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Abstract
We study random walks on the giant component of Hyperbolic Random Graphs (HRGs), in the
regime when the degree distribution obeys a power law with exponent in the range (2, 3). In
particular, we focus on the expected times for a random walk to hit a given vertex or visit, i.e. cover,
all vertices. We show that up to multiplicative constants: the cover time is n(log n)2, the maximum
hitting time is n log n, and the average hitting time is n. The first two results hold in expectation
and a.a.s. and the last in expectation (with respect to the HRG).

We prove these results by determining the effective resistance either between an average vertex
and the well-connected “center” of HRGs or between an appropriately chosen collection of extremal
vertices. We bound the effective resistance by the energy dissipated by carefully designed network
flows associated to a tiling of the hyperbolic plane on which we overlay a forest-like structure.
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1 Introduction

In 2010, Krioukov et al. [52] proposed the Hyperbolic Random Graph (HRG) as a model
of “real-world” networks such as the Internet (also referred to as complex networks). Early
results via non-rigorous methods indicated that HRGs exhibited several key properties
empirically observed in frequently studied networks (such as networks of acquaintances,
citation networks, networks of autonomous systems [13], etc.). Many of these properties were
later established formally, among these are power-law degree distribution [37], short graph
distances [1, 46] (a.k.a. small world phenomena), and strong clustering [17, 31, 37]. Many
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30:2 Cover and Hitting Times of Hyperbolic Random Graphs

other fundamental parameters of the HRG model have been studied since its introduction
(see the related work section), however notable exceptions are key quantities concerning
the behaviour of random walks. This paper is a first step in redressing this situation. The
random walk is the quintessential random process, and studies of random walks have proven
relevant for algorithm design and analysis; this coupled with the aforementioned appealing
aspects of the HRG model motivates this research.

The (simple) random walk is a stochastic process on the vertices of a graph, which at each
time step uniformly samples a neighbour of the current vertex as its next state [3, 56]. A key
property of the random walk is that, for any connected graph, the expected time it takes for
the walk to visit a given vertex (or to visit all vertices) is polynomial in the number of vertices
in the graph. These times are known as the hitting and cover times, respectively. This ability
of a random walk to explore an unknown connected graph efficiently using a small amount
of memory was, for example, used to solve the undirected s − t connectivity problem in
logarithmic space [4]. Other properties such as the ability to sample a vertex independently
of the start vertex after a polynomial (often logarithmic) number of steps (mixing time)
helped random walks become a fundamental primitive in the design of randomized and
approximation algorithms [59]. In particular, random walks have been applied in tasks such
as load balancing [68], searching [35], resource location [44], property testing [26, 53, 54],
graph parameter estimation [8] and biological applications [38].

One issue to keep in mind when working with HRGs is that for the most relevant range of
parameters of the model (that one for which it exhibits the properties observed in “real-world”
networks) the graphs obtained are disconnected with probability that tends to 1 as the order
of the graph goes to infinity. Quantities such as average hitting time and commute time are
not meaningful for disconnected graphs (i.e., they are trivially equal to infinity). However,
again for the range of parameters we are interested in, Bode, Fountoulakis and Müller [11]
showed that it is very likely the graph has a component of linear size. This result was then
complemented by the first author and Mitsche [46] who showed that all other connected
components were of size at most polylogarithmic in the order of the graph. This justifies
referring to the linear size component as the giant component. With this work being among
the first study of characteristics of simple random walks in HRGs, it is thus natural and
relevant to understand their behavior in the giant component of such graphs. This is the
main challenge we undertake in this paper.

Among our main contributions are the determination of the order of the hitting and cover
times of random walks on the giant component of HRGs. To achieve this, we appeal to a
connection of the former to effective resistances in the graph [56, Section 9]. The effective
resistance is a metric, and the resistances between all pairs of vertices uniquely determines
the graph [40]. The effective resistance has also found applications to graph clustering [5],
spectral sparsification [69], graph convolutional networks [2], and flow-based problems in
combinatorial optimization [6, 18, 61].

1.1 Main Results
Our main contributions are to determine several quantities related to random walks on the
largest connected component Cα,ν(n) of the (Poissonized) hyperbolic random graph Gα,ν(n).
We refer to this component as the giant and note that it is known to have Θ(n) vertices
a.a.s. [11]. The primary probability space we will be working in is the one induced by the
HRG and we use P for the associated measure. We also deal with the expected stopping
times of random walks, and we use bold type (e.g. E) for the expectation with respect to the
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random walk on a fixed graph. We say that a sequence of events (w.r.t. the HRG) holds
asymptotically almost surely (a.a.s.) if it occurs with probability going to 1 as n → ∞. We
give brief descriptions of the objects we study here, for full definitions see Section 2.

The effective resistance R (x ↔ y) between two vertices x, y of a graph G is the energy
dissipated by a unit current flow from x to y. Due to a connection with simple random walks,
we consider effective resistance in the case when all edges have unit resistances, see Section 2.5
for a formal definition. The sum of all resistances in G is the Kirchhoff index K(G), this
has found uses in centrality [57], noisy consensus problems [67], and social recommender
systems [73]. Our first result shows the expected effective resistance between two vertices
of the giant chosen uniformly at random is bounded, and gives the expected order of the
Kirchhoff index.

▶ Theorem 1. For any 1
2 < α < 1 and ν > 0, if C := Cα,ν(n), then

E(K(C)) = Θ(n2), and E
( 1

|V (C)|2
∑

u,v∈V (C)

R (u ↔ v)
)

= Θ(1).

The upper bounds in Theorem 1 are established by exploiting the well known relation between
effective resistance and energy dissipated by network flows. The two results in this theorem
are very closely related but do not directly imply each other as |V (C)|, the size of the center
component, is a random variable that is not independent from the resistances.

Our construction of low energy flows relies on a tiling of the hyperbolic plane. In this
regard, it bears some similarity to how various authors have obtained estimates of the size of
the giant and upper bounds on the diameter of the HRG [64]. However, when constructing a
desirable flow one often needs multiple paths (as opposed to just one when bounding the
diameter) or else the energy dissipated by the flow could be too large to get a tight bound
on the effective resistance. Abdullah et al. [1] showed that hyperbolic random graphs of
expected size Θ(n) have typical distances of length Θ(log log n) (within the same component),
in contrast we show that typical resistances are Θ(1). The diameter of the HRG when
1
2 < α < 1 was only recently determined precisely [64], though the lower bound, non-tight
upper bounds, and the diameter for other values of α, were established earlier [46, 33]. The
tight O(log n) upper bound for the diameter of the giant of the HRG when 1

2 < α < 1 [64]
was proved using a coupling with the Fountoulakis-Müller upper half-plane HRG model [30]
and is also based in a tiling-construction. The tiling on which we rely to construct flows is
closely related to the Fountoulakis-Müller tiling of the half-plane model. In fact, our tiling is
approximately equal to the latter (see the discussion in the last paragraph of the detailed
description of our tiling in Secton 3.1).

The target time t⊙(G) of a graph G (also known as Kemeny’s constant) is the expected
time for a random walk to travel between two vertices chosen independently from the
stationary distribution π, see Section 2.4. When considering a random walk on a graph, the
stationary distribution is arguably the most natural measure on the vertices. Thus the target
time should be considered as the “average” hitting time. We show that on the giant of the
HRG this notion of average hitting time is of order n in expectation.

▶ Theorem 2. For any 1
2 < α < 1 and ν > 0, if C := Cα,ν(n), then E

(
t⊙(C)

)
= Θ(n).

The hitting time of a vertex v from a vertex u in a graph G is the expected time it take a
random walk started from u to first visit v. Let thit(G) denote the maximum hitting time,
this is the maximum over all pairs of vertices u, v in V (G) of the hitting time of u from v.
We let the cover time tcov(G) be the expected time for the walk to visit all vertices of G

(taken from a worst case start vertex), see Section 2.4. We show that both of these quantities
concentrate on the giant of the HRG.

APPROX/RANDOM 2022



30:4 Cover and Hitting Times of Hyperbolic Random Graphs

▶ Theorem 3. For any 1
2 < α < 1 and ν > 0, if C := Cα,ν(n), then a.a.s. and in expectation

thit(C) = Θ(n log n) and tcov(C) = Θ(n log2 n).

The result above also establishes that the maximum resistance between two vertices of the
giant is Θ(log n) a.a.s., compared to Θ(1) for a typical pair by Theorem 1. This discrepancy
between the maximum and the average resistances is also seen in graph distances in the
giant, as the maximum and average distances are Θ(log n) [64] and Θ(log log n) [1] a.a.s.,
respectively. Interestingly, there are enough (polynomially many) pairs of vertices with
resistance matching the maximum to ensure that the cover time is a factor Θ(log2 n) larger
than the average hitting time, many random graphs (e.g., connected Erdős-Rényi, preferential
attachment) are expanders and do not have this feature.

Stating additional contributions of this paper, as well as providing more detail about
those already stated, requires a bit more terminology and notation, which we introduce below
after discussing the related literature.

1.2 Further Related Work and Our Techniques
Over the last two decades, the cover time of many random graph models has been determined.
These networks include the binomial random graph [20, 22], random geometric graph [23],
preferential attachment model [21], configuration model [25], random digraphs [24] and the
binomial random intersection graph [10]. These results were all proven using Cooper and
Frieze’s first visit lemma, see the aforementioned papers or [62]. This result is based on
expressing the probability that a vertex has been visited up-to a given time by a function of the
return probabilities. One (simplified) condition required to easily apply the first visit lemma
is that trel · maxv∈V π(v) = o(1), where π is the stationary distribution and trel(G) := 1

1−λ2
is

the relaxation time of G, and λ2 is the second-largest eigenvalue of the transition matrix of the
(lazy) random walk on G. However, inserting the best known bounds on trel and maxv∈V π(v)
for the HRG, by [47] and [37] respectively, gives trel ·maxv∈V π(v) ⩽ (n2α−1 log n) ·n 1

2α −1+o(1)

which is not o(1) for any 1
2 ⩽ α ⩽ 1.

Another key ingredient of the first visit lemma is good bounds on the expected number
of returns to a vertex before the walk mixes, i.e.

∑tmix
t=0 P t

v,v where P t
x,y is the probability

a (lazy) random walk from x is at vertex y after exactly t steps. Obtaining such bounds
in the HRG appears challenging due to the large mixing time and irregular local structure
of the HRG. This also effects arguably the most natural approach to obtaining bounds
on the average hitting time, that is applying the formula π(v)Eπ[τv] =

∑∞
t=0[P t

v,v − π(v)],
see [3, Lemma 2.11], as this involves the same sum (which only needs to be considered up to
relaxation/mixing time).

Given the perceived difficulty in determining the cover time using the return probabilities
as described above, the approach taken in this paper is to determine the hitting and cover
times via the effective resistances {R (u ↔ v)}u,v∈V . There is an intimate connection between
reversible Markov chains and electrical networks as certain quantities in each setting are
determined by the same harmonic equations. Classically this connection has been exploited to
determine whether random walks on infinite graphs are transient or recurrent [60, Chapter 2],
and more recently the effective resistance metric has been understood to relate the blanket
times of random walks on finite graphs to the Gaussian free field [28]. The main connection
we shall use is that the commute time (sum of hitting times in either direction) between
two vertices is equal to the number of edges times the effective resistance between the two
points [16, 71]. This result has been used to bound hitting and cover times in several random
graph models, notably in the binomial random graph [41, 70] and the geometric random
graph [7]. Luxburg et al. [72] recently refined a previous bound of Lovász [59] to give



M. Kiwi, M. Schepers, and J. Sylvester 30:5

∣∣∣∣R (u ↔ v) − 1
d(u) − 1

d(v)

∣∣∣∣ ⩽ trel + 2
dmin

(
1

d(u) + 1
d(v)

)
, (1)

for any non-bipartite graph G and u, v ∈ V (G), where d(v) is the degree of the vertex v and
dmin = minv∈V d(v) is the minimum degree. For the HRG with parameter 1

2 < α < 1, with
high probability, trel ⩾ n2α−1/(log n)1+o(1) [47] and the average degree is constant - thus (1)
does not give a good bound.

Since their introduction in 2010 [52], hyperbolic random graphs have been studied by
various authors. Apart from the results already mentioned (power-law degree distribution,
short graph distances, strong clustering, giant component, spectral gap and diameter),
connectivity was investigated by Bode et al. [12]. Further results exist on the number
of k-cliques and the clique number [32], the existence of perfect matchings and Hamilton
cycles [29], the tree-width [9] and sub-tree counts [65]. Two models, commonly considered
closely related to the hyperbolic random graphs, are scale-free percolation [27] and geometric
inhomogeneous random graphs [14].

Few random processes on HRGs have been rigorously studied. Among the notable
exceptions is the work by Linker et al. [58] which studies the contact processes in the HRG
model, bootstrap percolation by Candellero and Fountoulakis [15] and Marshall et al. [63],
and, for geometric inhomogeneous random graphs, by Koch and Lengler [50]. Komjáthy and
Lodewijks [51] studied first passage percolation on scale free spatial network models.

To the best of our knowledge, the only work that explicitly studies random walks that
deals with (a more general model of) HRGs is the work by Cipriani and Salvi [19] on mixing
time of scale-free percolation. However, some aspects of simple random walks have been
analyzed on infinite versions of HRGs. Specifically, Heydenreich et al. study transience
and recurrence of random walks in the scale-free percolation model [39] (also known as
heterogeneous long-range percolation) which is a “lattice” version of the HRG model. For
similar investigations, but for more general graphs on Poisson point processes, see [36].
Additionally, the first author, Linker, and Mitsche [45] have studied a dynamic variant of the
HRG generated by stationary Brownian motions.

2 Preliminaries

In this section we introduce notation, define some objects and terms we will be working
with, and collect, for future reference, some known results concerning them. We adopt some
conventions in Section 2.1, we recall a large deviations bound in Section 2.2, then we formally
define the HRG model in Section 2.3, we discuss random walks in Section 2.4 and electrical
networks in Section 2.5.

2.1 Conventions
Throughout, we use standard notions and notation concerning the asymptotic behavior of
sequences. If (an)n∈N, (bn)n∈N are two sequences of real numbers, we write an = O(bn) to
denote that for some constant C > 0 and n0 ∈ N it holds that |an| ⩽ C|bn| for all n ⩾ n0.
Also, we write an = Ω(bn) if bn = O(an), and an = Θ(bn) if an = O(bn) and an = Ω(bn).

Unless stated otherwise, all asymptotics are as n → ∞ and all other parameters are
assumed fixed. Expressions given in terms of other variables that depend on n, for ex-
ample O(R), are still asymptotics with respect to n. As we are interested in asymptotics,
we only claim and prove inequalities for n sufficiently large. So, for simplicity, we always
assume n sufficiently large. For example, we may write n2 > 5n without requiring n > 5.

APPROX/RANDOM 2022



30:6 Cover and Hitting Times of Hyperbolic Random Graphs

An event, more precisely a family of events parameterized by n ∈ N, is said to hold with
high probability (w.h.p.), if for every c > 0 the event holds with probability at least 1−O(n−c).

We shall follow standard notation, such as denoting the vertex and edge sets of G

by V (G) and E(G), respectively. We use dG(u, v) to denote the graph distance between two
vertices u, v ∈ V (G), let N(v) := {u ∈ V | dG(u, v) = 1} denote the neighbourhood of a
vertex, and let d(v) := |N(v)|.

2.2 Poisson Random Variables
We will be working with a Poissonized model, where the number of points within a given
region is Poisson-distributed. Thus, we will need some elementary results for Poisson random
variable. The first is a (Chernoff) large deviation bound.

▶ Lemma 4. Let P have a Poisson distribution with mean µ. The following holds
(i) P(P ⩽ 1

2 µ) ⩽ e− 1
8 µ.

(ii) If δ ⩾ e
3
2 , then P(P ⩾ δµ) ⩽ e− 1

2 δµ.

Several times, when bounding various expectations, we use the following crude but useful
bound on the raw moments of Poisson random variables.

▶ Lemma 5. Let X be a Poisson random variable with mean µ. Then, for any real κ ⩾ 1,
we have E(Xκ) ⩽ µκ ·

(
40 · min

{
κ

5µ , 1
})κ

.

2.3 The HRG model
We represent the hyperbolic plane (of constant Gaussian curvature −1), denoted H2, by points
in R2. Elements of H2 are referred to by the polar coordinates (r, θ) of their representation as
points in R2. The point with coordinates (0, 0) will be called the origin of H2 and denoted O.
When alluding to a point u ∈ H2 we denote its polar coordinates by (ru, θu). The hyperbolic
distance dH2(u, v) between two points u, v ∈ H2 is determined via the Hyperbolic Law of
Cosines as the unique solution of

cosh dH2(u, v) = cosh ru cosh rv − sinh ru sinh rv cos(θu − θv).

In particular, the hyperbolic distance between the origin and a point u ∈ H2 equals ru. For
a point p ∈ H2 the ball of radius ρ > 0 centered at p will be denoted Bp(ρ), i.e.,

Bp(ρ) := {q ∈ H2 | dH2(p, q) < ρ}.

We will work in the Poissonized version of the HRG model which we describe next. For
a positive integer n and positive constant ν we consider a Poisson point process on the
hyperbolic disk centered at the origin O and of radius R := 2 ln(n/ν). The intensity function
at polar coordinates (r, θ) for 0 ⩽ r < R and θ ∈ R equals

λ(r, θ) := νe
R
2 f(r, θ) = nf(r, θ) (2)

where f(r, θ) is the joint density function of independent random variables θ and r, with θ

chosen uniformly at random in [0, 2π) and r chosen according to the following density
function:

f(r) := α sinh(αr)
cosh(αR) − 1 · 1[0,R)(r) where 1[0,R)(·) is the indicator of [0, R).



M. Kiwi, M. Schepers, and J. Sylvester 30:7

Figure 1 Instances of Gα,ν(n) for n = 100, ν ≈ 1.832, α = 0.6 (left) and α = 0.9 (right).

The parameter α > 0 controls the distribution: For α = 1, the distribution is uniform in H2,
for smaller values the vertices are distributed more towards the center of BO(R) and for
bigger values more towards the border. (See Figure 1 for an illustration of instances of Gα,ν(n)
for two distinct values of α.)

We shall need the following useful approximation to the density f(·).

▶ Lemma 6 ([33, Equation (3)]). f(r) = αe−α(R−r) · (1 + Θ(e−αR + e−2αr)) · 1[0,R)(r).

We denote the point set of the Poisson process by V and we identify elements of V with
the vertices of a graph whose edge set E is the collection of vertex pairs uv such that
dH2(u, v) < R. The probability space over graphs (V, E) thus generated is denoted by Gα,ν(n)
and referred to as the HRG. Note in particular that E|V | = n since∫

BO(R)
λ(r, θ) dθdr = νe

R
2

∫ ∞

0
f(r) dr = n.

The parameter ν controls the average degree of Gα,ν(n) which, for α > 1
2 , is (1+o(1)) 2α2ν

(α−1/2)2

(see [37, Theorem 2.3]).
The Hyperbolic Law of Cosines turns out to be complicated to work with when computing

distances in hyperbolic space. Instead, it is more convenient to consider the maximum
angle θR(ru, rv) that two points u, v ∈ BO(R) can form with the origin O and still be within
(hyperbolic) distance at most R provided u and v are at distance ru and rv from the origin,
respectively.
▶ Remark 7. Replacing in (7) the terms dH2(u, v) by R and θu − θv by θR(ru, rv), taking
partial derivatives on both sides with respect to ru and some basic arithmetic gives that
the mapping ru 7→ θR(ru, rv) is continuous and strictly decreasing in the interval [0, R).
Since θR(ru, rv) = θR(rv, ru), the same is true of the mapping rv 7→ θR(ru, rv). (See [48,
Remark 2.1] for additional details.)
The following estimate of θR(r, r′), due to Gugelmann, Panagiotou and Peter is very useful
and accurate (especially when R − (r + r′) goes to infinity with n).

▶ Lemma 8 ([37, Lemma 6]). If 0 ⩽ r ⩽ R and r + r′ ⩾ R, then θR(r, r′) = 2e
1
2 (R−r−r′)(1 +

Θ(eR−r−r′)).

APPROX/RANDOM 2022



30:8 Cover and Hitting Times of Hyperbolic Random Graphs

We will need estimates for measures of regions of the hyperbolic plane, and specifically
for the measure of balls. We denote by µ(S) the measure of a set S ⊆ H2, i.e., µ(S) :=∫

S
f(r, θ) drdθ. The following approximation of the measures of the ball of radius ρ centered

at the origin and the ball of radius R centered at p ∈ BO(R), both also due to Gugelmann
et al., will be used frequently in our analysis.

▶ Lemma 9 ([37, Lemma 7]). For α > 1
2 , p ∈ BO(R) and 0 ⩽ r ⩽ R we have

µ(BO(r)) = e−α(R−r)(1 + o(1)),

µ(Bp(R) ∩ BO(R)) = 2αe− 1
2 rp

π(α − 1
2 )

(
1 + O(e−(α− 1

2 )rp + e−rp)
)
.

Next, we state a result that is implicit in [11] (later refined in [30]) concerning the size
and the “geometric location” of the giant component of Gα,ν(n). First, observe that the set
of vertices of Gα,ν(n) that are inside BO(R

2 ) are within distance at most R of each other.
Hence, they form a clique and in particular belong to the same connected component. The
graph induced by the connected component of Gα,ν(n) to which the vertices in BO( R

2 ) belong
will be referred to as the center component of Gα,ν(n).

▶ Theorem 10 ([11, Theorem 1.4],[48, Theorem 1.1]). If 1
2 < α < 1, then a.a.s. the center

component of Gα,ν(n) has size Θ(n) and all other connected components of Gα,ν(n) are of
size polylogarithmic in n.

The previous result partly explains why we focus our attention on simple random walks
in the center component of Gα,ν(n). In the following remark we justify formally why we,
henceforth, consider both the giant and the center component as being the same component,
and consequently denote both of them by Cα,ν(n).
▶ Remark 11. Let Sn be the event that the giant (the largest component) is equal to the center
component, then P(Sn) = 1 − e−Ω(n) by [11]. It follows immediately that all of our results
holding a.a.s. for the center component also hold for the giant component. For statements of
the form E(X(C)), where X(G) is a function of a graph satisfying 1 ⩽ X(G) ⩽ |V (G)|κ for
some fixed κ > 0, for example (non-trivial) cover/hitting times, the results also carry over.
That is, if C′ is the giant of the HRG then E(X(C′)) = (1 + o(1))E(X(C)). To see this, since
E(|V (G)|κ) = O(nκ) by Lemma 5, we have the following by Cauchy–Schwartz,

E(X(C′)) = E(X(C′)1Sn
)+

√
E|V (C′)|2κ · P(Sc

n) ⩽ E(X(C))+nκe−Ω(n) = (1+o(1))E(X(C)).

This also holds with the roles of C′ and C reversed, giving the result.
The condition α > 1

2 guarantees that Gα,ν(n) has constant average degree depending
on α and ν only [37, Theorem 2.3]. If on the contrary α ⩽ 1

2 , then the average degree
grows with n. If α > 1, the largest component of Gα,ν(n) is sublinear in n [11, Theorem 1.4].
For α = 1 whether the largest component is of size linear in n depends on ν [11, Theorem 1.5].
Hence, the parameter range where 1

2 < α < 1 is where HRGs are always sparse, exhibit
power law degree distribution with exponent between 2 and 3 and the giant component
is, a.a.s., unique and of linear size. All these are characteristics ascribed to so called “social”
or “complex networks” which HRGs purport to model. Our main motivation is to contribute
to understand processes that take place in complex networks, many of which, as already
discussed in the introduction, either involve or are related to simple random walks on such
networks. Thus, we restrict our study exclusively to the case where 1

2 < α < 1, but in order
to avoid excessive repetition, we omit this condition from the statements we establish.

The last known property of HRGs that we recall is that, w.h.p. the center component
has a linear in n number of edges.
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▶ Lemma 12 ([47, Lemma 15]). For 1
2 < α < 1, w.h.p. |E(Cα,ν(n))| is O(n).

To conclude this section we point out that everything we do throughout this paper can be
easily adapted to the case where H2 has Gaussian curvature −η2 instead of −1 and all stated
results hold provided α is replaced by α/η everywhere.

2.4 Random Walks
The simple random walk (Xt)t⩾0 on a graph G = (V, E) is a discrete time random process
on V which at each time moves to a neighbour of the current vertex u ∈ V uniformly with
probability 1/d(u). We use P (·) := PG (·) to denote the law of the random walk on a
graph G (as opposed to P for the random graph). For a probability distribution µ on V we
let PG

µ ( · ) := PG( · | X0 ∼ µ ) be the conditional probability of the walk on G started from
a vertex sampled from µ. In the case where the walk starts from a single vertex u ∈ V we
write u instead of µ, for example EG

u ( · ) := EG( · | X0 = u ). We shall drop the superscript G

when the graph is clear from the context. We now define the cover time tcov(G) of G by

tcov(G) := max
u∈V

EG
u ( τcov ) , where τcov := inf

{
t ⩾ 0 :

t⋃
i=0

{Xi} = V (G)
}

.

Similarly, for u, v ∈ V we let Eu( τv ), where τv := inf{t ⩾ 0 | Xt = v}, be the hitting time
of v from u. We shall use π to denote the stationary distribution of a single random walk on
a connected graph G, given by π(v) := d(v)

2|E| for v ∈ V . Let

thit(G) := max
u,v∈V

EG
u ( τv ) , and t⊙(G) :=

∑
u,v∈V (G)

EG
u ( τv ) π(u)π(v),

denote the maximum hitting time and the target time, respectively. We define each of these
times to be 0 if G is either the empty graph or consists of just a single vertex. The target
time t⊙(G), also given by EG

π ( τπ ), is the expected time for a random walk to travel between
two vertices sampled independently from the stationary distribution [56, Section 10.2]. We
will consider the random walk on the center component C := Cα,ν(n) of the HRG and so each
of the expected stopping times tcov(C), thit(C) and t⊙(C) will in fact be random variables. We
shall also refer to Eu( τv ) + Ev( τu ) as the commute time between the vertices u, v.

2.5 Electrical Networks & Effective Resistance
An electrical network, N := (G, C), is a graph G and an assignment of conductances
C : E(G) → R+ to the edges of G. For an undirected graph G we define E⃗(G) :=
{x⃗y | xy ∈ E(G)} as the set of all possible oriented edges for which there is an edge in G.
For some S, T ⊆ V (G), a flow from S to T (or (S, T )-flow, for short) on N is a function
f : E⃗(G) → R satisfying f(x⃗y) = −f(y⃗x) for every xy ∈ E(G) as well as Kirchoff’s node law
for every vertex apart from those that belong to S and T , i.e.∑

u∈N(v)

f(u⃗v) = 0 for each v ∈ V \ (S ∪ T ).

A flow from S to T is called a unit flow if, in addition, its strength is 1, that is,∑
s∈S

∑
u∈N(s)

f(s⃗u) = 1.

APPROX/RANDOM 2022
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We say that the (S, T )-flow is balanced if∑
u∈N(s)

f(s⃗u) =
∑

u∈N(s′)

f(s⃗′u) and
∑

u∈N(t)

f(u⃗t) =
∑

u∈N(t′)

f(u⃗t′) for all s, s′ ∈ S and t, t′ ∈ T .

When S = {s} and T = {t} we write (s, t)-flow instead of ({s}, {t})-flow. Note that (s, t)-
flows are always balanced. Given two flows f and g on N := (G, C), we say that g can be
concatenated to f if f + g is a flow on N and for every oriented edge e⃗ ∈ E⃗ either f(e⃗) and
g(e⃗) are both 0, or they have opposite signs, so (f(e⃗) + g(e⃗))2 ⩽ (f(e⃗))2 + (g(e⃗))2.

For the network N := (G, C) and a flow f on N define the energy dissipated by f ,
denoted E(f), by

E(f) :=
∑

e∈E⃗(G)

f(e)2

2C(e) , (3)

For future reference, we state the following easily verified fact:
▷ Claim 13. Let N := (G, C) be an electrical network and S, M, T ⊆ V (G). If f and g are
balanced (S, M) and (M, T ) flows on N , respectively, and g can be concatenated to f , then
f + g is a balanced (S, T )-flow on N and E(f + g) ⩽ E(f) + E(g). Moreover, if f and g are
unit flows, so is f + g.

For S, T ⊆ V (G), the effective resistance between S and T , denoted RC (S ↔ T ), is

RC (S ↔ T ) := inf {E(f) | f is a unit flow from S to T} . (4)

The set of conductances C defines a reversible Markov chain [60, Chapter 2]. In this
paper we shall fix C(e) = 1 for all e ∈ E(G) as this corresponds to a simple random walk. In
this case, we write RG (S ↔ T ) (or R (S ↔ T ) if the graph is clear) instead of RC (S ↔ T ).
The following is well known.
▶ Proposition 14 ([56, Corollary 10.8]). The effective resistances form a metric space on any
graph, in particular they satisfy the triangle inequality.
Choosing a single shortest path P between any two vertices s, t (if one exists) in a network
(with C(e) = 1 for each e ∈ E) and routing a unit flow down the edges of P we obtain,
straight from the definition (4) of R (s ↔ t), the following basic but useful result.
▶ Lemma 15 ([16, Lemma 3.2]). For any graph G and s, t ∈ V (G), we have R (s ↔ t) ⩽
dG(s, t).

Another very useful tool is Rayleigh’s monotonicity law (RML).
▶ Theorem 16 (Rayleigh’s Monotonicity Law [56, Theorem 9.12]). Let {C(e)}e∈E and
{C ′(e)}e∈E be sets of conductances on the edges of the same graph G = (V, E). If C(e) ⩾ C ′(e)
for all e ∈ E, then

RC (S ↔ T ) ⩽ RC′ (S ↔ T ) for all S, T ⊆ V .

The Kirchhoff index K(G) of a graph G is the sum of resistances in the graph, that is

K(G) =
∑

u,v∈V (G)

R (u ↔ v) .

The Kirchhoff index has applications in mathematical chemistry, see [66] and citing papers.
The following result allows us to relate hitting times to effective resistance.

▶ Lemma 17 ([56, Proposition 10.6]). For any graph G and any pair of vertices u, v ∈ V (G)
we have

Eu( τv ) + Ev( τu ) = 2|E(G)| · R (u ↔ v) . (Commute time identity)
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3 Overview of the Proofs of the Main Results

Owing to space we give a brief (heavily abridged, non-rigorous) overview of the ideas used in
the proofs of the main theorems from Section 1.1. Proofs of all claims can be found in the
full version of this paper [49].

3.1 Theorems 1 & 2: Average Effective Resistance & Target Time
To control the resistance R (s ↔ t) between two vertices s and t of the center compon-
ent Cα,ν(n) we bound the energy dissipated by a carefully designed (s, t)-flow fs,t associated
to a tiling of the hyperbolic plane on which we overlay a forest-like structure. We shall first
describe the tiling, then the flow, before explaining how to bound the resistance from this
flow.

Tiling

We define a set of tiles {Ti,j}i,j⩾0 of the hyperbolic plane H2 centered around the origin O.
This tiling is spherical in nature (see Figure 2) and, roughly speaking, tile Ti,j is i tiles
from the origin (we say it is at level i) and it is the jth tile, at level i, when going clockwise
from a fixed ray emanating from O, at 0 degrees “north”. A region of H2 between two rays
emanating from the origin O will be called a sector, and refer to the angle of the sector as
the (smallest) angle between the two rays.

There will be a distinguished collection of tiles, called root tiles {T0,j}j∈N0 , corresponding
to the elements of the equipartition of BO( R

2 ) into N0 = Θ(1) sectors, hence each sector has
angle θ0 = 2π/N0. We then define three sequences Ni, θi and hi, for i ∈ N where Ni := 2iN0,
θi := 2π/Ni, and (very roughly speaking) h0 = R/2 and hi ≈ R/2 + i · ln 2. The rest of the
tiling is specified by setting Ti,j to be the region at distance between hi−1 and hi from O

that lies in the smallest sector between rays at angles θi · j and θi · (j + 1). Thus each sector
has central angle θi and there is a total of Ni = 2Ni−1 sectors for a given i, see Figure 2.

We say that Ti,j is the parent tile of both Ti+1,2j and Ti+1,2j+1 and refer to the latter
two tiles as children of tile Ti,j (root tiles are assumed to be their own parent). For a tile Ti,j

we refer to the tiles of height i′ ⩽ i that intersect a ray from O that passes though Ti,j as
the ancestors of Ti,j . A tile T will be said to be a descendant of another tile T ′ if the latter
is an ancestor of the former. Given a tile Ti,j let {T 0

i,j , T 1
i,j} be the “natural” equipartition

of Ti,j into two tiles along a ray from O though the center of Ti,j . We refer to T 0
i,j , T 1

i,j as
the half-tiles of Ti,j and say T 0

i,j is the twin of T 1
i,j , and vice versa. Given a tile T we call

H the parent half-tile of T if it is a half-tile of the parent of T and a line segment from the
origin to any point in the interior of T intersects H.

Recall that two points at distance at most R are connected by an edge of Gα,ν(n). The
sequences Ni, θi and hi are chosen in such a way so that the tiling satisfies the following two
properties.

(i) Two points in a given tile are within distance at most R of each other.
(ii) Any point in a tile is within distance at most R from any point in its parent half-tile.

These two properties allow us too describe a flow based on how it moves between blocks,
rather than getting bogged down with specific vertices.

Comparison with a Tiling Due To Fountoulakis and Müller [30]

In this article we work in the so called Gans model [34] or native model [52] of hyperbolic
space, in contrast to [30] where the Poincaré half-plane model is used. Although the two
tilings are approximately equal, ours is a partition of R2 instead of the half-plane, i.e., each
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O

R

ρ

t

s

Figure 2 (a) Partial illustration of a tiling of BO(R) (not at scale). (b) Depiction of flow between
vertices s and t with no common ancestor tile. Coloured regions contain vertices through which flow
from s to t is routed. Flow is pushed radially towards the origin O from a yellow shaded tile to its
parent half-tile. Flow is pushed in an angular direction from dark to light yellow shaded half-tiles.
The direction of flow is reversed in green shaded region.

tiling partitions the set used to represent hyperbolic space. Since both representations are
alternative models of H2, both tilings can be cast in one or the other. Doing so, one gets that
the similarity of both tilings increases the further towards infinity their tiles are, i.e., further
from the origin in the Gans model and closer to the half-plane boundary in the Poincaré
half-plane model. For points close to the origin in the former or far from the boundary in
the latter representation, both tilings differ significantly, although this is irrelevant for the
analyses performed either here or in [30, 64]. However, working with our tiling avoids having
to perform, as in [30], a coupling between the HRG and a point process in the half-plane
and also avoids some of the approximations incurred by working with the idealized model
of Müller and Staps [64]. We believe this explains why we can guarantee that most of our
results hold with probability 1 − O(n−c) for all c > 0 instead of the same probability but
just for some c > 0.

Definition of the Flow

We now sketch the construction of our unit (s, t)-flow, between two distinct vertices s and t of
Gα,ν(n). The energy dissipated by this flow yields bounds on the effective resistance between
s and t.

The flow fs,t is built up as a sum of five separate flows, that is

fs,t := fs + f t
s + fs,t + fs

t + ft. (5)



M. Kiwi, M. Schepers, and J. Sylvester 30:13

The rough idea is to find the tile T that is a common ancestor of s and t at furthest distance
from O and create flows to this tile from s, and from this tile to t. If s and t have no
common ancestor then the flows meet up in the center BO( R

2 ) (which is a clique), with the
centre essentially taking the place of T . The first term fs in (5) spreads flow from s evenly
across the half-tile it is contained in, likewise ft collects flow from vertices in the half-tile
containing t and sends it to t. The term f t

s moves flow towards the centre by first moving flow
from the current half-tile to its twin, then from the current (full) tile to its parent half-tile,
and repeating like this until reaching the half-tile of the common ancestor (or a root half-tile
in the center BO( R

2 )). The term f t
s does the same in reverse, taking flow out from the center

to t, see the yellow and green parts of Figure 2 for an illustration. Finally the term fs,t

moves the flow from the half-tile in the common ancestor in the ray that intersects s to its
twin (or across root tiles), this flow is zero if s and t lie in a ray from O.

The main ideas of this construction are that it spreads the flow over as evenly as possible
over the vertices in each tile. Its modular construction also makes it easy to analyse,
in particular when bounding the energy dissipated. One can show that if each half-tile
encountered in the above sketched construction of fs,t is non-empty, then fs,t indeed gives a
valid (s, t)-flow. Moreover, since this flow is balanced and the parts can be concatenated, we
have

E(fs,t) ⩽ E(fs) + E(f t
s) + E(fs,t) + E(fs

t ) + E(ft).

Validity and Energy of the Flow

At this juncture we turn our attention to determining conditions under which fs,t exists
(i.e., every tile contains a vertex), and more importantly is a good flow in the sense that
it dissipates a small amount of energy. Clearly, the larger the number of vertices in each
half-tile, the smaller the energy dissipated by the flow.

We say that a half-tile H is sparse if the number of vertices it contains is fewer than half
the ones expected, i.e., if |V ∩ H| < 1

2E|V ∩ H|. We say that a tile T is faulty if either one of
its two associated half-tiles is sparse. For C > 0 a large constant to be determined, let

ρ := R −
ln(C R

ν )
1 − α

. (6)

Using standard arguments concerning Poisson point processes we argue that,

w.h.p., none of the tiles T contained in BO(ρ) are faulty. (7)

We say that a tile T is robust if none of its ancestors (including itself) is faulty. Thus, (7)
implies that w.h.p. every tile T contained in BO(ρ) is robust. The condition T ⊆ BO(ρ)
cannot be relaxed significantly, so we will have to settle for a weaker statement. For C ′ > 0,
let

ρ′ := R −
ln( 2C′

ν )
1 − α

. (8)

Thus some points in BO(ρ′) are only a constant distance from the boundary. We show that

a tile contained in BO(ρ′) has at least a constant probability of being robust. (9)

We finally establish the following:

if s and t belong to robust tiles then fs,t is a unit (s, t)-flow and E(fs,t) = O(1). (10)
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Bounding Average Resistance and Target Time

Together, (9) and (10) show that a constant fraction of pairs of points in BO(ρ′) have
bounded resistance between them. We are yet far from done, as a significant fraction of
the vertices of the giant component of G := Gα,ν(n) fall outside the ball BO(ρ′). For any
vertex w ∈ V (G) let Υ(w) be the smallest sector containing w whose closure contains vertices
in V (G) ∩ (BO(ρ′) \ BO(ρ′ − ln 2)) both clockwise and anti-clockwise of w that reside in
robust tiles. We then prove the following.

Let w be a vertex in the giant and w′ ∈ V (G) ∩ BO(ρ′) be a robust vertex which
is closest (in graph distance) to w. Then, d(w, w′) ⩽ 1 + |V (G) ∩ Υ(w)|.

(11)

By the triangle inequality (as R (· ↔ ·) is a metric), and (11) and (10), for any s, t in the
giant

R (s ↔ t) ⩽ |V (G) ∩ Υ(s)| + |V (G) ∩ Υ(t)| + O(1). (12)

Armed with (12) we can now bound the resistance between s and t by bounding the number
of vertices in the smallest sectors containing s and t defined by rays through robust vertices.
We prove some further (more technical) results in the spirit of (9) that give improved bounds
on the probability of a vertex being robust as a function of its location. Using these bounds,
together with some elaborate arguments discussed in the full version of this article [49], for a
vertex w ∈ V (G) \ BO(ρ) we can bounds the tails of |V (G) ∩ Υ(w)| by a stretched exponential
function. That is, roughly speaking, we can show that there exists constants κ1, κ2 > 0 such
that for any w ∈ V (G) \ BO(ρ) and p ∈ N \ {0},

P (|V (G) ∩ Υ(w)| ⩾ κ1 · 2p) ⩽ exp
(

− 2κ2·p)
. (13)

Applying the Campbell-Mecke formula [55, Theorem 4.4], a powerful tool from point process
theory expressing expectations of functions of point processes as integrals of their mean
measure, with (13) we show that E(

∑
w∈V (G)\BO(ρ) |V (G) ∩ Υ(w)|κ) = O(n) for any fixed

real κ ⩾ 1. Taking κ = 1 now gives Theorem 1. With some additional effort and a bound on
the raw moments of degrees in the HRG we can also prove Theorem 2 using the commute
time identity and Hölders inequality.

3.2 Theorem 3: Max Hitting and Cover Times
Due to the well known bound Ex[τy] ⩽ d(x, y) · 2|E|, we obtain thit = O(n log n) since
a.a.s. the diameter is Θ(log n) and there are Θ(n) many edges. A bound of O(n log2 n) on
the cover time then follows from Matthews bound.

The lower bounds are significantly more demanding and the basic Matthews lower bound
gives a bound on the cover time that is a polynomial factor off the upper bound. We establish
the following result which is implicit in [46]:

w.h.p. there are nΩ(1) maximal dangling paths of length at least Ω(ln n) in Cα,ν(n), (14)

and since the resistance between any pair of endpoints of the paths in (14) is Ω(log n), we
deduce that the commute time is Ω(n log n). A refinement of Matthews bound due to Kahn,
Kim, Lovász and Vu [42, Theorem 1.3] then gives the desired bound on the cover time from
which the claimed lower bound on the hitting time immediately follows.
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4 Concluding remarks

In this paper we determined the expected order of the maximum hitting time, cover time,
target time and effective resistance between two uniform vertices, with the first two results
also holding a.a.s. (w.r.t. the HRG). Our main finding to take away is that (in expectation)
there are order log n gaps between each of the quantities. This indicates that most vertices in
the giant are well-connected to the center of the graph, but a significant proportion are not.

We restricted our study to the giant component of the graph in the regime 1
2 < α < 1,

although this is arguably the most interesting regime it would still be interesting to determine
the aforementioned quantities on the other smaller components or when α /∈ ( 1

2 , 1). Another
problem we leave open is to discover the leading constants hidden behind our asymptotic
notation, if the expression for the clustering coefficient of the HRG [31] is anything to go by
these constants may have very rich and complex expressions as functions of α and ν. An
interesting problem is to determine the order of meeting time, that is, the expected time it
takes two (lazy) random walks to occupy the same vertex when started from the worst case
start vertices [43]. Finally, the mixing time of a (lazy) random walk on the giant HRG is
known up to polylogarithmic factors by [47]. Closing this gap is of great importance, but it
may well be quite challenging.
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