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Abstract
In the range avoidance problem, the input is a multi-output Boolean circuit with more outputs than
inputs, and the goal is to find a string outside its range (which is guaranteed to exist). We show
that well-known explicit construction questions such as finding binary linear codes achieving the
Gilbert-Varshamov bound or list-decoding capacity, and constructing rigid matrices, reduce to the
range avoidance problem of log-depth circuits, and by a further recent reduction [Ren, Santhanam,
and Wang, FOCS 2022] to NC0

4 circuits where each output depends on at most 4 input bits.

On the algorithmic side, we show that range avoidance for NC0
2 circuits can be solved in

polynomial time. We identify a general condition relating to correlation with low-degree parities
that implies that any almost pairwise independent set has some string that avoids the range of every
circuit in the class. We apply this to NC0 circuits, and to small width CNF/DNF and general De
Morgan formulae (via a connection to approximate-degree), yielding non-trivial small hitting sets
for range avoidance in these cases.
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1 Introduction

We study a basic computational problem in circuit analysis called the range avoidance
problem (which we call Avoid henceforth): given the description of a multi-output Boolean
circuit C mapping n input bits to m := m(n) > n output bits1, find a y ∈ {0, 1}m that is
outside the range of C (i.e., C(x) ̸= y for every x ∈ {0, 1}n). This is a total search problem
that has been the subject of a few recent works [11, 13, 21], which highlight its significance
and connections to central themes in computational complexity including circuit complexity,
proof complexity, and pseudorandomness.

1 The function m(n) is called the stretch of the circuit.
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20:2 Range Avoidance for Low-Depth Circuits and Connections to Pseudorandomness

To gain some intuition about the problem, note that Avoid can be trivially solved by a
Monte Carlo algorithm: a random guess would solve Avoid with probability 1 − 2n−m ≥ 1

2 .
There is also a straightforward ZPPNP algorithm for Avoid: the algorithm just repeatedly
samples a string y ∈ {0, 1}m and tests if y ∈ Range(C) by calling the NP oracle. Remarkably,
the work by Korten [13] showed that if we can deterministically solve Avoid, then we can
obtain explicit constructions of many important objects in CS theory and mathematics,
including Ramsey graphs, two-source extractors, rigid matrices, Boolean functions hard
against polynomial-size circuits, etc. These reductions put Avoid in a central position among
several notoriously hard explicit construction questions that have resisted attack for decades.

In this work, we study Avoid problem for low-depth Boolean circuits (in particular, NC0

and NC1 circuits). For every constant k ≥ 1, we say a circuit C : {0, 1}n → {0, 1}m is an
NC0

k-Avoid instance, if each output bit of C depends on at most k input bits. Similarly,
we say C is an NC1

k instance, if each output bit of C can be computed by a (k log n)-depth
Boolean circuit of fan-in two. A recent work by Ren, Santhanam and Wang [21] demonstrates
some attractive motivations to study Avoid problem for these weak circuit models. In
particular, they showed the following.

▶ Theorem 1 (Theorem 5.8 of [21]). Suppose there is an FP (resp. FPNP)2 algorithm for
NC0

4-Avoid. Then the following statements are true.
For every k ≥ 1, there is an FP (resp. FPNP) algorithm for NC1

k-Avoid.
For every ε > 0, there is a family of functions in E (resp. ENP) that does not have Boolean
circuits of depth n1−ε.

Item (1) shows that NC0
4-Avoid is as hard as NC1-Avoid. Item (2) shows that finding

explicit Boolean functions hard against low-depth circuits can be reduced to NC0
4-Avoid.

Together, these connections demonstrate that studying Avoid for weak circuit classes is
already challenging and fruitful. This suggests two new research directions to approach
Avoid from above and below: (i) we can show the “usefulness” of Avoid for “weak” circuit
classes by reducing further explicit construction problems to it, and (ii) starting from weak
circuit classes such as NC0

2, we can try to design algorithms for Avoid of increasingly powerful
models. Ultimately, we aim for an Avoid algorithm for a circuit class expressive enough to
capture some elusive explicit construction questions.

1.1 Our Results
In this work, we make progress on both directions mentioned above. On the one hand, we
reduce a sample of famous explicit construction problems to NC1-Avoid. This improves
the previous results by Korten [13], who only showed reductions to Avoid of general
polynomial-size circuits. Reducing the explicit construction problems to NC1-Avoid makes
them potentially more tractable.

On the other hand, towards solving Avoid of low-depth circuits unconditionally, we offer
two approaches to design deterministic algorithms for Avoid of low-depth circuits. We give
a simple deterministic algorithm for NC0

2-Avoid, and a novel approach to construct hitting
sets for Avoid instances. This is to say, for a class of circuits C ⊆ {C : {0, 1}n → {0, 1}m}
that satisfy certain conditions, we can deterministically construct a set S ⊆ {0, 1}m of size
|S| = poly(m), such that for every C ∈ C, we have S ̸⊆ Range(C). Note that a hitting set

2 Recall that FP, FPNP are function classes analogue of the decision problem classes P, PNP.
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construction implies an FPNP algorithm to solve Avoid of C. It is incomparable to an FP
algorithm, because the hitting set is oblivious to the actual circuit, and the same hitting set
can work for a broad class of “weak” circuits.

In the following, we elaborate on our contributions and their implications.

1.1.1 Reductions to NC1-AVOID

As our first set of results, we reduce a sample of famous and central explicit construction
questions to NC1

k-Avoid for constant k. In particular, we consider the following explicit
construction tasks.

Rigid matrices. A matrix M ∈ Fn×n
2 is called (ε, δ)-rigid, if one cannot reduce the rank

of M to εn by alternating at most δn2

log n entries in M . The motivation to study explicit
constructions of rigid matrices is due to its connection to circuit lower bounds [26].
Binary linear codes which meet the Gilbert-Varshamov bound (the best known rate vs.
distance trade-off for binary codes which is achieved by random linear codes). This is an
outstanding challenge that has been open for much of coding theory’s history. Recently
there has been impressive progress in the low-rate regime [23], but the general question
remains a tantalizing challenge at the intersection of coding theory and pseudorandomness.
Binary linear codes that achieve list-decoding capacity. While there are explicit codes
over large alphabets that achieve list-decoding capacity (i.e., are decodable up to the
information-theoretically largest fraction of worst-case errors with small lists) [7], the
best known binary codes fall well short of achieving capacity [8].

We reduce these explicit construction questions to Avoid. We first define explicit
construction problems in the complexity-theoretic language: let Π ∈ {Linear Code,

List-Decodable Code, Rigid Matrix} be a property of algebraic objects. Define the
Π-construction problem: given as input 1n, output an object of size n that satisfies the
property Π.

▶ Theorem 2 (Informal). Suppose that for each k ≥ 1, there is an FP (resp. FPNP) algorithm
for NC1

k-Avoid. Then, there is an FP (resp. FPNP) algorithm for Π-Construction for
Π ∈ {Linear Code, List-Decodable Code, Rigid Matrix}.

Furthermore, by Theorem 1, the same conclusion holds if we assume the existence of an
FP (resp. FPNP) algorithm for NC0

4-Avoid.

Our reductions for linear codes are new, and the reduction for rigid matrices improves a
similar result in [13], in the sense that we reduce the question to Avoid on logarithmic-depth
circuits. Our technique is general enough that it can be applied to many other construction
problems to give reductions to Avoid of low-depth circuits3. For brevity, we only present
three representative examples in this paper.

Proof idea. All of the three reductions follow the same framework. To illustrate the idea,
we briefly discuss the reduction for rigid matrices. We follow the idea of Korten [13]. That is,
we carefully construct a circuit C : {0, 1}n2−1 → {0, 1}n2 , whose outputs, when interpreted
as matrices in Fn×n

2 , contain all “non-rigid” matrices. To design the circuit, note that if a

3 However, we note that the reduction for two-source extractors in [13] might be an exception. Still, by
combining [13] with our technique, one can reduce two-source extractor construction to NC2-Avoid.
i.e., each output can be computed by a Boolean circuit of depth O(log2 n).

APPROX/RANDOM 2022
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matrix M ∈ Fn×n
2 is not rigid, then there is a way to compress the matrix. Namely, we can

write M = L · R + S where L, R are n × εn and εn × n matrices, and S is a sparse matrix
with only δn2

log n entries being 1. Note that for ε, δ ∈ (0, 1) sufficiently small, we can encode
L, R, S with 2εn2 + 2 log n · δn2

log n < n2 bits and recover M in polynomial time. In more detail,
the encoding just stores L, R explicitly, and stores a list of δn2

log n pairs (x, y) ∈ [n]2, specifying
the non-zero entries of S.

Given this encoding, the reduction to Avoid is simple: we design a circuit C as follows.
The input to C is a tuple (L, R, S), where L, R are n × εn and εn × n matrix, respectively. S
is a list of n2

log n pairs describing a sparse matrix S. Given the tuple, the circuit C computes
the matrix L · R + S. It is easy to see that the range of C includes every non-rigid matrix.
Hence, we can construct a rigid matrix by finding a matrix outside the range of C. However,
it is not clear from the reduction whether C can be implemented in logarithmic depth.

In fact, computing L · R can be done by a logarithmic circuit easily. If the matrix S is
presented in its natural form as a square matrix, adding S to L ·R is also easy. Therefore, the
main bottleneck in this reduction is to recover the sparse matrix S from its short description
S. Note that using a short encoding of S is essential for the reduction, as we need to ensure
that the input length is strictly smaller than n2. Still, there is some room for manoeuvre: it
is not necessary to encode S in an information-theoretically optimal way, and we can afford
a certain amount of redundancy, as long as the overall number of bits to encode L, R, S is
bounded by n2 − 1.

Succincter comes into play. We achieve the improvement by utilizing techniques from
succinct data structures (see, e.g., [17, 31]). Succinct data structures allow storage of a data
set using an amount of memory that is close to the information-theoretic lower bound, but they
still allow for retrieving information efficiently. In particular, there is a classic data structure
[17], which can store an n-bit string of Hamming weight k using log

(
n
k

)
+ O(n/ log2 n) bits.

Moreover, one can recover any bit of the string by querying at most O(log n) bits in the
memory. This data structure perfectly fits our purpose: we can encode the sparse matrix
S by the memory configuration4 of the data structure storing S, which is denoted by S ′ in
the following. Then, we can recover each entry of S by querying O(log n) bits in S ′. By a
simple construction (Lemma 26), this implies that each entry of S can be computed by a
logarithmic-depth circuit given S ′.

Therefore, given L, R and S ′, there is a logarithmic-depth circuit C ′ that computes
L · R + S. The number of bits to describe L, R, S ′ is bounded by

2εn2 + log
(

n2

δn2

log n

)
+ O(n2/ log2 n) < (1 − Ω(1))n2 + O(n2/ log2 n) < n2.

Hence, C ′ is a valid NC1-Avoid instance, and any matrix outside the range of C ′ is (εn, δn2

log n )-
rigid.

This completes the proof sketch for the rigid matrix reduction. Reductions for linear
codes follow the same approach. Namely, every generator matrix M that fails to generate
a desired code can be compressed, where the compression of M consists of a structured
algebraic part A and a low-Hamming weight binary string B. The structured part A has
an efficient encoding/decoding scheme, and the combination of A and B to recover M is

4 In our application, we do not care about the complexity of preparing the data structure, as the Avoid
problem asks one to avoid every output in the range of the circuit.
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also efficiently computable. Using a naive encoding scheme for B results in an inefficient (in
terms of circuit depth) decoding procedure. Replacing the naive encoding scheme with the
succinct data structure gives the desired efficient reduction.

1.1.2 Unconditional Algorithms for AVOID of Weak Circuits
On the positive side, we show an algorithm for NC0

2-Avoid, as well a hitting set construction
for solving Avoid of low-depth circuits and large stretch.

A polynomial time algorithm for NC0
2-AVOID. When the given circuit C : {0, 1}n →

{0, 1}m is in NC0
2 (i.e., each output bit depends on only two input bits), we can solve Avoid

of C by a simple deterministic polynomial-time algorithm.

▶ Theorem 3. There is a polynomial time algorithm which, given an NC0
2 circuit C :

{0, 1}n → {0, 1}m where m > n, outputs a string y ∈ {0, 1}m that is not in the range of C.

The idea behind Theorem 3 is simple. Let C1(x) be the first output bit of C. We observe
that there is always a way to fix C1 to a constant, so that we can reduce the problem to
solving NC0

2-Avoid for a smaller circuit C ′ : {0, 1}n−1 → {0, 1}m−1. To illustrate, suppose
that C1(x) is an AND of two variables (say, x1 and x2). Then, by setting C1 to 1, we have
effectively restricted that x1 and x2 must be 1. Hence, we can replace every appearance of
x1, x2 with constant 1 in C, and get a new NC0

2-Avoid instance C ′ : {0, 1}n−2 → {0, 1}m−1.
Suppose y ∈ {0, 1}m−1 is not in the range of C ′. Then we claim that 1 ◦ y (where ◦ denotes
string concatenation) is not in the range of C. In fact, for C1(x) evaluating to 1, one has to set
both x1 and x2 as 1. But then there is no way to find an input x where C(x)2...m = C ′(x) = y.

The argument above illustrates one step of the reduction. To design an algorithm for
NC0

2-Avoid, we can recursively apply the reduction, until at one point where we are left with
a circuit C ′′ : {0, 1}0 → {0, 1}m−n. At this point, C ′′ always outputs a fixed string, while
the number of possible outputs is 2m−n > 1, which allows us to solve Avoid for C ′′ trivially.
Finally, we can backtrack to recover a string y ∈ {0, 1}m, which solves Avoid for the original
circuit C.

Since the result in [21] (see also Theorem 1) gives a strong evidence suggesting that
solving NC0

4-Avoid unconditionally is hard and would imply surprisingly strong circuit lower
bounds, the strategy above probably fails to give an algorithm for NC0

4-Avoid. Still, finding
out the complexity of NC0

3-Avoid remains an interesting question.

Approaching AVOID via hitting sets. We also introduce a novel technique for solving
Avoid in FPNP. Informally, we show that there is an FPNP algorithm for simple circuits if
the stretch m(n) is large enough. Here is the list of our results.

▶ Theorem 4 (Informal). Let m = m(n), s = s(n) be two non-decreasing functions and
k, w ≥ 1 be two constants. Suppose C : {−1, 1}n → {−1, 1}m is a multi-output function.
There is an FPNP algorithm for Avoid(C) if one of the following statements hold:

Each output bit Ci(x) depends on only k input bits and m ≥ 24k+1nk−1 + n;
Each output bit Ci(x) is a width-w size-s CNF or DNF of input bits and m ≥ 32s2nw;
Each output bit Ci(x) is a size-s De Morgan formula of input bits and m ≥ nω(

√
s);

Each output bit Ci(x) is a size-s DNF or CNF of input bits and m ≥ 2ω(n1/2·log(s)).

Formally, our result is stronger than FPNP algorithm. Our construction is a hitting set
which is independent of the circuit C. That is, we can output a set of polynomial size which
always contains a solution for Avoid(C), without looking at the input circuit C. We formally
list our results here.

APPROX/RANDOM 2022
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▶ Theorem 5. Let m = m(n), s = s(n) be two non-decreasing functions and k, w ≥ 1 be
two constants. Suppose C : {−1, 1}n → {−1, 1}m is a multi-output function. The following
statements hold.

If each output bit Ci(x) depends on only k input bits and m ≥ 24k+1nk−1 + n, then there
is a set S ⊆ {−1, 1}m of size 2O(k)m2 that is computable in polynomial time and satisfies
S ̸⊆ Range(C).
If each output bit Ci(x) is a width-w size-s CNF or DNF of input bits and m ≥ 32s2nw,
then there is a set S ⊆ {−1, 1}m of size O(s2 log2 m) that is computable in polynomial
time and satisfies S ̸⊆ Range(C).
If each output bit Ci(x) is a size-s De Morgan formula of input bits and m ≥ nω(

√
s),

then there is a set S ⊆ {−1, 1}m of size poly(m) that is computable in polynomial time
and satisfies S ̸⊆ Range(C).
If each output bit Ci(x) is a size-s DNF or CNF of input bits and m ≥ 2ω(n1/2·log(s)),
then there is a set S ⊆ {−1, 1}m of size poly(m) that is computable in polynomial time
and satisfies S ̸⊆ Range(C).

In all cases, the set S is independent of the circuit C. Namely, only knowing m, n, s, k, w

suffices to construct the set S.

Perhaps surprisingly, we construct the hitting set by exploiting an interesting connection
to pseudorandomness of distributions. In particular, we carry out a two-step plan as follows.

For a class of simple circuits C ⊆ {C : {0, 1}n → {0, 1}m}, we show that if the stretch
m is sufficiently large, then under any input distribution x over {0, 1}n, the output
distribution C(x) cannot be pairwise independent over {0, 1}m.
On the other hand, we can sample a pairwise independent string of length m, with only
2 log m truly random bits.

Putting two items together, we conclude that the support of a low-entropy pairwise
independent distribution D over {0, 1}m constitutes a hitting set for Avoid of C. Indeed,
if the support of D is contained in Range(C) for some C ∈ C, then we know that under
a proper input distribution x over {0, 1}n, C(x) can sample D perfectly, which leads to a
contradiction to Item (1).

Here, Item (2) is standard [1]. We achieve Item (1) by generalizing a technique by Mossel,
Shpilka and Trevisan [15], where the authors showed that it is impossible for NC0

3 circuits to
expand n uniformly random bits into a (4n + 1)-bit string that fools every linear test (i.e.,
the output fails to be a low-biased distribution). We generalize the [15] result by considering
an arbitrary distribution (instead of uniform distribution) over inputs.

We briefly describe the high-level proof strategy below. We start with a simplicity measure
of Boolean functions, parameterized by an integer d ≥ 1 and a real δ ∈ (0, 1). A function
f : {0, 1}n → {0, 1} is called (d, δ)-simple, if under any distribution x over {0, 1}n, there is a
parity test over a set S ⊆ [n] of size |S| ≤ d, such that∣∣∣Pr

x

[
f(x) =

⊕
q∈S

xq

]
− 1

2

∣∣∣ ≥ δ.

The following theorem shows our general template to construct hitting sets based on
simplicity of functions.

▶ Theorem 6. Suppose m > n ≥ 2. Let C : {0, 1}n → {0, 1}m be a circuit and ε > 0 be a
parameter. Suppose each output bit Ci is a (d, ε)-simple function of input bits and m > 2

ε2 nd.
Then, for every distribution x over the input space {0, 1}n, the output distribution C(x) is
not pairwise independent.
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We prove Theorem 6 following the technique of [15]. Let x be sampled from an arbitrary
but fixed distribution. Since there are m ≥ 2

ε2 nd outputs and each output is correlated
with a parity test on at most d inputs, by pigeonhole principle, there are at least 2

ε2 output
bits that are ε-correlated with the same parity test. Then we follow [15] and carry out a
second-moment argument, which shows that there is a pair of indices i, j ∈ [m] among the
2
ε2 outputs, such that Ci(x) and Cj(x) have a correlation lower-bounded by 3

8 ε2, meaning
that C(x) does not sample a pairwise independent distribution.

Note that the argument above also shows a lower bound of the correlation between two
output bits. This allows us to use an almost pairwise independent distribution in the final
construction, which makes the size of our hitting set even smaller. See Section 4 for the
details.

Instantiating Theorem 6 with some canonical circuit classes, we deduce the results listed
in Theorem 5.

The results for NC0
k circuits and constant-width DNF/CNFs are proved by ad-hoc but

straightforward arguments. We remark that [15] has shown that every NC0
k function is

either an F2 polynomial of degree ⌈k/2⌉ or correlated with a parity test on at most ⌈k/2⌉
inputs under the uniform distribution of inputs. We managed to prove a correlation lower
bound under arbitrary distributions, but we need to use parity tests on at most (k − 1)
inputs, which in turn determines that our construction only works for NC0

k-Avoid with
stretch at least Ω(nk−1). Still this is non-trivial in the sense that prior to our work, even
an algorithm for NC0

k-Avoid with stretch o(nk) appears to not have been known.
The results for unbounded-width CNF/DNFs and small-size De Morgan formulae are
proved by relating the simplicity of functions to their (large-error) approximate degree, a
central notion in complexity theory that has been studied extensively (see, e.g., [12, 19, 4]).
Specifically, to show the simplicity of a function, it suffices (and, in some sense, is necessary)
to find a low-degree polynomial over reals that point-wise approximates the function
within a slightly non-trivial error (e.g. within error 1

2 − 1
n )5. This connection allows us

to translate known approximate degree upper bounds for CNF/DNF [12] and small-size
De Morgan formulae [20] to the simplicity of corresponding function classes.

Discussions. We find the connection to pseudorandomness quite interesting. In some
sense, following Razborov and Rudich’s natural proof [18], our argument establishes a
separation result for weak circuits (with large stretches) by studying a natural property
about distributions6 over hypercubes. Namely, we consider the property of being a pairwise
independent distribution. By standard pseudorandomness constructions [1], there is a low-
entropy distribution that attains this property easily, while our results rule out the possibility
of sampling such distributions by weak circuit classes that only receive a short random seed,
even if the random seed can come from an arbitrary distribution.

We leave it as an intriguing question to further explore the potential of this framework.
Namely, can we identify more (pseudorandom) property of distributions, where there exists
a low-entropy (and hopefully polynomial-time constructible) distribution with this property,
but every weak circuit from a class C fails to sample a distribution with this property, even
if its input distribution can be carefully tailored?

5 Note that the polynomial p(x) ≡ 1
2 trivially 1

2 -approximates every Boolean function.
6 This is in contrast with the typical notion of natural proofs, where natural properties of languages/-

Boolean functions are considered.

APPROX/RANDOM 2022
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Note that the existence of such a “pseudorandom” property usually implies an efficient
statistical test to distinguish the output of C-circuits from uniform (in our example, this is a
linear test on two output bits of C). Thus, under the cryptography assumption that NC1

circuits can compute PRG of polynomial stretch, it seems difficult to push this technique
to NC1. Still, we note there is a gap between our results and the best-known lower bounds
and pseudorandomness results: for example, we know strong lower bounds and good PRGs
against AC0 (see e.g. [10, 25, 14]). Moreover, when the input distribution is uniform, we
have very good sampling lower bounds against AC0 circuits of quasi-polynomial stretches
[27, 28]. If, quantitatively, solving C-Avoid is as hard as proving lower bounds/constructing
PRGs for C, then these results suggest that one should be able to solve AC0-Avoid of (large)
quasi-polynomial stretches. However, our result can only give a hitting set construction for
AC0 circuits of sub-exponential stretch7. We leave it as an interesting open question to close
the gap between the known pseudorandomness results and our hitting sets. Namely, can we
give better hitting sets for AC0 circuits of smaller stretch, or is there any formal evidence
suggesting that Avoid of low-end models (e.g., AC0) is strictly harder than designing PRG
for AC0?

Comparison with previous works. Attempting to solve Avoid of weak circuits with large
stretch, Ren, Santhanam and Wang [21] presented an algorithmic framework in FPNP, which
is based on Williams’ algorithmic method [29] and rectangular PCPs [3]. Our framework
is not directly comparable to theirs. A polynomial-size hitting set construction appears
to be stronger than an FPNP algorithm, as a hitting set implies an FPNP algorithm in a
straightforward way. But our assumption (the existence of a proper “natural property” of
distributions) is incomparable to the assumption in [21].

We note that [21] also showed an FPNP algorithm for De Morgan formula-Avoid with
stretch m ≥ 2ω(

√
s log(s)) as an application of their technique. To devise the algorithm, they

also used the approximate degree upper bounds [20] as a key technical ingredient. For this
application, our result compares favorably with theirs. First, our hitting set construction is
considerably simpler and can also handle a somewhat smaller stretch: the algorithm in [21]
needs a “constructive version” of the approximate degree upper bounds, which roughly says
that one can deterministically find a degree-(

√
s log s) polynomial approximating a given

size-s De Morgan formula. The log(s) overload in turn determines that their algorithm
can only handle stretches larger than nω(

√
s log s). In contrast, our solution only needs the

existence of a low-degree approximate polynomial, enabling us to construct hitting sets for
stretch nO(

√
s). Second, the framework in [21] cannot obtain a non-trivial algorithm from

large-error (ε = 1 − n−Ω(1)) approximate degree. In particular, their framework does not
naturally apply to polynomial-size DNF/CNFs as our result does.

1.2 Conclusion & Open Questions
In this work, we study the range avoidance problem for low depth circuits. We reduce some
explicit construction challenges to the range avoidance problem of NC0

4 circuits. On the
algorithmic side, we give a polynomial time algorithm for NC0

2-range avoidance. We also
introduce a hitting set construction for the range avoidance problem of weak circuit classes
with large stretch.

7 We explicitly give a construction for depth-2 circuits (e.g., DNFs) with stretch 2n1/2
. It is easy to

see that we can extend our results to depth-d AC0 circuit of stretch roughly 2n1−Ω(1/d)
by the known

approximate degree upper bound for AC0.
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As suggested by [21], NC0
4-Avoid might be hard to solve. For NC0

3, our hitting set
construct works when the stretch is at least C · n2 for a large constant C. For smaller stretch,
the complexity of NC0

3 is less clear. It is natural to ask:

Open Question 1. Is there a deterministic polynomial time algorithm for NC0
3-Avoid with

stretch n1+o(1), even when an NP oracle is available?
As we have mentioned, our hitting set construction suggests a new approach to solve

Avoid for weak computational models. It naturally raises the following questions.

Open Question 2. For some weak computational models (e.g., AC0), is there a distribution
that can be efficiently sampled using a short seed but cannot be sampled by these models?
They are some known sampling lower bounds for AC0 when the input distribution is uniform
[27, 28]. Do techniques in those works help in proving a sampling lower bound under arbitrary
distributions?

Open Question 3. For a class of circuits C ⊆ {{0, 1}n → {0, 1}m}, it is easy to see
(via the probabilistic method) that there exists a hitting set H for Avoid of C with size
|H| ≤ poly(log |C|). Note that such a hitting set constitutes a “universal” solution to explicit
construct problems. Namely, for every explicit construction problem Π that is reducible
to C-Avoid, there is a string x ∈ H that has the property Π. It would be interesting to
identify the construction of the hitting set H itself as an explicit construction problem,
and study its complexity and/or algorithms via various kinds of approaches (including the
pseudorandomness approach considered in this work).

1.3 Organization
The rest of the paper is organized as follows. In Section 2, we put some preliminaries,
including the problems we study and some mathematical tools used in our proofs. In Section
3, we show how to reduce some explicit construction problems to NC0

4-Avoid. In Section
4, we show a general framework to construct hitting sets for Avoid by correlations with
low-degree parities. Finally we show some applications of this method.

2 Preliminaries

In this section, we state necessary background knowledge and set up some useful pieces of
notation.

Range Avoidance. We first define the Avoid problem, which is the primary subject of this
work.

▶ Definition 7 (Avoid [13, 21]). Avoid is the following problem: given a Boolean circuit
C : {0, 1}n → {0, 1}m where m > n, find an m-bit string outside the range of C. If the input
circuit is guaranteed to be in some circuit class C, we also call the problem C-Avoid.

▶ Definition 8 (NC circuits). For each k ≥ 1, we define NC0
k and NC1

k as follows. NC0
k

contains all functions that depend on at most k input bits. For every n ≥ 1, NC1
k contains

all n-bit functions that are computable by (k log n)-depth Boolean circuits of fan-in two.

We will be mainly interested in NC0
k-Avoid and NC1

k-Avoid for constant k’s. When we
say an explicit construction problem reduces to NC1-Avoid, we mean there exists k ≥ 1 such
that the problem reduces to NC1

k-Avoid.
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Explicit Constructions. We study the following explicit construction problems, starting
with rigid matrices.

▶ Definition 9 (rigid matrix [26]). Let q ≥ 1 be a prime power and r, s ≥ 1 be two integers.
We say an n × n matrix M over Fq is (r, s)-rigid, if for any matrix S ∈ Fn×n

q with at most s

non-zero entries, the rank of M + S is at least r.

An explicit construction of (Ω(n2), n1+ε)-rigid matrices would imply a lower bound against
linear-size, logarithmic-depth arithmetic circuits [26]. By probabilistic method, a random
matrix is (Ω(n2), Ω(n2/ log n))-rigid with high probability. This motivates us to formulate
the following problem.

▶ Definition 10 (Rigid). (ε, δ, q)-Rigid is the following problem: given input 1n, output an
n × n matrix over Fq that is

(
εn, δn2

log n

)
-rigid.

The next object we consider is linear codes with good rates and distances.

▶ Definition 11 (linear code [9]). Let r, p ∈ (0, 1), n ∈ N and k = r · n. We say an k × n

matrix G of full row rank over F2 is a generator matrix of a (r, p)-linear code, if every two
distinct codewords generated by G have Hamming distance at least pn, or equivalently, the
Hamming weight of any nonzero codeword is at least pn.

By probabilistic method, for every r, p ∈ (0, 1) such that r < 1 − h(p), there is a
family of linear codes with rate r and distance pn (the inequality r < 1 − h(p) is called
Gilbert-Varshamov bound in literature). However, despite an extensive line of efforts, an
explicit construction meeting this bound remains widely open. We formulate the linear code
construction in the complexity-theoretic language as follows.

▶ Definition 12 (LinearCode). (r, p)-LinearCode is the following problem: given input
1n, output a matrix G ∈ Frn×n

2 such that G is a generator matrix of a (r, p)-linear code.

Finally, we study linear codes with good list-decoding capacity.

▶ Definition 13 (list-decodable code [6, 30]). Let r, p ∈ (0, 1), n ∈ N and k = r · n. We say
an rn × n matrix G over F2 is a generator matrix of a (p, L)-list decodable code if for every
z ∈ Fn

2 , the number of codewords c ∈ Im(G) within Hamming distance pn from z is at most
L, i.e.

|{s ∈ Frn
2 : wt(sG − z) ≤ pn}| ≤ L

where wt(s) denotes the number of ones in the string s.

The probabilistic method shows the existence of (r, p, L)-list decodable codes, provided
that r < 1 − h(p) − 2

log2 L . Again, finding an explicit family of linear codes approaching this
limit remains an outstanding challenge.

▶ Definition 14 (ListDecodable). (r, p, L)-ListDecodable is the following problem:
given input 1n, output a matrix G ∈ Frn×n

2 such that G is a generator matrix of a (p, L)-list
decodable code.

2.1 Boolean Functions
In this subsection, we list some useful notations about Boolean functions. To represent a
Boolean variable, we sometimes use F2 as the domain and sometimes use {−1, 1} as the
domain. When the domain is F2, we use 1 to represent True and 0 to represent False. When
the domain is {−1, 1}, we use −1 to represent True and 1 to represent False.
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▶ Definition 15 (parity functions). For every set S ⊆ [n], define the parity function χS :
{−1, 1}n → {−1, 1} by

χS(x) =
∏
i∈S

xi.

▶ Definition 16 (equality functions). For every set S ⊆ [n] and z ∈ {−1, 1}n, we define the
equality function EQS,z(x) to be 1 if xi = zi holds for every i ∈ S and 0 otherwise.

It can be easily verified that parity functions and equality functions have the following
relation:

▶ Fact 17. For every set S ⊆ [n] and z ∈ {−1, 1}n, we have

EQS,z(x) = 1
2|S|

∑
T ⊆S

(∏
i∈T

zi

)
χT (x).

▶ Definition 18 (inner product). For two Boolean functions f, g : {−1, 1}n → R, we define
their inner product by:

⟨f, g⟩ = 1
2n

∑
x∈{−1,1}n

f(x)g(x).

For a given distribution φ : {−1, 1}n → [0, 1] where φ(x) := Prx∼φ[x = x], we define their
inner product over φ by:

⟨f, g⟩φ =
∑

x∈{−1,1}n

f(x)g(x)φ(x).

▶ Definition 19 (correlation). We say two Boolean functions f, g : {−1, 1}n → {−1, 1} are
ε-correlated if

|⟨f, g⟩| ≥ ε.

For a given distribution φ : {−1, 1}n → [0, 1], we say they are ε-correlated under φ if

|⟨f, g⟩φ| ≥ ε.

2.2 Miscellaneous
▶ Definition 20 (binary entropy). The binary entropy function h : [0, 1] → R is defined as

h(p) := −p log2 p − (1 − p) log2(1 − p).

For a distribution D, we use x ∼ D to denote that a random variable x is drawn from D.
We then define ε-biased distribution and ε-almost pairwise independent distribution here.

▶ Definition 21 (ε-biased distribution). A distribution D on {−1, 1}n is ε-biased if for every
nonempty T ⊆ [n], it holds that

−ε ≤ E
x∼D

[∏
i∈T

xi

]
≤ ε.
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▶ Definition 22 (ε-almost pairwise independent distribution). A distribution D on {−1, 1}n is ε-
almost pairwise independent if for every two distinct indices i, j ∈ [n] and vector v⃗ ∈ {−1, 1}2,
it holds that∣∣∣∣ Pr

x∼D
[(xi, xj) = v⃗] − 1

4

∣∣∣∣ < ε.

We have the following standard constructions of ε-biased distribution and ε-almost
pairwise independent distribution.
▶ Theorem 23 ([16, 2]). For every ε ∈ (0, 1) and n ∈ N, there is an explicit (polynomial-time
computable) ε-biased distribution with support size O(n2/ε2).
▶ Theorem 24 ([2]). For every ε ∈ (0, 1) and n ∈ N, there is an explicit (polynomial-time
computable) ε-almost pairwise independent distribution with support size O(log2 n/ε2).

3 Explicit Constructions Reduce to NC0
4-AVOID

In this section, we reduce several central explicit construction problems in coding theory and
complexity theory to solving Avoid for logarithmic depth circuits.

3.1 Technical Ingredients
We need the following technical tools from literature.
▶ Lemma 25 ([17], Theorem 1). Given an array of n elements from an alphabet Σ, and let
fσ > 0 be the number of occurences of letter σ in the array. There is a data structure storing
the array with at most

O(|Σ| log n) +
∑
σ∈Σ

fσ log2
n

fσ
+ O(n/ log2 n)

bits of memory. Moreover, there is an algorithm that, upon receiving an index i ∈ [n], queries
at most O(log n) bits in the data structure and returns the i-th entry of the array.

Note that the
∑

σ∈Σ fσ log2
n
fσ

term is the entropy of the array, i.e. the information-
theoretical lower bound to store the array.

The query process of the data structure can be modeled as a depth-O(log n) decision tree.
The following lemma converts it to an NC1 circuit to suit our purpose.
▶ Lemma 26. Every function that can be computed by a depth-d decision tree can be computed
by a depth-2d circuit.
Proof. Prove by induction. When d = 1, the output then only depends on a single bit and
can be trivially computed by a circuit of depth 2.

Suppose the statement holds for d. Let T be a depth-(d + 1) decision tree. Suppose the
root of T queries xi and proceeds to the left or right subtree, depending on whether xi is 0
or 1. By our assumption, the two subtrees can be computed by circuits of depth 2d. Let the
circuits be C0, C1. Then we construct a circuit C as

C(x) := (xi ∧ C1(x)) ∨ (¬xi ∧ C0(x)).

It is easy to verify that C(x) computes T (x) correctly and has depth 2(d+1), which completes
the proof. ◀

The following lemma asserts that the summation of integers is in NC1.
▶ Lemma 27 ([22]). Iteratively adding (i.e., summing up) n n-bit integers can be done in
NC1.
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3.2 Rigid Matrices
In this subsection, we reduce constructing rigid matrices to NC1-Avoid.

▶ Theorem 28. For any fixed ε, δ such that ε + δ < 1
2 and any prime power q, (ε, δ, q)-Rigid

reduces in polynomial time to NC1-Avoid.

Proof. WLOG we can assume n is sufficiently large since for small values of n we can solve
the problem by brute force and reduce to a trivial instance. Let M be an n × n matrix
over Fq that is not

(
εn, δn2

log n

)
rigid. That is, M can be written as X + S where X has

rank at most εn and S has at most δn2

log n non-zero entries. X can be equivalently expressed
as the product of an n × εn matrix L and εn × n matrix R. S can be encoded by the
data structure in Lemma 25. Given this observation, we construct a circuit as follows. We
interpret the input bits as the encoding of L, R and the data structure encoding S. For
the output bit representing Mij , we first compute

∑
k∈[εn] LikRkj , which can be done by a

circuit of O(log n)-depth. Then we compute Sij by making a query to the data structure,
which can also be done by a circuit of O(log n)-depth by Lemma 26. Finally, we compute
Mij by XOR-ing these two results.

To encode L and R, we need 2εn2 log q bits. One way to encode S is by storing the indices
of the non-zero entries and their values, which requires 2 log n + log q bits per non-zero entry.
Thus the optimal encoding requires at most (2 log n + log q) δn2

log n bits, and our data structure
needs

(2 log n + log q) δn2

log n
+ 2q log n + O(n2/ log2 n) < 2δn2 log q

number of bits. Note that the number of output bits is n2 log q. As ε + δ < 1
2 , the

number of input bits is less than the number of output bits. Thus the resulting instance
is a valid NC1-Avoid instance, and any string outside the range of the circuit must be(

εn, δn2

log n

)
-rigid. ◀

By similar techniques, we can reduce constructing binary codes that approach the Gilbert-
Varshamov bound and constructing binary codes that achieve list-decoding capacity to
NC1-Avoid.

▶ Theorem 29. For any r, p ∈ (0, 1) such that r < 1 − h(p), (r, p)-LinearCode reduces in
polynomial time to NC1-Avoid.

▶ Theorem 30. For any fixed r, p, L such that r < 1−h(p)− 2
⌈log2 L⌉ , (r, p, L)-ListDecodable

reduces in polynomial time to NC1-Avoid.

We omit the proof here. Readers can refer to our full version for a concrete proof.

3.3 Reduction to NC0
4-AVOID

In this subsection, we use the reduction by Ren, Santhanam and Wang [21] (i.e., Theorem 1)
to further reduce these explicit construction problems to NC0

4-Avoid. This result shows that
solving even NC0

4-Avoid would have unexpected consequences in pseudorandomness and
complexity theory.

Specifically, combining Theorem 1 with our reductions (Theorem 28, 29 and 30), we get
the following corollary.

APPROX/RANDOM 2022
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▶ Corollary 31. Suppose there is a polynomial-time deterministic algorithm for NC0
4-Avoid.

Then the following are true.
For every ε, δ such that ε + δ < 1

2 , there is a family of
(

εn, δn2

log n

)
-rigid matrices that are

computable in deterministic polynomial time.
For every rate r ∈ (0, 1) and p < 1 − h(r), there is a family of (r, p)-linear code, whose
generator matrices are computable in deterministic polynomial time.
For every rate r ∈ (0, 1) and parameters p ∈ (0, 1), L ≥ 1 such that r < 1 − h(p) − 2

⌈log2 L⌉ ,
there is a family of (r, p, L)-list-decodable code, whose generator matrices are computable
in deterministic polynomial time.

From an algorithmic perspective, Corollary 31 provides a potential approach to at-
tack these notoriously hard explicit construction problems. From a pessimistic viewpoint,
Corollary 31 gives further evidence supporting the hardness of solving NC0

4 unconditionally.

4 A Hitting Set Construction for AVOID

In this section, we use {−1, 1} to represent True and False, respectively. By Boolean function
we mean functions of the form f : {−1, 1}n → {−1, 1}.

4.1 The General Template
We first show the general framework to construct hitting sets for Avoid instances of weak
circuits. We start with a definition of “simple functions”.

▶ Definition 32. Let f : {−1, 1}n → {−1, 1} be a Boolean function. Let d ∈ N and δ > 0.
We say f is a (d, δ)-simple function, if for any distribution φ over {−1, 1}n, there is a set
S ⊆ [n] of size at most d such that the correlation between χS and f under φ is at least δ.
That is,

|⟨f, χS⟩φ| :=

∣∣∣∣∣∑
x

φ(x)f(x)χS(x)

∣∣∣∣∣ ≥ δ.

Suppose F ⊆ {f : {−1, 1}n → {−1, 1}} is a collection of functions. We say F is a (d, δ)-
simple collection, if each function in F is (d, δ)-simple.

For intuition, it is easy to see that every k-bit function f : {−1, 1}k → {−1, 1} is
(k, 2−k)-simple.

The meta-construction of hitting set. The following theorem shows our “meta-construction”
of hitting set: roughly, for every Avoid-instance C : {−1, 1}n → {−1, 1}m, if the stretch
m = m(n) is sufficiently large (relative to the “simplicity” of the function class), then the
support of an almost pairwise independent distribution would be a hitting set for Avoid(C).

▶ Theorem 33. Suppose m > n ≥ 2. Let C : {−1, 1}n → {−1, 1}m be a circuit and ε > 0
be a parameter. Suppose each output bit Ci is a (d, ε)-simple function of input bits and
m > 2

ε2 nd. Let D be any 3
8 ε2-almost pairwise independent distribution over {0, 1}m. Then,

the support of D is a hitting set for Avoid(C). That is, supp(D) ̸⊆ Range(C).

Using a standard construction of ε-almost pairwise independent distributions (The-
orem 24), the support of D has size bounded by O(log2 m/ε4). Therefore, by Theorem 33
we can construct a hitting set of size O(log2 m/ε4) for Avoid(C). Remarkably, the hitting
set is oblivious to the circuit C: one can construct it without actually looking into C.
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Proof of Theorem 33. Suppose by contradiction that there exists a pairwise independent
distribution D such that supp(D) ⊆ Range(C). Then, every string y ∈ supp(D) is an output
of C. This implies that under a proper input distribution φ over {−1, 1}n, the output
distribution of {C(x) : x ∼ φ} is exactly D, which is a 3

8 ε2-almost pairwise independent
distribution. In the following, we show that C cannot sample a 3

8 ε2-almost pairwise inde-
pendent distribution under any input distribution. This would lead to a contradiction and
complete the proof.

Let φ be a distribution supported on {−1, 1}n. Given φ, every output of C is correlated
with χS for some |S| ≤ d by Definition 32. By pigeonhole principle, there must be m

2·nd >
1
ε2 =: t outputs C1, C2, . . . , Ct that are correlated with the same set S. By negating the
output if necessary, we can assume WLOG that

Pr
x∼φ

[Ci(x) = χS ] ≥ 1
2 + ε, ∀i ∈ [t].

Define

Z(x) = |#{i ∈ [t] : Ci(x) = 0} − #{i ∈ [t] : Ci(x) = 1}|.

We note that

E
x∼φ

[Z(x)] ≥ E
x∼φ

[|#{i ∈ [t] : Ci(x) = χS(x)}| − |#{i ∈ [t] : Ci(x) ̸= χS(x)}|] ≥ 2εt.

Define Zi,j(x) to be 1 if Ci(x) = Cj(x) and −1 otherwise. Then clearly Zi,i(x) = 1.
Note that Z(x)2 =

∑
i,j Zi,j(x), then

E
x∼φ

∑
i,j

Zi,j(x)

 = E
x∼φ

[Z(x)2] ≥ E
x∼φ

[Z(x)]2 ≥ 4ε2t2 = 4t.

It then follows that

E
x∼φ

∑
i ̸=j

Zi,j(x)

 ≥ 3t.

Hence, there must be some i ̸= j such that Ex∼φ[Zi,j(x)] ≥ 3t
t(t−1) > 3ε2

2 , meaning that

Pr
x∼φ

[C(x)i = C(x)j ] − Pr
x∼φ

[C(x)i ̸= C(x)j ] = E
x∼φ

[C(x)i · C(x)j ] >
3ε2

2 .

By averaging principle, either Prx∼φ[(C(x)i, C(x)j) = (1, 1)] or Prx∼φ[(C(x)i, C(x)j) =
(−1, −1)] is greater than 1

4 + 3ε2

8 . This contradicts to the fact that C(φ) samples a 3ε2

8 -almost
pairwise independent distribution. ◀

In the following, we show that for many natural circuit classes (NC0
k for constant k,

constant-width CNF/DNFs, small-size De Morgan formulae, etc.), functions computable
in these classes are (d, δ)-simple with interesting parameters. Consequently, it allows us to
apply Theorem 33 to construct hitting set for Avoid problem of those circuit classes (for
large enough stretch).

▶ Theorem 5. Let m = m(n), s = s(n) be two non-decreasing functions and k, w ≥ 1 be
two constants. Suppose C : {−1, 1}n → {−1, 1}m is a multi-output function. The following
statements hold.
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If each output bit Ci(x) depends on only k input bits and m ≥ 24k+1nk−1 + n, then there
is a set S ⊆ {−1, 1}m of size 2O(k)m2 that is computable in polynomial time and satisfies
S ̸⊆ Range(C).
If each output bit Ci(x) is a width-w size-s CNF or DNF of input bits and m ≥ 32s2nw,
then there is a set S ⊆ {−1, 1}m of size O(s2 log2 m) that is computable in polynomial
time and satisfies S ̸⊆ Range(C).
If each output bit Ci(x) is a size-s De Morgan formula of input bits and m ≥ nω(

√
s),

then there is a set S ⊆ {−1, 1}m of size poly(m) that is computable in polynomial time
and satisfies S ̸⊆ Range(C).
If each output bit Ci(x) is a size-s DNF or CNF of input bits and m ≥ nω(

√
n log s), then

there is a set S ⊆ {−1, 1}m of size poly(m) that is computable in polynomial time and
satisfies S ̸⊆ Range(C).

In all cases, the set S is independent of the circuit C. Namely, only knowing m, n, s, k, w

suffices to construct the set S.

We defer the proof to Appendix A.
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A Proof of Theorem 5

A.1 Applications
NC0

k circuits. Our first application is a hitting set for NC0
k-Avoid with stretch m(n) ≥

ω(nk−1).

▶ Lemma 34. For every k ≥ 2 and every k-bit Boolean function f : {−1, 1}k → {−1, 1} that
is not χ[k] or −χ[k], the following is true. For any distribution φ : {−1, 1}k → [0, 1], there is
some S ⊊ [k] and some z and such that∣∣∣∣∣∣

∑
x∈{−1,1}k

φ(x)f(x)EQS,z(x)

∣∣∣∣∣∣ ≥ 2−2k.

Proof. Let k ≥ 2 and δ = 2−2k. Suppose there is a function f : {−1, 1}k → {−1, 1} and a
distribution φ violating the statement of lemma. We derive a contradiction in the following.

We say that two inputs x, y are adjacent if they only differ at one coordinate. Suppose
there are two adjacent x, y such that they differ at the i-th coordinate and |φ(x) − φ(y)| ≥ δ.
We construct S = [k] \ {i} and observe that∣∣∣∣∣∣

∑
z∈{−1,1}k

φ(z)f(z)EQS,x(z)

∣∣∣∣∣∣ = |φ(x)f(x) + φ(y)f(y)| ≥ |φ(x) − φ(y)| ≥ δ.

Since we assumed that f and φ violate the lemma statement, we have

Observation 1: |φ(x) − φ(y)| < δ holds for every adjacent x, y ∈ {−1, 1}k.

Next, since f is not χ[k] or −χ[k], there must be adjacent inputs x, y such that f(x) = f(y).
Suppose they differ at the i-th coordinate. Let S = [k] \ {i}. Similarly, we have∣∣∣∣∣∣

∑
z∈{−1,1}k

φ(z)f(z)EQS,x(z)

∣∣∣∣∣∣ = |φ(x)f(x) + φ(y)f(y)| = φ(x) + φ(y).

Having assumed that f and φ violate the lemma statement, we have

Observation 2: There are adjacent x, y ∈ {−1, 1}k such that φ(x) ≤ φ(x) + φ(y) ≤ δ.

Finally, for each z ∈ {−1, 1}k, let dis(x, z) denote the Hamming distance between x and
z. By two observations above, we have∑

z∈{−1,1}k

φ(z) ≤
∑

z∈{−1,1}k

(dis(x, z) + 1) · δ ≤ k2kδ ≤ k2−k < 1.

This contradicts to the fact that φ is a distribution. ◀

▶ Lemma 35. For every k ≥ 2, every k-bit Boolean function f : {−1, 1}k → {−1, 1} that is
not χ[k] or −χ[k] is (k − 1, 2−2k)-simple.

Proof. By Lemma 34 and Fact 17, there exists some S ⊊ [k] and z ∈ {−1, 1}k such that∣∣∣∣∣∣
∑

x∈{−1,1}k

φ(x)f(x)EQS,z(x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

x∈{−1,1}k

φ(x)f(x)
∑
T ⊆S

1
2|S|

(∏
i∈T

zi

)
χT (x)

∣∣∣∣∣∣ ≥ 2−2k.
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As
∏

i∈T zi can only be ±1, by averaging principle, there exists some T ⊆ S ⊊ [k] such that

|⟨f, χT ⟩φ| =

∣∣∣∣∣∣
∑

x∈{−1,1}k

φ(x)f(x)χT (x)

∣∣∣∣∣∣ ≥ 2−2k. ◀

▶ Corollary 36. Let C : {−1, 1}n → {−1, 1}m be a NC0
k circuit where m > 24k+1nk−1 + n,

then there is a set S ⊆ {−1, 1}m of size 2O(k)m2 that is computable in polynomial time and
S ̸⊆ Range(C).

Proof. Let S be the support of a
( 3

2 · 2−4k
)
-biased distribution over {−1, 1}m. By Theorem

23, it is of size 2O(k)m2 and can be computed in polynomial time. We consider two cases.
Suppose there are at least n + 1 outputs that are parities of exactly k input bits. Without
loss of generality assume they are C1, . . . , Cn+1. In this case, we interpret each Ci as
a function Ci : Fn

2 → F2 by identifying −1, 1 with 1, 0 respectively. Then we know for
each i ∈ [n + 1], Ci is an affine function of input bits. Since there are only n input
bits, C1, . . . , Cn+1 are linearly dependent. That is, there is ∅ ≠ J ⊆ [n + 1] such that∏

i∈J Ci(x) is a constant. On the other hand, as S is the support of a 3
2 · 2−4k-biased

distribution, there must be y1, y2 ∈ S such that∏
i∈J

y1
i ̸=

∏
i∈J

y2
i .

Therefore, at least one of y1, y2 is not in the range of C.
It remains to consider the case that there are at least m − n outputs that are not in
the form ±χS where |S| = k. In this case, the correctness follows directly by combining
Theorem 33 and Lemma 35. ◀

Constant-width CNF/DNFs. Next, we apply our construction to constant-width CNF and
DNFs.

▶ Lemma 37. For every function f : {−1, 1}n → {−1, 1} that can be computed by a width-w
size-s CNF/DNF, and any distribution φ : {−1, 1}n → [0, 1], there exists a set S ⊆ [n] and
some z such that |S| ≤ w and∣∣∣∣∣∣

∑
x∈{−1,1}n

φ(x)f(x)EQS,z(x)

∣∣∣∣∣∣ ≥ 1
4s

.

Proof. WLOG we assume f is a DNF. Suppose f =
∨s

i=1 Ci, where each Ci is a logical
AND over at most w literals (i.e., variables or their negations). We can first assume
Prx∼φ[f(x) = True] ∈ ( 1

4 , 3
4 ), or otherwise we can set S = ∅ and z = 0n such that∣∣∣∣∣∣

∑
x∈{−1,1}n

φ(x)f(x)EQS,z(x)

∣∣∣∣∣∣ =
∣∣∣∣ Pr
x∼φ

[f(x) = False] − Pr
x∼φ

[f(x) = True]
∣∣∣∣ >

1
2 >

1
4s

.

By averaging principle, there exists i ∈ [n] such that Prx∼φ[Ci(x) = True] ≥ 1
4s . Let S be

the variables in Ci and z be an arbitrary assignment satisfying Ci, then we have |S| ≤ w and∣∣∣∣∣∣
∑

x∈{−1,1}n

φ(x)f(x)EQS,z(x)

∣∣∣∣∣∣ ≥ 1
4s

. ◀
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▶ Lemma 38. Every function f : {−1, 1}n → {−1, 1} that can be computed by a width-w
size-s CNF/DNF is

(
w, 1

4s

)
-simple.

Proof. By Lemma 37 and Fact 17, there exists some S ⊆ [n] and z ∈ {−1, 1}n such that
|S| ≤ w such that∣∣∣∣∣∣

∑
x∈{−1,1}n

φ(x)f(x)EQS,z(x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

x∈{−1,1}n

φ(x)f(x)
∑
T ⊆S

1
2|S|

(∏
i∈T

zi

)
χT (x)

∣∣∣∣∣∣ ≥ 1
4s

.

As
∏

i∈T zi can only be ±1, by averaging principle, there exists some T ⊆ S such that
|T | ≤ |S| ≤ w and

|⟨f, χT ⟩φ| =

∣∣∣∣∣∣
∑

x∈{−1,1}n

φ(x)f(x)χT (x)

∣∣∣∣∣∣ ≥ 1
4s

. ◀

▶ Corollary 39. Let C : {−1, 1}n → {−1, 1}m be a circuit where m > 32s2nw and each
output can be computed by a width-w size-s CNF/DNF, then there is a set S ⊆ {−1, 1}m of
size O(s2 log2 m) that is computable in polynomial time and S ̸⊆ Range(C).

Proof. Let S be the support of a
( 3

8 · 1
16s2

)
-almost pairwise independent distribution. By

Theorem 24, it is of size O(s2 log2 m) and can be computed in polynomial time. The
correctness directly follows from Theorem 33 and Lemma 38. ◀

A.2 Simplicity of Functions from Approximate Degree
In this section, we derive the simplicity of functions (as per Definition 32) by connecting
it with (large-error) approximate degree of Boolean functions, a well-studied complexity
measure of Boolean functions in literature (see, e.g., [12, 19, 20, 4]).

▶ Definition 40. Let f : {−1, 1}n → {−1, 1} be a Boolean function. For any ε ∈ [0, 1), the
ε-approximate degree of f , denoted by degε(f), is the least d ∈ N such that there is a degree-d
real polynomial p : Rn → R satisfying |p(x) − f(x)| ≤ ε for every x ∈ {−1, 1}n.

In the literature, when ε is not specified, it is typically set as ε = 1
3 . However, for us it is

also beneficial to study case that ε is very close to 1 (Note that the zero polynomial trivially
1-approximates every Boolean function).

We show that upper bounds for ε-approximate degree translate to simplicity of functions.

▶ Theorem 41. Suppose n ≥ 10. Let f : {−1, 1}n → {−1, 1} be a Boolean function. Let
ε ∈ (0, 1), d ∈ N be such that deg1−ε(f) ≤ d. Then f is

(
d, ε

3nd/2

)
-simple.

Proof. Let p(x) =
∑

S⊆[n],|S|≤d p̂(S) · χS(x) be a degree-d real polynomial such that |f(x) −
p(x)| ≤ 1 − ε holds for every x ∈ {−1, 1}n. By Parseval’s identity, we have∑

S⊆[n]

p̂(S)2 = E
x∼{−1,1}n

[p(x)2] ≤ (1 + 1 − ε)2 ≤ 4.

By Cauchy-Schwarz inequality, we have

4 · 2nd ≥

∑
S⊆[n]

p̂(S)2

 ∑
S⊆[n],|S|≤d

1

 ≥

 ∑
S⊆[n],|S|≤d

|p̂(S)|

2

.
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Therefore,∑
S⊆[n],|S|≤d

|p̂(S)| ≤ 3nd/2.

Note that from f(x) ∈ {−1, 1} and |p(x) − f(x)| ≤ 1 − ε we have f(x)p(x) ≥ ε. Hence, for
every distribution φ over {−1, 1}n, we have∑

x∈{−1,1}n

φ(x) · f(x) · p(x) ≥
∑

x∈{−1,1}n

φ(x) · ε = ε.

Write p(x) =
∑

S⊆[n],|S|≤d p̂(S) · χS(x). By averaging principle, there is S ⊆ [n], |S| ≤ d such
that ∑

x∈{−1,1}n

φ(x) · f(x) · χS(x) ≥ ε

3nd/2 .

Since this argument holds for every distribution φ, we conclude that f is
(
d, ε

3nd/2

)
-simple. ◀

Approximate degree of natural circuit classes. We have the following known upper bounds
on approximate degree.

For f being a size-s De Morgan formula, following a lone ling of efforts [20, 24], we now
know that deg1/3(f) = O(

√
s). Consequently, f is

(
O(

√
s), n−O(

√
s)
)

-simple.
For f being a CNF/DNF of unbounded width and size s, it is known that deg1− 1

s
(f) =

O(
√

n log s) [12, 5]. Consequently, f is
(√

n log(s), n−O(n1/2 log s)
)

-simple.

Combining these approximate degree upper bounds with Theorem 33 and 41, as well as
the construction from Theorem 24, the following corollary is immediate.

▶ Corollary 42. Let m = m(n), s = s(n) be two non-decreasing functions. Suppose C :
{−1, 1}n → {−1, 1}m is a multi-output function. The following statements hold.

If each output bit Ci(x) is a size-s De Morgan formula of input bits and m ≥ nω(
√

s),
then there is a set S ⊆ {−1, 1}m of size poly(m) that is computable in polynomial time
and satisfies S ̸⊆ Range(C).
If each output bit Ci(x) is a size-s DNF or CNF of input bits and m ≥ nω(

√
n log(s)), then

there is a set S ⊆ {−1, 1}m of size poly(m) that is computable in polynomial time and
satisfies S ̸⊆ Range(C).

In both cases, the set S is independent of the circuit C.
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