weaker type of adjacency sketch, which is only required to be correct on pairs (z,y) that
were originally edges in G. This stronger statement is not necessary for the current section,
but will be used in the proof of Theorem A.16.

For a graph G = (V, E) and the class G of spanning subgraphs of G, and any subgraph
H e G, we will define the partial function adj% : V x V — {0,1,*} as

ad.]H(xvy) if (-T,y) S

* otherwise.

adjjy(z,y) = {

In the remainder of this section, we view adj” as the function (adj%)pecg parametrized by
H € G. In particular, an adj®-sketch for G computes the partial function adjf, for each
Heg.

We show by the probabilistic method that there is a distribution x4 and a subgraph of G
with discrepancy O(1/v/d) with respect to . We will require the standard Chernoff bound
for the binomial distribution with parameters n and % (see Corollary A.1.2 in [5]): for any
t>0,

Pr(|Bin(n, 1) — 2| > t) < 2exp(—2t*/n).

» Lemma 3.4. Let G = (V, E) be a graph of minimum degree d, and let G be the class of
spanning subgraphs of G. Then any adj”-sketch for G requires size at least Q(logd).
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Proof. Let H be a random spanning subgraph of G obtained by including each edge of G
independently with probability 1/2. Note that H € G with probability 1. Let m = |E| and
let 1 be the probability distribution over V' x V such that for every (z,y) € V' x V, we have
u((z,y)) = 1/m if (z,y) € E, and pu((x,y)) = 0 otherwise (so that p is uniform over the
edges of G). For simplicity, write Disc, for Disc, s where f = adj®. We will prove that
Disc, (H) is small, with nonzero probability over H.

Consider a set R =X x Y with X, Y CV, and let kK < m be the number of edges (x, y)
of G with (z,y) € R. Let H be any subgraph of G with |E(H) N R| = ¢ < k. Then

Disc,(H, R) =

Pr{(e,y) € B(H) 11 R] ~ Prf(e,y) € R\ E(H)]\

m m

e k-t 20—k
==

For fixed R = X X Y, it then holds that Disc,(H, R) is a random variable @, where
¢ ~ Bin(k,1/2). Then, by the Chernoff bound, we have for any € > 0 that

Pr[Disc, (H,R) > €] = Pr[|Bin (k, 1) — £| > 1em] < 2exp (—%) < 2exp (—&°m/2) ,

where the last inequality is due to & < m. There are at most 22" gets R=XxY CV xV,
so by the union bound,

Pr[3R =X x Y CV x V : Disc,(H, R) > ¢] < 2*""! exp (—e’m/2)
=exp ((2n+ 1)In(2) — £*m/2) .
Now, since G has minimum degree d, we have m > dn/2. Setting ¢ = (%) with a

sufficiently large implicit multiplicative constant, we get an upper bound on this probability of
exp ((2n +1)In(2) — e?m/2) < exp ((2n +1)In(2) — %dn/4) < 1.

Therefore there exists a subgraph H with Disc,,(H) = O(1/V/d). Applying Lemma 3.3, we
see that any adj®-sketch for G must have size at least Q(log(v/d)) = Q(log d). <

We may now complete the proof of Theorem 3.1. We aim to prove (1) = (3), which we
will prove by contrapositive: i.e. that any class of unbounded arboricity has non-constant
adjacency sketch size.

» Lemma 3.5. Let F be any monotone class of graphs with unbounded arboricity. Then F
does not admit a constant-size adjacency sketch.

Proof. It is well-known that the degeneracy of a graph is within factor 2 of the arboricity, so
the degeneracy of F must also be unbounded. Then for any integer d € N, there is a graph
G € F with degeneracy at least d. By definition, G contains a subgraph H of minimum
degree at least d. Let G be the class of spanning subgraphs of G. Since F is monotone, we
have G C F. Then by Lemma 3.4, any adjacency sketch for G must have size at least Q(logd).
Then for any integer d, we obtain a lower bound of Q(logd) on the size of an adjacency
sketch for F; it follows that any adjacency sketch for F is of non-constant size. <

As a consequence, we obtain the following counterexample to the main conjecture of [40].
We remind the reader that the conjecture was already refuted in [36], using an interesting
construction of a graph class that was originally used to establish a “proof barrier” in
communication complexity [37]. Our counterexample, the subgraphs of the hypercube, is
more easily defined. The following bound on the number of subgraphs of the hypercube was
observed by Viktor Zamaraev (personal communication). See [40] for a definition of stable.
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» Corollary 3.6. Let F be a class of subgraphs of the hypercube. Then:
1. F is stable, and there are at most 2°("1°87) graphs on n vertices in F.

2. F is not adjacency sketchable.

Proof. Since the d-dimensional hypercube of size N = 2¢ has minimum degree d = log N,
F has non-constant adjacency sketch size. To bound the number of n-vertex subgraphs of
the hypercubes, we first observe that there are at most 2°("1°87) indyced subgraphs of the
hypercube on n vertices, which follows from the O(logn) adjacency labelling scheme for this
class [38] (see a simpler exposition at [39]). It is known that any n-vertex induced subgraph
of the hypercube has at most O(nlogn) edges [33], so each induced subgraph admits at most
20(nlogn) snanning subgraphs. Therefore the number of n-vertex subgraphs of the hypercube
is at most 20(nlegn) . 90(nlogn) — 9O(nlogn) ~ Apy monotone class of graphs which is not

stable contains K, for every ¢t € N, and therefore contains the class of all bipartite graphs.

This does not hold for F (or indeed for any class of factorial speed), so F must be stable. <«
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A Small-Distance Sketching

In this section we prove Theorem 1.2. As in Theorem 3.1, we refine the theorem by showing
that the sketches are in fact disjunctive.

» Theorem A.1. Let F be a monotone class of graphs. Then the following are equivalent:

1. F is small-distance sketchable.

2. For some function f : N — N and every r € N, F admits a disjunctive small-distance
labelling scheme of size f(r).

3. F is first-order sketchable.

4. F has bounded expansion.

It holds by definition that (3) = (1) and (2) == (1), even without the assumption of

monotonicity. We will prove (4) = (3) and (4) = (2) using different methods. We

prove (4) = (3) (again without the assumption of monotonicity) in Section A.2 using

the structural result of [26]. This proof does not give explicit bounds on the sketch size.

(4) = (2) is proved in Section A.3 and gives explicit upper bounds on the sketch size. The

final piece of the theorem, (1) = (4), is proved in Section A.4.

A.1 Bounded expansion

» Definition A.2 (Weakly r-reachable). Given a total order (V,<) on the vertex set V of
a graph G and an integer r > 0, we say that a vertex v € V is weakly r-reachable from a
vertex w € V' if there is a path of length at most r connecting v to u in G, and such that for
any vertex w on the path, v < w (in words, v is the smallest vertex on the path with respect
to (V,<)). For a graph G and an integer r > 0, we denote by wcol,.(G) the smallest integer
k for which the vertex set of G has a total order (V,<) such that for any vertexr uw € V, at
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most k vertices are weakly r-reachable from u with respect to (V,<). For a graph class F, we
write weol,.(F) for the supremum of weol,.(G), for G € F.

» Definition A.3 ((k, ¢)-Subdivisions). For a graph G and two integers 0 < k < ¢, a (k,)-
subdivision of G is any graph obtained from G by subdividing each edge of G at least k times
and at most ¢ times (i.e. we replace each edge of G by a path with at least k and an most ¢
internal vertices). A (k,k)-subdivision is also called a k-subdivision for simplicity;

» Definition A.4 (Depth-r Topological Minor). We say that H is a depth-r topological minor
of a graph G if G contains a (0, 2r)-subdivision of H as a subgraph. In the proof below it will
be convenient to use the following equivalent definition of bounded expansion [57].

» Theorem A.5. For a class F of graphs, the following are equivalent:

1. F has bounded expansion.

2. There is a function f: N — N such that for any r € N, wcol,.(F) < f(r).

3. There is a function f : N — N such that for any r € N and any G € F, any depth-r
topological minor of G has average degree at most f(r).

We will also require the following standard fact about the expansion of monotone classes,

which is a simple consequence of Theorem A.5 (see for instance [58]) combined with a result

of Kihn & Osthus [50].

» Corollary A.6. Let F be a monotone class of unbounded expansion. Then there is a
constant r > 0, so that for any d > 0, F contains an r-subdivision of a bipartite graph of
minimum degree at least d and girth at least 6.

The proof is omitted here due to the space limitation.

A.2 Bounded Expansion Implies FO Labelling Schemes

To prove that any class of bounded expansion is first-order sketchable, we use the result
of [26] that shows how to decompose any class of (structurally) bounded expansion into a
number of graphs of bounded shrubdepth. We will require an adjacency sketch for classes of
bounded shrubdepth, given below.

A.2.1 Adjacency Sketching for Bounded Shrubdepth

We must first define shrubdepth. A connection model for a graph G is a rooted tree T" whose
nodes are colored with a bounded number of colors such that:

the vertices of G are the leaves of T'; and

for two vertices u,v € V(G), whether u and v are adjacent in G depends only on the

colors of u and v in T, and the color of the lowest common ancestor of u and v in Tg.
To avoid ambiguity, we say G has vertices while T has nodes. Note that we can assume
without loss of generality that all leaves are at the same distance from the root in 7. A
class G has bounded shrubdepth if there are some d,k € N such that every G € G has a
connection model of depth d with colors in [k] (we recall that the depth of a rooted tree T is
the maximum number of vertices on a root-to leaf path in T).

» Lemma A.7. Any class G of bounded shrub-depth admits a constant-size equality-based
adjacency labelling scheme.

Proof. Let d, k be such that any graph G € G has a connection model T of depth d using
color set [k]. We denote by ¢ : [k]> — {0, 1} the function such that if u has color a, v has

18:19

APPROX/RANDOM 2022



18:20

Sketching Distances in Monotone Graph Classes

color b, and the lowest common ancestor of u and v has color ¢ in T, then v and v are
adjacent in G if and only if pg(a,b,c) = 1. For every node u of T, write x(u) for the color
of u in the connection model.

We now construct our equality-based labels for G. For any vertex x, let
t1(x),ta(x),. .., tqe(z) be the leaf-to-root path for x, where ¢1(z) = « and t4(z) is the root of
T¢. Then the label for z is the sequence (¢¢ | —), (x(t1(2)) | t1(z)), ..., (x(ta(2)) | ta(z)).

On inputs

(pa | =) (x(ti(@)) [ ti(2), ..o, (x(ta(2)) | talz)),
(e | =) (Xt () [ ta(y))s - - -5 (x(ta(y)) | taly))

the decoder operates as follows. It finds the smallest 7 € [d] such that 1[t;(x) = t;(y)] and
outputs pc(x(t1(2)), x(t1(y)), x(t:(x)))-

The correctness of this labelling scheme follows from the fact that we will have ¢;(x) = ¢;(y)
if and only if the node ¢;(x) = ¢;(y) is an ancestor of both = and y in T, so the smallest
i € [d] such that t;(z) = t;(y) identifies the lowest common ancestor of x and y in Tg. <

A.2.2 Structurally Bounded Expansion Implies First-Order Sketching

Following [26], we say that a class of graphs has structurally bounded expansion if it can
be obtained from a class of bounded expansion by first-order (FO) transductions. We omit
the precise definition of FO transductions in this paper, as they are not necessary to our
discussion, and instead refer the reader to [26]. We just note that a particular case of FO
transduction is the notion of FO interpretation, which is of specific interest to us. Consider
an FO formula ¢(x,y) with two free variables and relational vocabulary ¥ = {F, Ry,..., Ry}
where F' is symmetric of arity 2. We will say that a graph class F’ is an FO interpretation
of a graph class F with respect to ¢ if for any graph G’ = (V, E’) € F’ there is a graph
G = (V,E) € F and a Y-structure with domain V where E is the interpretation of the
symbol F', such that for any pair u,v € V, wv € E’ if and only if ¢(u/z,v/y) evaluates to
true. For instance, if ¢(u/x,v/y) encodes the property distg(u,v) < r for some fixed integer
r > 1 (which can be written as an FO formula), then the corresponding FO interpretation of
the class F is the class of all graph powers {G" | G € F'}. FO transductions are slightly more
involved, as it is allowed to consider a bounded number of copies of a graph before applying
the formula, and then it is possible to delete vertices. We will use the following structural
result for classes of structurally bounded expansion, proved in [26].

» Theorem A.8 ([26]). A class G of graphs has structurally bounded expansion if and only
if the following condition holds. For every p € N, there is a constant m = m(p) such that for
every graph G € G, one can find a family F(G) of vertex subsets of G with |F(G)| < m and
the following properties:

for every X C V(G) with | X| < p, there is A € F(G) such that X C A; and

the class {G[A] |G € G, A € F(G)} of induced subgraphs has bounded shrubdepth.

We directly deduce the following result.

» Lemma A.9. Any class G of structurally bounded expansion admits a constant-size equality-
based adjacency labelling scheme.

Proof. Let m and F be given by applying Theorem A.8 to G with p = 2. By definition, for
every graph G € G and every pair of vertices u,v € V(G), there is a set A € F(G) containing
u and v. Moreover, F(G) contains at most m sets and the family C of all graphs G[A4], for
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G € G, and A € F(G), has bounded shrubdepth. It follows from Lemma A.7 that there is a
constant-size equality-based adjacency labelling scheme for C. We denote the decoder of this
scheme by D, and the corresponding labels as E’G[ L

Consider some graph G € G, and let F(G) = {41,...,A,}. For each vertex z of G and
i € [m], we write a(z) = (a1(x),...,am(z)) where a;(z) = 1[z € A;]. Then we define the
label for x by taking the prefix a(x) and appending the labels E’G[Ai](x) for each induced
subgraph G[A4;] € C to which z belongs. Given the labels for vertices x and y, the decoder
finds any i € [m] such that a;(z) = a;(y) = 1; and outputs D' ({4 1(2), {54, (y)). Such a
number ¢ € [m] always exists due to Theorem A.8. The correctness of this labelling scheme
follows from Theorem A.8 and Lemma A.7. |

Since FO-transductions compose (see e.g. [59]), sketching FO formulas in a class of
structurally bounded expansion is equivalent to sketching adjacency in another class of
structurally bounded expansion. We obtain the following direct corollary of Theorem A.9.

» Corollary A.10. Any class G of structurally bounded expansion is first-order sketchable.

As the property distg(z,y) < r can be written as an FO formula, this directly implies
that classes of bounded expansion are small-distance sketchable. However, this does not
tell anything on the size of the sketches as a function of r, unlike the approach using weak
coloring numbers described in the next section.

A.3 Bounded Expansion Implies Small-Distance Sketching

Recall the definition of weak reachability from Definition A.2. We give a quantitative
bound on the small-distance sketch of any graph class F in terms of wcol,.(F). Recall from
Theorem A.5 that any class with bounded expansion has wcol,.(F) < f(r) for some function
f(r); therefore we obtain the existence of small-distance sketches for any class of bounded
expansion.

» Theorem A.11. For any r € N, any class F has an (0, r, wcol,.(F))-disjunctive distance-
(r,r) labelling scheme.

Proof. Let G € F, and consider a total order (V, <) such that for any vertex € V, at most
wcol,.(F) vertices are weakly r-reachable from v in G with respect to (V, <). We say that
vertex y € V has z-rank k if y is weakly k-reachable from x but not weakly (k — 1)-reachable
from x. For each vertex x and k € [r], write Si(z) for the set of vertices y with z-rank k.
We construct a disjunctive labelling scheme as follows. Each vertex x is assigned the label

(=1 @), (= [ @@),. ... (=[G ()

where 7’ < r is the maximum number such that S, (z) # (), and the equality codes §;(x) are
names of vertices in the set S;(z). Each label contains at most wcol,(G) equality codes, plus
a constant number of bits per equality code and O(r) bits to separate the elements of the
list. Given labels for x and y, the decoder outputs 1 if and only if there exist 0 <i,j7 <r
such that i +j < r and S;(x) N S;(y) # 0, which can be checked using the equality codes in
gi(x) and @;(y).

Suppose that distg(z,y) < r and let P C V(G) be a path of length distg(z,y). Let z € P
be the minimal element of P with respect to <. Then z is weakly i-reachable from z and
weakly j-reachable from y, for some values ¢, j such that ¢ +j < r. Then z € S;(x) N S;(y),
so the decoder will output 1 given the labels for  and y. On the other hand, if the
decoder outputs 1, then there are values ¢, j such that i + j < r and S;(x) N S;(y) # 0. Let
z € Si(x) N Sj(y), so that z is weakly i-reachable from x and weakly j-reachable from y.
Then distg(z,y) < distg(z, z) + distg(z,y) <i+j <. <
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We noticed after proving this result that a similar idea was used in [34, Lemma 6.10] to
obtain sparse neighborhood covers in nowhere-dense classes.

We will need the following quantitative results for planar graphs and graphs avoiding
some specific minor, due to [66].

» Theorem A.12 ([66]). For any planar graph G, and any integer r > 0, weol,.(G) <
(2r+1)("y%) = 00*).

» Theorem A.13 ([66]). For any integer t > 3, any graph G with no Ky-minor, and any
integer v > 0, weol, (G) < ("F52)(t = 3)(2r +2) = O(r*1).

In the proof of Theorem A.11, the equality codes are just the names of vertices; so we can
use [logn]| bits to encode each of the wcol,.(F) equality codes to obtain an adjacency label.
Then, combined with Proposition 2.5, we obtain the following corollary:

» Corollary A.14. If a class F has bounded expansion, then F has a small-distance sketch
of size at most O(r + wcol,.(F) log(wcol,.(F))). If F is the class of planar graphs, then the
sketch has size O(r3logr) and if F is the class of Ki-minor free graphs for some fized integer
t > 3, then the sketch has size O(r'*~1logr). Furthermore, F admits a distance-(r,r) labelling
scheme of size O(r + wcol,.(F)logn); if F is the class of planar graphs, then the scheme
has size O(r3logn) and if F is the class of K;-minor free graphs, then the scheme has size
O(rt=tlogn).

» Remark A.15. The fact that the sketch size is independent of the number of vertices in
Corollary A.14 implies that the scheme actually works for infinite graphs. It was proved in [43]
that for infinite graphs G, wcol,.(G) is the supremum of wcol,.(H) for all finite subgraphs H
of G (this was actually proved explicitly for the strong coloring numbers instead of the weak
coloring numbers, but the proof is the same). This shows that Theorems A.12 and A.13, and
thus Corollary A.14, also hold for infinite graphs.

A.4 Small-Distance Sketching Implies Bounded Expansion

To complete the proof of Theorem A.1, we must show that any monotone class of graphs
that is small-distance sketchable has bounded expansion, which we do by contrapositive. In
fact, we will prove a stronger statement: even having a weaker (r, 5r — 1)-distance sketch of
size f(r) implies bounded expansion.

» Theorem A.16. Let F be a monotone class of graphs and assume that there is a function
f such that for any r > 1, F has a (r,5r — 1)-distance sketch of size f(r). Then F has
bounded expansion.

Proof. Assume for the sake of contradiction that F has unbounded expansion. By Corollary
A.6, there is a constant k such that for every d > 0, F contains a k-subdivision of some
bipartite graph G = (V, E) of minimum degree at least d and girth at least 6. Let G be the
class consisting of the graph G, together with all its spanning subgraphs. By monotonicity,
F contains k-subdivisions of all the graphs of G.

Recall the definition of the partial function adj” parameterized by graphs H € G, from
the discussion preceding Lemma 3.4. We will show that the (k + 1,5(k + 1) — 1)-distance
sketch of size f(k+ 1) for F can be used to obtain a adjP-sketch for G, which must have size
Q(logd) due to Lemma 3.4. This is a contradiction since we must have f(k) = Q(logd) for
arbitrarily large d, whereas f(k + 1) is a constant independent of d.
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Let H be any spanning subgraph of G and let H*) denote the k-subdivision of H. Consider
two vertices u,v € V(H) C V(G) that are adjacent in G. Observe that distgx) (u,v) =
(k + 1)disty (u, v), and thus if u,v are adjacent in H then distyx) (u,v) < k+ 1. Assume
now that u,v are non-adjacent in H. Since u,v are adjacent in GG, G has girth at least 6,
and H is a spanning subgraph of G, it follows that in this case disty(u,v) > 5, and thus
distg e (u, v) > 5(k + 1). Therefore, by using the same decoder as the (k+1,5(k 4+ 1) — 1)-
distance sketch for F, and using the random sketch sk defined for GG, we obtain an adjg-sketch
for H. This gives an adj”-sketch for G of size f(k +1). <

In our proof of Theorem A.16 we have used Corollary A.6, which is based on the result of
[50], stating that every graph of large minimum degree contains a bipartite subgraph of girth
at least 6 and large minimum degree. The following stronger statement was conjectured by
Thomassen [64].

» Conjecture A.17 ([64]). For every integer k, every graph of sufficiently large minimum
degree contains a bipartite subgraph of girth at least k and large minimum degree.

If Conjecture A.17 is true, it readily follows from our proof that the constant 5 in
Theorem A.16 can be replaced by an arbitrarily large constant.
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