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Abstract
Recent works have shown that expansion of pseudorandom sets is of great importance. However, all
current works on pseudorandom sets are limited only to product (or approximate product) spaces,
where Fourier Analysis methods could be applied. In this work we ask the natural question whether
pseudorandom sets are relevant in domains where Fourier Analysis methods cannot be applied, e.g.,
one-sided local spectral expanders.

We take the first step in the path of answering this question. We put forward a new definition
for pseudorandom sets, which we call “double balanced sets”. We demonstrate the strength of our
new definition by showing that small double balanced sets in one-sided local spectral expanders
have very strong expansion properties, such as unique-neighbor-like expansion. We further show
that cohomologies in cosystolic expanders are double balanced, and use the newly derived strong
expansion properties of double balanced sets in order to obtain an exponential improvement over
the current state of the art lower bound on their minimal distance.
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1 Introduction

The study of pseudorandom (or “global”) functions has led to many recent advancements. It
has been shown that they possess an effective hypercontractive inequality in many domains
such as the p-biased cube [15], the slice [16], the Grassmann graph [17] and two-sided
local spectral expanders [6]. The common observation in all of these works is that while
hypercontractivity does not hold for any general function, it holds for a certain subclass of
pseudorandom functions. This phenomenon has been the key to many breakthroughs, most
famously the resolution of Khot’s 2-to-2 Games Conjecture [17].

While this study of pseudorandom functions has been very fruitful in many domains,
currently it is still limited only to domains where Fourier Analysis methods could be applied.
These domains are product (or approximate product) spaces, so each function has an
orthogonal (or an approximate orthogonal) decomposition. While these domains are enough
for a lot of applications, there are many applications that require other domains. Some
examples are the recent works on efficient sampling algorithms (e.g., [5, 4, 2, 3] and more).
The domains in these works are one-sided local spectral expanders, which inherently do not
possess an orthogonal decomposition.
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3:2 Double Balanced Sets in High Dimensional Expanders

In this work we make the first step in the study of pseudorandom functions in other
domains where Fourier Analysis methods cannot be applied. We put forward an alternative
definition for pseudorandom functions, which we call “double balanced sets”. We demonstrate
the strength of our new definition by showing that small double balanced sets in one-sided
local spectral expanders have very strong expansion properties. We further show that
cohomologies in cosystolic expanders are double balanced, and then by the strong expansion
properties of double balanced sets, we achieve an exponential improvement over the state of
the art lower bound on their minimal distance.

1.1 Double balanced sets
In order to present our definition of double balanced sets, we need to set some notations
first. A d-dimensional simplicial complex X is a (d + 1)-hypergraph which is closed under
inclusions, i.e., if σ ∈ X then every τ ⊆ σ is also in X. A k-face is a hyperedge of size k + 1
and the set of k-faces in the complex is denoted by X(k). For any face σ ∈ X, the link of σ,
denoted by Xσ, is the subcomplex that is obtained by all the faces that contain σ and then
removing σ from all of them.

Let f ⊆ X(k) be a subset of k-faces in X. For any face σ ∈ X(ℓ), ℓ < k, we denote by
fσ ⊆ Xσ(k − ℓ − 1) the localization of f to the link of σ, where a face τ ∈ Xσ(k − ℓ − 1) is
in fσ if and only if τ ∪ σ ∈ f . We also denote by fσ the restriction of f to the link of σ,
where fσ = f ∩ Xσ(k). Note that both fσ and fσ “live” in the link of σ, but fσ is a subset
of (k − ℓ − 1)-faces whereas fσ is a subset of k-faces.

For simplicity, we assume in the introduction that the complex has a uniform probability
distribution in every dimension. In the body of the paper we will take into account general
probability distributions.

▶ Definition 1 (Double balanced sets). We say that f ⊆ X(k) is α-double balanced in
dimension ℓ, ℓ < k, if for every ℓ-face σ ∈ X(ℓ) it holds that

|fσ|
|Xσ(k − ℓ − 1)| ≤ α E

v∈σ

[ ∣∣(fσ\v)v
∣∣

|Xσ(k − ℓ)|

]
. (1)

We say that f is α-double balanced if it is α-double balanced in dimension ℓ for every ℓ < k.

In order to get some intuition, let us focus on low dimensions first. Let X be a 3-
dimensional complex and f ⊆ X(2) (i.e., a set of triangles in a complex with pyramids).

For every vertex v ∈ X(0), the left-hand side of (1) translates to the fraction of triangles
in f that contain v out of all the triangles that contain v, and the right-hand side of (1)
translates to α times the fraction of triangles in f that together with v form a pyramid
out of all the pyramids that contain v.
For every edge {u, v} ∈ X(1), the left-hand side of (1) translates to the fraction of
triangles in f that contain {u, v} out of all the triangles that contain {u, v}, and the
right-hand side of (1) translates to α times the average fraction of triangles in f that
contain u or v and together with v or u, respectively, form a pyramid out of all the
pyramids that contain {u, v}.

In general, the left-hand side of (1) translates to the fraction of k-faces in f that contain
σ, and the right-hand side translates to the average fraction of k-faces in f that contain
|σ| − 1 vertices from σ and together with σ forms a (k + 1)-face.

Let us explain briefly the motivation behind this definition. From a spectral point of
view, it is known that high dimensional random walks with intersections do not mix rapidly,
whereas random walks without intersections (also known as swap walks [1] or complement
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walks [7]) have an optimal mixing rate1. Previous works on pseudorandom sets (e.g., [6])
benefit from the optimal mixing rate of non-intersecting random walks, but for that the
complex has to be of a very high dimension, i.e., in order to gain anything on a pseudorandom
set of dimension k, the complex has to be of dimension at least 2k (so we can move between
k-faces without intersections). Our definition of double balanced sets benefits from the
optimal mixing rate of non-intersecting random walks even when d = k + 1. The reason is
that the right-hand side of (1), when viewed in the link of σ \ v for some vertex v ∈ σ, is
concerned with faces that do not contain v, i.e., it is related to a non-intersecting random
walk inside the link of σ \ v.

From a topological point of view, our definition of double balanced sets relates faces of two
consecutive dimensions (i.e., (k−ℓ−1)-faces in the left-hand side of (1) and (k−ℓ)-faces in the
right-hand side), similar to usual topological operators (e.g., the boundary and coboundary
operators). In this sense, our definition has the potential to benefit also from the topological
properties of the complex. Indeed, we show that cohomologies in high dimensional expanders
are double balanced by utilizing the topological expansion of the complex.

To summarize the above discussion, our definition of double balanced sets has the potential
to imitate a situation where the complex has many dimensions above (like in previous works)
while having only one dimension above. It benefits both from spectral and topological
properties of the complex, whereas previous works could only use spectral properties. We
believe that utilizing the topological properties of the complex, as well as spectral properties,
would lead to many breakthroughs in the future.

1.2 Relation to the common definition
We would like to formalize the intuitive similarity of our new definition (of double balanced
sets) to the common definition (of pseudorandom sets).

The common definition of pseudorandom sets, as given in [6]2, says that a set of k-faces
f is ε-pseudorandom in dimension ℓ, ℓ < k, if for every ℓ-face σ ∈ X(ℓ) it holds that

|fσ|
|Xσ(k − ℓ − 1)| ≤ ε. (2)

As demonstrated in the following lemma, our definition of double balanced sets implies
almost pseudorandomness.

▶ Lemma 2. Let X be a good enough one-sided local spectral expander3. For any α-double
balanced set of k-faces f ∈ X(k) and any dimension ℓ < k, if

|f |
|X(k)| ≤ ε

(ℓ + 1)αℓ

then

Pr
σ∈X(ℓ)

[
|fσ|

|Xσ(k − ℓ − 1)| ≤ ε

]
≥ 1 − ε

|f |
|X(k)| .

1 By random walks with intersections we mean that we move from an i-face σ to a j-face τ through a
k-face that contain both σ and τ , where the intersection σ ∩ τ may be non-empty, whereas random
walks without intersections require that σ ∩ τ would be empty.

2 The actual definition is considered with general functions from X(k) to R. For simplicity we consider
only functions from X(k) to {0, 1}, i.e., functions that correspond to subsets of k-faces.

3 The definition of one-sided local spectral expansion will be introduced later in the paper.

APPROX/RANDOM 2022



3:4 Double Balanced Sets in High Dimensional Expanders

In words, for a sufficiently small set, if the set is α-double balanced then it is also
almost pseudorandom, i.e., all ℓ-faces besides of a negligible fraction of them satisfy the
pseudorandomness property.

1.3 Inheritance property
An interesting property that applies to double balanced sets is that it is inherited by lower
dimensions. We show that a set of k-faces which is double balanced in dimension ℓ is also
double balanced in all dimensions below ℓ. This result is obtained by applying the following
lemma step by step.

▶ Lemma 3 (Double balance inheritance). If f ⊆ X(k) is α-double balanced in dimension ℓ,
then f is α′-double balanced in dimension ℓ − 1, where

α′ = αℓ

ℓ + 1 − α
.

It is worth to note that when f is perfectly double balanced, i.e., when α = 1, then
lemma 3 implies that f is also perfectly double balanced in all dimensions below ℓ. In other
words, perfect double balance is inherited by lower dimensions without any loss.

1.4 δ1-expansion of small double balanced sets
In recent years, a few different notions of high dimensional expansion have been studied.
One such notion is δ1-expansion, which can be viewed as a generalization of unique-neighbor
expansion in graphs. It is a strong expansion notion that is usually very hard to get. For a
set of k-faces f ⊆ X(k), δ1(f) is defined as the set of (k + 1)-faces that contain exactly one
k-face from f . We say that f is δ1-expanding if

|δ1(f)|
|X(k + 1)| ≥ ε

|f |
|X(k)| . (3)

In [14] it has been shown that δ1-expansion for small sets implies group-independent cosystolic
expansion, i.e., cosystolic expansion over any group.

In order to demonstrate the strength of our definition of double balanced sets, we show
that small double balanced sets are δ1-expanding. On one hand, we show that when a double
balanced set f is sufficiently small, it has a nearly perfect δ1-expansion, i.e., ε in equation (3)
is very close to k +2. On the other hand, for larger double balanced sets (which are still small,
but not that small), we show that they have some δ1-expansion, i.e., ε > 0 in equation (3).
We prove the following two theorems.

▶ Theorem 4 (Nearly optimal δ1-expansion for sufficiently small double balanced sets). Let X

be a good enough one-sided local spectral expander. For any α-double balanced set of k-faces
f ⊆ X(k) and ε > 0, if

|f |
|X(k)| ≤ ε

(k + 1)2αk

then

|δ1(f)|
|X(k + 1)| ≥ (1 − 3ε)(k + 2) |f |

|X(k)| .
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▶ Theorem 5 (Some δ1-expansion for small double balanced sets). Let X be a good enough
one-sided local spectral expander. For any α-double balanced set of k-faces f ⊆ X(k) and
ε > 0, if

|f |
|X(k)| ≤ 1 − ε

(k + 1)αk

then
|δ1(f)|

|X(k + 1)| > 0.

Both of theorems 4 and 5 demonstrate the strength of our definition of double balanced
sets. The key idea that since f is a small set, its double balance property implies that it
has to be small in every link as well, which in turn implies δ1-expansion. The novelty over
previous works (e.g., [13, 9, 14]) is to benefit from the optimal mixing rate of non-intersecting
random walks. As explained in section 1.1, our definition of double balanced sets is related
in a sense to non-intersecting random walks and hence benefits from an optimal mixing rate.
This is in contrast to previous works, which essentially used only intersecting random walks,
and hence could obtain worse bounds and only for much smaller sets.

1.5 Application to minimal distance of cohomologies
Cohomologies stand in the center of recent studies in Mathematics, and they have already
found some applications in Theoretical Computer Science as well. Complexes with large
cohomologies have played a key role in the construction of efficiently decodable quantum
LDPC codes with a large distance [10]. It is known by now to construct quantum LDPC
codes with a larger distance [20, 18], however these are not known to be efficiently decodable.
Complexes with large cohomologies were also the main block in the first construction of explicit
3XOR instances that are hard for the Sum-of-Squares Hierarchy [8]. Other constructions
which are hard for more levels of the the Sum-of-Squares Hierarchy [12] are known by now.
Nonetheless, the construction of [8] is still the best known construction from simplicial
complexes and it has been the first step in this line of works.

In order to define cohomologies, let us identify a set of k-faces in X with an F2-valued
function f : X(k) → F2 and denote by Ck(X) the space of all F2-valued functions on X(k).
The coboundary operator δk : Ck(X) → Ck+1(X) is defined by

δkf(σ) =
∑
u∈σ

f(σ \ {u}) mod 2.

The image of δk−1 is called the k-coboundaries and is denoted by

Bk(X) = {δk−1f | f ∈ Ck−1(X)}.

The kernel of δk is called the k-cocycles and is denoted by

Zk(X) = {f ∈ Ck(X) | δkf = 0}.

It is not hard to check that Bk(X) ⊆ Zk(X) ⊆ Ck(X). The k-cohomology of X is the
quotient space Hk(X) = Zk(X)/Bk(X).

Previous works could only obtain complexes with some constant lower bound on the
size of their cohomologies [13, 9, 14]. We show that for high dimensional expanders (in a
topological sense), all of their cohomology elements are double balanced. We then utilize the
δ1-expansion of double balanced sets in order to obtain a lower bound on their size, achieving
an exponential improvement upon the current state of the art.

APPROX/RANDOM 2022



3:6 Double Balanced Sets in High Dimensional Expanders

▶ Theorem 6 (Cohomologies are double balanced). For a complex whose links are topological
expanders, every k-cohomology element is ((k+1)/β)-double balanced, where β is the expansion
constant in the links of the complex.

▶ Theorem 7 (Lower bound on cohomology elements). For a good enough one-sided local
spectral expander whose links are topological expanders, every k-cohomology element must be
of density at least βk/(k + 1)!, where β is the expansion constant in the links of the complex.

▶ Remark. The current state of the art lower bound on the size of cohomologies prior to this
work is ≈ (βk/k!)2k [14, Lemma 3.10].

1.6 Organization
In section 2 we provide the required preliminaries. In section 3 we introduce the formal
definition of double balanced sets and prove its inheritance property. In section 4 we show that
small double balanced sets in one-sided local spectral expanders have the strong δ1-expansion
property, and also explain how to prove lemma 2. In section 5 we show that cohomologies in
a complex with topological expanding links are double balanced, obtaining an exponential
improvement upon the current state of the art lower bound on their minimal distance.

2 Preliminaries

2.1 Simplicial complexes
Recall that a d-dimensional simplicial complex X is a downwards closed (d + 1)-hypergraph.
A k-face of X is a hyperedge of size k + 1, and the set of k-faces of X is denoted by X(k).
An assignment of values from F2 to the k-faces, k ≤ d, is called a k-cochain, and the space
of all k-cochains over F2 is denoted by Ck(X).

Any assignment to the k-faces f ∈ Ck(X) induces an assignment to the (k + 1)-faces by
the coboundary operator δ. For any (k + 1)-face σ = {v0, . . . , vk+1}, δ(f)(σ) is defined by

δ(f)(σ) =
k+1∑
i=0

f(σ \ {vi}) (mod 2).

The kernel of the coboundary operator is called the k-cocycles and denoted by

Zk(X) = {f ∈ Ck(X) | δ(f) = 0}.

The image of δ is called the k-coboundaries and denote by

Bk(X) = {δ(f) | f ∈ Ck−1(X)}.

One can check that δ(δ(f)) = 0 always holds, hence Bk(X) ⊆ Zk(X) ⊆ Ck(X). The quotient
space Zk(X)/Bk(X) is called the k-cohomologies and denoted by Hk(X).

For a d-dimensional simplicial complex X, let Pd : X(d) → R≥0 be a probability
distribution over the d-faces of the complex. For simplicity, we will assume in this work
that Pd is the uniform distribution. This probability distribution over the d-faces induces a
probability distribution Pk for every dimension k < d by selecting a d-face σd according to
Pd and then selecting a k-face σk ⊂ σd uniformly at random.

The weight of any k-cochain f ∈ Ck(X) is defined by

∥f∥ = Pr
σk∼Pk

[f(σk) ̸= 0],

i.e., the (weighted) fraction of non-zero elements in f . The distance between two k-cochains
f, g ∈ Ck(X) is defined as dist(f, g) = ∥f − g∥.
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We also add a useful definition of a mutual weight of two cochains. For ℓ < k and two
cochains f ∈ Ck(X), g ∈ Cℓ(X) we define their mutual weight by

∥(f, g)∥ = Pr
σk∼Pk,σℓ⊂σk

[f(σk) ̸= 0 ∧ g(σℓ) ̸= 0],

where σk is chosen according to the distribution Pk and σℓ is an ℓ-face chosen uniformly
from σk (i.e., σℓ is chosen according to Pℓ conditioned on σk being chosen).

2.2 Cosystolic and coboundary expansion
Coboundary expansion has been introduced by Linial and Meshulam [19] and independently
by Gromov [11]. It is a generalization of edge expansion of graphs to higher dimensions.

▶ Definition 8 (Coboundary expansion). A d-dimensional simplicial complex X is said to be
an ε-coboundary expander if for every k < d and f ∈ Ck(X) \ Bk(X) it holds that

∥δ(f)∥
dist(f, Bk(X)) ≥ ε,

where dist(f, Bk(X)) = min{dist(f, g) | g ∈ Bk(X)}.

Cosystolic expansion is similar to coboundary expansion, with the main difference that it
can have non-trivial cohomologies as long as they are large.

▶ Definition 9 (Cosystolic expansion). A d-dimensional simplicial complex X is said to be
an (ε, µ)-cosystolic expander if for every k < d:
1. For any f ∈ Ck(X) \ Zk(X) it holds that

∥δ(f)∥
dist(f, Zk(X)) ≥ ε,

where dist(f, Zk(X)) = min{dist(f, g) | g ∈ Zk(X)}.
2. For any f ∈ Zk(X) \ Bk(X) it holds that ∥f∥ ≥ µ.

2.3 Links, localization and restriction
For every face σ ∈ X, its local view, also called its link, is a (d − |σ| − 1)-dimensional
simplicial complex defined by Xσ = {τ \ σ | σ ⊆ τ ∈ X}. The probability distribution over
the top faces of Xσ is induced from the probability distribution of X, where for any top face
τ ∈ Xσ(d − |σ| − 1), its probability is the probability to choose σ ∪ τ in X conditioned on
choosing σ. Since we assume in this work that the probability distribution over the top faces
of X is the uniform distribution, it follows that the probability distribution over the top
faces of Xσ is the uniform distribution.

For any k-cochain f ∈ Ck(X) and an ℓ-face σ ∈ X(ℓ), the localization of f to the link of
σ is a (k − ℓ − 1)-cochain in the link of σ, fσ ∈ Ck−ℓ−1(Xσ) defined by

fσ(τ) = f(σ ∪ τ).

The restriction of f to the link of σ is a k-cochain in the link of σ, fσ ∈ Ck(Xσ) defined by

fσ(τ) = f(τ).

APPROX/RANDOM 2022



3:8 Double Balanced Sets in High Dimensional Expanders

2.4 Local spectral expansion
Another notion of high dimensional expansion, called local spectral expansion is concerned
with the spectral properties of the links of the complex.

▶ Definition 10 (Two-sided local spectral expansion). A d-dimensional simplicial complex X

is called a λ-two-sided local spectral expander, λ > 0, if for every k ≤ d − 2 and σ ∈ X(k),
the underlying graph4 of Xσ is a λ-two-sided spectral expander, i.e., its spectrum is bounded
from above by λ and from below by −λ.

▶ Definition 11 (One-sided local spectral expansion). A d-dimensional simplicial complex X

is called a λ-one-sided local spectral expander, λ > 0, if for every k ≤ d − 2 and σ ∈ X(k),
the underlying graph4 of Xσ is a λ-one-sided spectral expander, i.e., its spectrum is bounded
from above by λ.

2.5 Minimal and locally minimal cochains
One of the technical notions we use in this work is the notion of a minimal cochain. We say that
a k-cochain f ∈ Ck(X) is minimal if its weight cannot be reduced by adding a coboundary
to it, i.e., for every g ∈ Bk(X) it holds that ∥f∥ ≤ ∥f − g∥. Recall that the distance of f

from the coboundaries is defined by dist(f, Bk(X)) = min{∥f − g∥ | g ∈ Bk(X)}. Since
0 ∈ Bk(X), it follows that for every f ∈ Ck(X), ∥f∥ ≥ dist(f, Bk(X)). Thus, f is said to
be minimal if and only if ∥f∥ = dist(f, Bk(X)).

We also define the notion of a locally minimal cochain, where we say that f ∈ Ck(X) is
locally minimal if for every vertex v, the localization of f to the link of v is minimal in the
link, i.e., fv is minimal in Xv for every v ∈ X(0). It is not hard to check that any minimal
cochain is also locally minimal.

3 Double balanced sets

We start by providing the formal definition of a double balanced cochain. Recall that for any
k-cochain f ∈ Ck(X) and a vertex u ∈ X(0), we denote by fu the restriction of f to the
k-faces in the link of u, i.e., fu ∈ Ck(Xu).

▶ Definition 12 (Double balanced cochains). Let X be a d-dimensional simplicial complex.
A k-cochain f ∈ Ck(X) is said to be α-double balanced in dimension ℓ, where α ≥ 1 and
0 ≤ ℓ ≤ k − 1, if for every ℓ-face σ ∈ X(ℓ) it holds that

∥fσ∥ ≤ α E
u∈σ

∥∥(fσ\u)u
∥∥ .

f is said to be α-double balanced if f is α-double balanced in dimension ℓ for every ℓ < k.

3.1 Balance inheritance
An interesting property that applies to double balanced cochains is that it is inherited by
lower dimensions. We show that a cochain of k-faces which is double balanced in dimension
ℓ is also double balanced in all dimensions below ℓ. We prove lemma 3 from the introduction,
which we restate here for convenience.

4 The graph whose vertices are Xσ(0) and its edges are Xσ(1).
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▶ Lemma 13 (Double balance inheritance). Let f ∈ Ck(X) be an α-double balanced cochain
in dimension ℓ. Then f is α′-double balanced in dimension ℓ − 1, where

α′ = αℓ

ℓ + 1 − α
.

Proof. Let τ ∈ X(ℓ − 1).

∥fτ ∥ = E
u∈Xτ (0)

[∥fτu∥]

≤ E
u∈Xτ (0)

[
α E

v∈τu

[ ∥∥(fτu\v)v
∥∥ ]]

= E
u∈Xτ (0)

[
α

ℓ + 1 ∥(fτ )u∥ + αℓ

ℓ + 1 E
v∈τ

[ ∥∥(fτu\v)v
∥∥ ]]

= α

ℓ + 1 E
u∈Xτ (0)

[∥(fτ )u∥] + αℓ

ℓ + 1 E
v∈τ

[
E

u∈Xτ (0)

[ ∥∥(fτu\v)v
∥∥ ]]

= α

ℓ + 1 ∥fτ ∥ + αℓ

ℓ + 1 E
v∈τ

∥∥(fτ\v)v
∥∥ ,

where the inequality follows since f is α-double balanced in dimension ℓ and all the other
steps follow from laws of probability. This implies that

∥fτ ∥ ≤ αℓ

ℓ + 1 − α
E

v∈τ

∥∥(fτ\v)v
∥∥ . ◀

It is worth to note that when f is perfectly double balanced, i.e., when α = 1, then
lemma 13 implies that f is also perfectly double balanced in all dimensions below ℓ. In other
words, perfect double balance is inherited by lower dimensions without any loss.

▶ Corollary 14. Let f ∈ Ck(X) be a 1-double balanced cochain in dimension ℓ. Then f is
also 1-double balanced in all dimensions below ℓ.

4 δ1-expansion for small double balanced sets

In this section we show that small double balanced sets are δ1-expanding. On one hand,
we show that when a double balanced set f is sufficiently small, it has a nearly optimal
δ1-expansion. On the other hand, for larger double balanced sets (which are still small, but
not that small), we show that they have some δ1-expansion, i.e., ∥δ1(f)∥ > 0. We prove
theorems 4 and 5 from the introduction, which we restate here in a formal way.

▶ Theorem 15 (Nearly optimal δ1-expansion for sufficiently small double balanced sets). For
every d ≥ 2, α ≥ 1 and 0 < ε < 1 there exists λ = λ(d, α, ε) such that the following holds:
Let X be a d-dimensional λ-one-sided local spectral expander. For any k-cochain f ∈ Ck(X),
1 ≤ k < d, such that f is α-double balanced and ∥f∥ ≤ ε

(k + 1)2αk
it holds that

∥δ1(f)∥ ≥ (k + 2)(1 − 3ε) ∥f∥ .

▶ Theorem 16 (Some δ1-expansion for small double balanced sets). For every d ≥ 2, α ≥ 1 and
0 < ε < 1 there exists λ = λ(d, α, ε) such that the following holds: Let X be a d-dimensional
λ-one-sided local spectral expander. For any k-cochain f ∈ Ck(X), 1 ≤ k < d, such that f is
α-double balanced and ∥f∥ ≤ 1 − ε

(k + 1)αk
it holds that

∥δ1(f)∥ > 0.

APPROX/RANDOM 2022



3:10 Double Balanced Sets in High Dimensional Expanders

We split the proof of these theorems to two parts. In the first part we show that if almost
all of the (k − 1)-faces of a cochain are not dense then its δ1 is optimal. In the second part,
we show that for sufficiently small double balanced cochains, almost all of their (k − 1)-faces
are indeed not dense.

4.1 Part I – Bound δ1(f) by the dense (k − 1)-faces
Let X be a d-dimensional λ-one-sided local spectral expander and 0 < η < 1 a density
constant.

For any k-cochain f ∈ Ck(X) we define the set of dense (k − 1)-faces by

DENSEk−1 = {σ ∈ X(k − 1) | ∥fσ∥ > η}.

We show in this section that ∥δ1(f)∥ can be bounded by the fraction of dense (k −1)-faces.

▶ Proposition 17. Let X be a d-dimensional λ-one-sided local spectral expander and 0 < η < 1
a density constant. For any k-cochain f ∈ Ck(X), 1 ≤ k < d,

∥δ1(f)∥ ≥ (k + 2) ∥f∥
(

1 − (k + 1)
(

λ + η + ∥DENSEk−1∥
∥f∥

))
.

The proof of this proposition will follow from the following two lemmas. The first lemma
holds for any simplicial complex.

▶ Lemma 18. Let X be a d-dimensional simplicial complex. For any k-cochain f ∈ Ck(X),
1 ≤ k < d,

∥δ1(f)∥ ≥ (k + 2)
(

1
2

∑
σ∈X(k−1)

∥(δ1(fσ), σ)∥ − k
∑

σ∈X(k−1)

∥(δ2(fσ), σ)∥
)

Proof. Denote by δi(f) the set of (k+1)-faces that contain exactly i k-faces from f . Summing
δ1(fσ) in the links of all σ ∈ X(k − 1) equals

∑
σ∈X(k−1)

∥(δ1(fσ), σ)∥ =
k+1∑
i=1

i(k + 2 − i)(
k+2

2
) ∥δi(f)∥ . (4)

Summing δ2(fσ) in the links of all σ ∈ X(k − 1) equals

∑
σ∈X(k−1)

∥(δ2(fσ), σ)∥ =
k+2∑
i=2

(
i
2
)(

k+2
2
) ∥δi(f)∥ . (5)

Multiplying (5) by 2k yields

2k
∑

σ∈X(k−1)

∥(δ2(fσ), σ)∥ =
k+2∑
i=2

i(i − 1)k(
k+2

2
) ∥δi(f)∥ ≥

k+2∑
i=2

i(k + 2 − i)(
k+2

2
) ∥δi(f)∥ . (6)

Subtracting (6) from (4) yields∑
σ∈X(k−1)

∥(δ1(fσ), σ)∥ − 2k
∑

σ∈X(k−1)

∥(δ2(fσ), σ)∥ ≤ 2
k + 2 ∥δ1(f)∥ .

Multiplying both sides by (k + 2)/2 finishes the proof. ◀
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The following lemma holds for any λ-one-sided local spectral expander.

▶ Lemma 19. Let X be a d-dimensional λ-one-sided local spectral expander and 0 < η < 1 a
density constant. For any k-cochain f ∈ Ck(X), 1 ≤ k < d,
1.

∑
σ∈X(k−1)

∥(δ1(fσ), σ)∥ ≥ 2(1 − λ − η) ∥(f, SPARSEk−1)∥ ,

2.
∑

σ∈X(k−1)

∥(δ2(fσ), σ)∥ ≤ ∥(f, DENSEk−1)∥ + (λ + η) ∥(f, SPARSEk−1)∥ ,

where SPARSEk−1 = X(k − 1) \ DENSEk−1.

Proof. Since X is a one-sided local spectral expander, fσ is a subset of vertices in Xσ so
both inequalities follow immediately form the well known Cheeger inequality. ◀

We can now prove Proposition 17.

Proof of Proposition 17. Since

∥f∥ = ∥(f, DENSEk−1)∥ + ∥(f, SPARSEk−1)∥ ,

lemma 19(1) yields∑
σ∈X(k−1)

∥(δ1(fσ), σ)∥ ≥ 2(1 − λ − η) ∥f∥ − 2 ∥(f, DENSEk−1)∥ , (7)

and lemma 19(2) yields∑
σ∈X(k−1)

∥(δ2(fσ), σ)∥ ≤ (λ + η) ∥f∥ + ∥(f, DENSEk−1)∥ . (8)

Substituting (7) and (8) in lemma 18 finishes the proof. ◀

4.2 Part II – Bound the fraction of dense (k − 1)-faces
We show in this section that for every double balanced and small cochain in a good enough
one-sided local spectral expander, the fraction of dense (k − 1)-faces is very small.

We first extend the definition of dense faces to every dimension −1 ≤ i ≤ k − 1. Given a
density constant 0 < η < 1 and ε > 0, we set ηk−1 = η and for every 0 ≤ i ≤ k − 1 we define

ηi−1 = ηi

α
− ε

(k + 1)2αk−i
.

We then define the dense faces in dimension i to be

DENSEi = {σ ∈ X(i) | ∥fσ∥ > ηi}.

Our goal in this subsection is to prove the following proposition.

▶ Proposition 20. Let X be a d-dimensional λ-one-sided local spectral expander, 1 ≤ k < d

any dimension, α ≥ 1 a balance constant, 0 < η < 1 a density constant and ε > 0. For any
k-cochain f ∈ Ck(X) such that f is α-double balanced and ∥f∥ ≤ η−1 it holds that

∥DENSEk−1∥ ≤ 3k!
(

(k + 1)3αkλ

ε

)2
∥f∥

We start by showing that in a λ-one-sided local spectral expander, the restriction of a
cochain to almost every vertex is seen with the right proportion.
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3:12 Double Balanced Sets in High Dimensional Expanders

▶ Lemma 21. Let X be a d-dimensional λ-one-sided local spectral expander. For any
k-cochain f ∈ Ck(X), 0 ≤ k < d, and ε > 0 it holds that

Pr
u∈X(0)

[∥fu∥ > ∥f∥ + ε] ≤
(

(k + 1)λ
ε

)2
∥f∥ .

Proof. Define the following graph G = (V, E), where V = X(k), i.e., all k-faces of X, and
E =

{
{σ1, σ2} | ∃u ∈ X(0) s.t. σ1 ·∪ u, σ2 ·∪ u ∈ X(k + 1)

}
, i.e., there is an edge between

σ1 and σ2 if and only if there exists some vertex in X that completes both σ1 and σ2 to a
(k + 1)-face.

We define a probability distribution on G that corresponds to the probability distribution
of X as follows:

The probability of a vertex σ ∈ V equals to the probability of the corresponding k-face
σ ∈ X(k).
The probability of an edge {σ1, σ2} ∈ E equals Eu∈X(0) Pr[σ1 ·∪ u | u] · Pr[σ2 ·∪ u | u],
where all the probabilities are taken according to the complex X.

Since X is a λ-one-sided local spectral expander, by [7, Claim 4.9] G is a ((k + 1)λ)2-
spectral expander, because its adjacency operator is a two steps walk of the 0, 2-complement
walk of [7].

Now, define µ : X(0) → R by µ(u) = ∥fu∥ = Pr[σ ∈ f | σ ·∪ u ∈ X(k + 1)]. The following
holds by laws of probability:

E
u∈X(0)

[µ(u)] = E
u∈X(0)

Pr[σ ∈ f | σ ·∪ u ∈ X(k + 1)] = Pr[σ ∈ f ] = ∥f∥ . (9)

E
u∈X(0)

[µ(u)2] = E
u∈X(0)

Pr[σ1 ∈ f | σ1 ·∪ u ∈ X(k + 1)] · Pr[σ2 ∈ f | σ2 ·∪ u ∈ X(k + 1)]

= Pr
{σ1,σ2}∈E

[σ1 ∈ f ∧ σ2 ∈ f ] = ∥E(f)∥ ,
(10)

where E(f) is the set of edges {σ1, σ2} in G such that both σ1 and σ2 are in f . Since G is a
((k + 1)λ)2-spectral expander, it follows that ∥E(A)∥ ≤ ∥f∥2 + ((k + 1)λ)2 ∥A∥. Substituting
in (10) and combining (9) yields

Var
u∈X(0)

[µ(u)] = E
u∈X(0)

[µ(u)2] − E
u∈X(0)

[µ(u)]2 ≤ ((k + 1)λ)2 ∥f∥ .

Now, by Chebyshev’s inequality

Pr
[

∥fu∥ > ∥f∥ + ε
]

= Pr
[
µ(u) > E[µ] + ε

]
≤ Var[µ]

ε2 ≤
(

(k + 1)λ
ε

)2
∥f∥ .

This completes the proof. ◀

In the next lemma we show that for every dimension i, if f is double balanced in dimension
i then the fraction of dense i-faces is not much more than the fraction of dense (i − 1)-faces.

▶ Lemma 22. Let X be a d-dimensional λ-one-sided local spectral expander and f ∈ Ck(X),
0 ≤ k < d. For every 0 ≤ i < k, if f is α-double balanced in dimension i then

∥DENSEi∥ ≤ (i + 1) ∥DENSEi−1∥ + (i + 1)
(

(k + 1 − i)(k + 1)2αk−iλ

ε

)2

∥f∥ .
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Proof. Note that for every σ ∈ DENSEi there must exist a vertex u ∈ σ such that∥∥(fσ\u)u
∥∥ >

ηi

α
, (11)

since otherwise

∥fσ∥ ≤ α

i + 1
∑
u∈σ

∥∥(fσ\u)u
∥∥ ≤ ηi

and σ /∈ DENSEi.
For every σ ∈ DENSEi, fix one (i − 1)-face τ(σ) = σ \ u that satisfies (11). By laws of

probability

∥DENSEi∥ = Pr[σi ∈ DENSEi] = (i + 1) Pr[σi ∈ DENSEi ∧ σi−1 = τ(σi)] ≤

(i + 1) ∥DENSEi−1∥ + (i + 1) Pr[σi ∈ DENSEi ∧ σi−1 = τ(σi) | τ(σi) /∈ DENSEi−1],
(12)

where the inequality holds by splitting to the two cases whether τ(σi) ∈ DENSEi−1.
We focus now on the right summand of (12) which is the case where τ(σi) /∈ DENSEi−1.

Recall that τ(σi) satisfies (11). Thus, we can bound the probability of this event by the
probability to choose a sparse (i − 1)-face and then a vertex such that (11) holds, i.e.,

Pr[σi ∈ DENSEi∧σi−1 = τ(σi) | τ(σi) /∈ DENSEi−1] ≤ E
τ∈SPARSEi−1

Pr
u∈Xτ (0)

[
∥(fτ )u∥ >

ηi

α

]
.

(13)

Since τ ∈ SPARSEi−1, it holds that ∥fτ ∥ ≤ ηi−1. Thus,

E
τ∈SPARSEi−1

Pr
u∈Xτ (0)

[
∥(fτ )u∥ >

ηi

α

]
≤

E
τ∈SPARSEi−1

Pr
u∈Xτ (0)

[
∥(fτ )u∥ > ∥fτ ∥ + ε

(k + 1)2αk−i

]
,

(14)

where the inequality holds since

∥fτ ∥ + ε

(k + 1)2αk−i
≤ ηi−1 + ε

(k + 1)2αk−i
= ηi

α
.

Combining (12), (13) and (14) yields

∥DENSEi∥ ≤

(i + 1) ∥DENSEi−1∥ + (i + 1) E
τ∈SPARSEi−1

Pr
u∈Xτ (0)

[
∥(fτ )u∥ > ∥fτ ∥ + ε

(k + 1)2αk−i

]
≤

(i + 1) ∥DENSEi−1∥ + (i + 1) E
τ∈SPARSEi−1

[(
(k + 1 − i)(k + 1)2αk−iλ

ε

)2
∥fτ ∥

]
≤

(i + 1) ∥DENSEi−1∥ + (i + 1)
(

(k + 1 − i)(k + 1)2αk−iλ

ε

)2
∥f∥ ,

where the second inequality follows by lemma 21. This completes the proof. ◀

We can now prove Proposition 20.
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3:14 Double Balanced Sets in High Dimensional Expanders

Proof of Proposition 20. We apply lemma 22 for i = k − 1, k − 2, . . . , 0 step by step.

∥DENSEk−1∥ ≤ k ∥DENSEk−2∥ + k

(
2(k + 1)2αλ

ε

)2
∥f∥ ≤

k(k − 1) ∥DENSEk−3∥ +
(

k(k − 1)
(

3(k + 1)2α2λ

ε

)2
+ k

(
2(k + 1)2αλ

ε

)2
)

∥f∥

≤ · · · ≤ k! ∥DENSE−1∥ +
(

k!
(

(k + 1)3αkλ

ε

)2
+ · · · + k

(
2(k + 1)2αλ

ε

)2
)

∥f∥

=
k−1∑
i=0

k!
i!

(
(k + 1 − i)(k + 1)2αk−iλ

ε

)2
∥f∥

≤ k!
(

(k + 1)2αkλ

ε

)2 k−1∑
i=0

(k + 1 − i)2

i! ∥f∥

≤ 3k!
(

(k + 1)3αkλ

ε

)2
∥f∥

where the equality holds since ∥f∅∥ = ∥f∥ ≤ η−1, i.e., the empty set is not dense, and hence
∥DENSE−1∥ = 0. The rest of the inequalities are just calculations. This completes the
proof. ◀

4.3 Proof of Theorems 15 and 16

Proof of Theorem 15. Let λ ≤ ε

d3αd−1

√
ε

3d! and η = ε

(k + 1) . By simple calculation

η−1 = ε

(k + 1)2αk
.

Thus, since ∥f∥ ≤ η−1, Proposition 20 implies that

∥DENSEk−1∥ ≤ 3k!
(

(k + 1)3αkλ

ε

)2

≤ ε

k + 1 ∥f∥ . (15)

Substituting (15) in Proposition 17 finishes the proof. ◀

Proof of Theorem 16. Let λ ≤ ε

d3αd−1

√
ε

(d + 1)! and η = 1 − ε/(k + 1)
(k + 1) . By simple calcu-

lation

η−1 = 1 − ε

(k + 1)αk
.

Thus, since ∥f∥ ≤ η−1, Proposition 20 implies that

∥DENSEk−1∥ ≤ 3k!
(

(k + 1)3αkλ

ε

)2

≤ ε

(k + 2)(k + 1) ∥f∥ . (16)

Substituting (16) in Proposition 17 finishes the proof. ◀

We conclude this section by noting that the proof of lemma 2 from the introduction is
exactly the same as the proof of Proposition 20, with the only difference that we start by
setting ηℓ = ε and bound the fraction of dense ℓ-faces instead of the dense (k − 1)-faces.
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5 Cohomologies are double balanced

Previous works could only obtain complexes with some constant lower bound on the size of
their cohomologies [13, 9, 14]. We show that for high dimensional expanders (in a topological
sense), all of their cohomology elements are double balanced. We then utilize the δ1-expansion
of double balanced sets in order to obtain a lower bound on their size, achieving an exponential
improvement upon the current state of the art.

We start by proving Theorem 6 from the introduction, which we restate here in a formal
way.

▶ Theorem 23 (Cohomologies are double balanced). Let X be a d-dimensional complex such
that every non-trivial link in X is a β-coboundary expander. For every ℓ < k < d, any
k-cohomology element is ℓ + 1

β
-double balanced in dimension ℓ.

Proof. Let f ∈ Hk(X) be a k-cohomology and σ ∈ X(ℓ) be an ℓ-face. Consider a (k −ℓ)-face
τ ∈ δ(fσ). Let us denote σ = {v0, v1, . . . , vℓ} and τ = {vℓ+1, vℓ+2, . . . , vk+1}. By definition

k+1∑
i=ℓ+1

f(σ ∪ τ \ vi) =
k+1∑

i=ℓ+1
fσ(τ \ vi) ̸= 0,

where the inequality holds since τ ∈ δ(fσ). Since f is a k-cohomology, it holds that

k+1∑
i=0

f(σ ∪ τ \ vi) = 0.

Therefore, there must exist 0 ≤ j ≤ ℓ such that f(σ ∪ τ \ vj) ̸= 0. By definition of restriction
and localization, it means that

(fσ\vj
)vj (τ) = (fσ\vj

)(τ) ̸= 0.

In other words, for every τ ∈ δ(fσ), there exists a vertex v ∈ σ such that τ ∈ (fσ\v)v. It
follows that

∥δ(fσ)∥ ≤
∑
v∈σ

∥∥(fσ\v)v
∥∥ . (17)

Now, since f is a k-cohomology, f is minimal and hence also locally minimal. The β-
coboundary expansion of the links implies that

∥δ(fσ)∥ ≥ β ∥fσ∥ . (18)

Combining (17) and (18) implies that

∥fσ∥ ≤ 1
β

∑
v∈σ

∥∥(fσ\v)v
∥∥ = ℓ + 1

β
E

v∈σ

∥∥(fσ\v)v
∥∥ .

This complete the proof. ◀

We conclude by proving Theorem 7 from the introduction, which we restate here in a
formal way.
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▶ Theorem 24 (Lower bound on cohomology elements). For every d ≥ 2, β > 0 and ε > 0
there exists λ = λ(d, β, ε) such that the following holds. Let X be a d-dimensional λ-one-sided
local spectral expander such that every non-trivial link in X is a β-coboundary expander. For
every k < d, any k-cohomology element f ∈ Hk(X) satisfies

∥f∥ ≥ (1 − ε)βk

(k + 1)! .

Proof. Assume towards contradiction that there exists f ∈ Hk(X) with ∥f∥ <
(1 − ε)βk

(k + 1)! .

By Theorem 23, f is
(
(ℓ + 1)/β

)
-double balanced in dimension ℓ for every ℓ < k. Then

Theorem 16 implies5 that ∥δ1(f)∥ > 0 in contradiction to f being a cohomology elements
(i.e., δ(f) = 0). ◀
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