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—— Abstract

In a breakthrough work, Kawarabayashi and Thorup (J. ACM’19) gave a near-linear time de-
terministic algorithm to compute the weight of a minimum cut in a simple graph G = (V, E). A
key component of this algorithm is finding the (1 + €)-KT partition of G, the coarsest partition
{P1,..., Py} of V such that for every non-trivial (1 4 ¢)-near minimum cut with sides {S, S} it
holds that P; is contained in either S or S, for ¢ = 1,...,k. In this work we give a near-linear
time randomized algorithm to find the (1 4 €)-KT partition of a weighted graph. Our algorithm
is quite different from that of Kawarabayashi and Thorup and builds on Karger’s framework of
tree-respecting cuts (J. ACM’00).

We describe a number of applications of the algorithm. (i) The algorithm makes progress towards
a more efficient algorithm for constructing the polygon representation of the set of near-minimum
cuts in a graph. This is a generalization of the cactus representation, and was initially described
by Benczur (FOCS’95). (ii) We improve the time complexity of a recent quantum algorithm for
minimum cut in a simple graph in the adjacency list model from (5(n3/2) to 5(%), when the
graph has n vertices and m edges. (iii) We describe a new type of randomized algorithm for minimum
cut in simple graphs with complexity O(m + nlog® n). For graphs that are not too sparse, this
matches the complexity of the current best O(m+mnlog? n) algorithm which uses a different approach
based on random contractions.

The key technical contribution of our work is the following. Given a weighted graph G with m
edges and a spanning tree T" of G, consider the graph H whose nodes are the edges of 7', and where
there is an edge between two nodes of H iff the corresponding 2-respecting cut of 7" is a non-trivial
near-minimum cut of G. We give a (Q(Tnlog4 n) time deterministic algorithm to compute a spanning
forest of H.
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Finding the KT Partition of a Weighted Graph in Near-Linear Time

1 Introduction

Given a weighted and undirected graph G with n vertices and m edges!, the minimum cut
problem is to find the minimum weight A\(G) of a set of edges whose removal disconnects
G. When G is unweighted, this is simply the minimum number of edges whose removal
disconnects G, also known as the edge connectivity of G. The minimum cut problem is a
fundamental problem in theoretical computer science whose study goes back to at least the
1960s when the first polynomial time algorithm computing edge connectivity was given by
Gomory and Hu [12]. In the current state-of-the-art, there are near-linear time randomized
algorithms for the minimum cut problem in weighted graphs [9,15,21] and near-linear time
deterministic algorithms in the case of simple graphs? [14,18]. Very recently, Li [19] has given
an almost-linear time (i.e. time O(m'*°M)) deterministic algorithm for weighted graphs
as well.

The best known algorithms for weighted graphs all rely on a framework developed by
Karger [15] which, for an input graph G, relies on finding O(logn) spanning trees of G
such that with high probability one of these spanning trees will contain at most 2 edges
from a minimum cut of G. In this case the cut is said to 2-respect the tree. A key insight
of Karger is that, given a spanning tree T' of GG, the problem of finding a 2-respecting cut
of T that has minimum weight in G can be solved deterministically in near-linear time,
specifically time O(m log? n). After standing for 20 years, the bound for this minimum-weight
2-respecting cut problem was recently improved by Gawrychowski, Mozes, and Weimann [9],
who gave a deterministic O(mlogn) time algorithm, and independently by Mukhopadhyay
and Nanongkai [21] who gave a randomized algorithm with complexity O(m logn + nlog? n).

The best algorithms in the case of a simple graph G rely on a quite different approach,
pioneered by Kawarabayashi and Thorup [18]. This approach begins by finding the minimum
degree d of a vertex in GG. Then the question becomes if there is a non-trivial cut, i.e. a cut
where both sides of the corresponding bipartition have cardinality at least 2, whose weight is
less than d. This problem is solved by finding what we call the (1 + )-KT partition of the
graph. Let B (G) be the set of all bipartitions {S, S} of the vertex set corresponding to
non-trivial cuts whose weight is at most (1 + €)A(G). The (1 4 ¢€)-KT partition of G is the
coarsest partition {P, ..., Py} of the vertex set such that for any {S, S} € B**(G) it holds
that P; is contained in either S or S, for each i = 1,...,k. If one considers the multigraph
G’ formed from G by identifying vertices in the same set P;, then G’ preserves all non-trivial
(1 + &)-near minimum cuts of G. Kawarabayashi and Thorup further show that for any
€ < 1 the graph G’ only has (5(71) edges. This bound crucially uses that the original graph is
simple. The edge connectivity of G is thus the minimum of d and the edge connectivity of
G’. One can use Gabow’s deterministic O(Am’logn) edge connectivity algorithm [8] for a
multigraph with m’ edges and edge connectivity A to check in time 6(nd logn) = (5(m) if
the edge connectivity of G’ is less than d and, if so, compute it. In the most technical part of
their work, Kawarabayashi and Thorup give a deterministic algorithm to find the (14 ¢)-KT
partition of a simple graph G in time (5(m), giving an (5(m) time deterministic algorithm
overall for edge connectivity. The key tool in their algorithm is the PageRank algorithm,
which they use for finding low conductance cuts in the graph.

! Throughout this paper we will use n and m to denote the number of vertices and edges of the input
graph.

2 A simple graph is an unweighted graph with no self loops and at most one edge between any pair of
vertices.
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The KT partition has proven to be a very useful concept. Rubinstein, Schramm, and
Weinberg [23] also go through the (14¢)-KT partition to give a near-optimal 6(n) randomized
query algorithm determining the edge connectivity of a simple graph in the cut query model.
In the cut query model one can query a subset of the vertices S and receive in return the
number of edges with exactly one endpoint in S. En route to their result, [23] also improved
the bound on the number of inter-component edges in the (1 + £)-KT partition of a simple
graph to O(n), for any € < 1. In the case £ = 0 this was independently done by Lo, Schmidt,
and Thorup [20]. The KT partition approach is also used in the current best randomized

algorithm for edge connectivity, which runs in time O(min{m 4 nlog®n, mlogn}) [10].>

1.1 Main result

In this work we give the first near-linear time randomized algorithm to find the (1 + ¢)-KT
partition of a weighted graph, for 0 < e < 1/16. An interesting aspect of our algorithm is
that it uses Karger’s 2-respecting cut framework to find the (1 + €)-KT partition, thereby
combining the aforementioned major lines of work on the minimum cut problem.

We describe the result in more detail. Let G = (V, E, w) be a weighted graph, where E
is the set of edges and w : F — R assigns a positive weight to each edge. For a set S CV
let Ag(S) be the set of all edges of G with exactly one endpoint in S. A cut of G is a set of
edges of the form Ag(S) for some () # S C V. We call S and S the shores of the cut. Let
w(AG(S)) = X cen(s) wle). We use A(G) = mingscy w(A(S)) for the minimum weight of
a cut in G.

We will be interested in partitions of V' and the partial order on partitions induced by
refinement. For two partitions X',) of V we say that X <X )V iff for every X € X there
isaY € Y with X C Y. In this case we say X is a refinement of ). The meet of two
partitions X' and ), denoted X A )Y, is the partition Z such that Z < X, Z < Y and for
any other partition WV satisfying these two conditions W < Z. In other words, X A Y is the
greatest lower bound on X and Y under <. Explicitly, X A Y is the partition consisting
of all non-empty pairwise intersections between sets from X and ). For a set of partitions
D ={D,...,Dk} we write A\D=D; A---\Dg.

For our applications we need to consider not only minimum cuts, but also near-minimum
cuts. For £ > 0, let B.(G) = {{S, S} : w(Ag(S)) < (1+¢)A(G)} be the set of all bipartitions
of V corresponding to (1 + )-near minimum cuts. Let B2 (G) C B.(G) be the set of all the
non-trivial cuts in B.(G). The (1 + ¢)-KT partition of G is exactly A B2 (G).

Both A B.(G) and A B (G) are important sets for understanding the structure of (near)-
minimum cuts in a graph. Consider first A By(G), the meet of the set of all bipartitions
corresponding to minimum cuts. This set arises in the cactus decomposition of G [7], a
compact representation of all minimum cuts of G. A cactus is a connected multigraph where
every edge appears in exactly one cycle. The edge connectivity of a cactus is 2 and the
minimum cuts are obtained by removing any two edges from the same cycle. A cactus
decomposition of a graph G is a cactus H on O(n) vertices and a mapping ¢ : V(G) — V(H)
such that Ag(¢~1(9)) is a mincut of G iff Ay (S) is a mincut of H. The mapping ¢ does not
have to be injective, so multiple vertices of G can map to the same vertex of H. In this case,
however, the cactus decomposition property means that all vertices in ¢~({v}) must be on
the same side of every minimum cut of G, for every v € V(H). Thus as v ranges over V(H)

3 The bound quoted in [10] is O(m + nlog®n) but the improvement to Karger’s algorithm by [9] reduces
this to O(m + nlog?n).
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the sets ¢~ 1({v}) give the elements of A By(G) (note that ¢~1({v}) can also be empty). A
cactus decomposition of a weighted graph can be constructed by a randomized algorithm in
near-linear time [16], thus this also gives a near-linear time randomized algorithm to compute
A Bo(G).

Lo, Schmidt, and Thorup [20] give a version of the cactus decomposition that only
represents the non-trivial minimum cuts. In fact, they give a deterministic O(n) time
algorithm that converts a standard cactus into one representing the non-trivial minimum
cuts. Combining this with the near-linear time algorithm to compute a cactus decomposition,
this gives a near-linear time randomized algorithm to compute A Byt (G) as well.

The situation changes once we go to near-minimum cuts, which can no longer be rep-
resented by a cactus, but require the deformable polygon representation from [3-5]. This
construction is fairly intricate, and the best known randomized algorithm to construct a
deformable polygon representation of the (1+4¢)-near mincuts of a graph builds on the Karger-
Stein algorithm and takes time O(n?(1*+€)) [3, Section 6.3]. A prerequisite to constructing a
deformable polygon representation is being able to compute A B.(G) as, analogously to the
case of a cactus, these sets will be the “atoms” that label regions of the polygons.

Our main result in this work is to give a randomized algorithm to compute A B.(G) and
A B2 (G) in time O(mlog® n).

» Theorem 1. Let G = (V, E,w) be a graph with n vertices and m edges. For 0 <e < 1/16
let B. = {{S,S} : w(A(S)) < (1 +)NG)} and B C B. be the subset of B. containing only
non-trivial cuts. Both \ Be and )\ B™* can be computed with high probability by a randomized
algorithm with running time O(mlog® n).

In the rest of this paper, we focus on computing A\ B2¢. It is easy to construct A B. from
A\ Bt deterministically in O(n) time (see full version [1]).

1.2 Applications

By building on our KT partition algorithm, we make progress on a number of problems.

1. The polygon representation is a compact representation of the set of near-minimum cuts
of a weighted graph, originally described by Benczir [3,4] and Benczir-Goemans [5]. It
extends the cactus representation [7], which only works for the set of exact minimum
cuts, and has played a key role in recent breakthroughs on the traveling salesperson
problem [11,17]. For a general weighted graph the polygon representation has size O(n?),
and Benczir has given a randomized algorithm to construct a polygon representation of
the (1 + ¢)-near mincuts of a graph in time O(n?(1*+¢)) [3, Section 6.3] by building on
the Karger-Stein algorithm. It is an open question whether we can construct a polygon
representation in time 6(n2) for £ > 0. In his thesis [3, pg. 126], Bencztr says, “It already
seems hard to directly identify the system of atoms within the @(n2) time bound,” where
the system of atoms is defined analogously to the (1 + €)-KT partition but for the set of
all (14 €)-near minimum cuts, not just the non-trivial ones. One can easily construct the
set of atoms from a (1 + ¢)-KT partition, thus our KT partition algorithm gives a O(m)
time algorithm for this task as well, making progress on this open question.

2. The (1+¢)-KT partition of a weighted graph is exactly what is needed to give an optimal
quantum algorithm for minimum cut: Apers and Lee [2] showed that the quantum query
and time complexity of minimum cut in the adjacency matrix model is ©(n3/2,/7) for
a weighted graph where the ratio of the largest to smallest edge weights is 7, with the
algorithm proceeding by finding a (1 4 €)-KT partition.
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In the case where the graph is instead represented as an adjacency list, they gave
an algorithm with query complexity 5(\/77%) but whose running time is larger at
O(y/mn7 + n3/2). The bottleneck in the time complexity is the time taken to find a
(1 + ¢)-KT partition of a weighted graph with (5(71) edges. Using the near-linear time
randomized algorithm we give to find a (1 + €)-KT partition here improves the time
complexity of this algorithm to 6(%), matching the query complexity.

Both quantum algorithms also used the following observation [2, Lemma 2]: if in a
weighted graph G the ratio of the largest edge weight to the smallest is 7, then the total
weight of inter-component edges in a (1 4 ¢)-KT partition of G for € < 1 is O(7n), which
can be tight.

3. The best randomized algorithm to compute the edge connectivity of a simple graph is
the 2-out contraction approach of Ghaffari, Nowicki, and Thorup [10], which has running
time O(min{m +nlog®n,mlogn}). Using our algorithm to find a (1+¢)-KT partition in
a weighted graph we can follow Karger’s 2-respecting tree approach to compute the edge
connectivity of a simple graph in time O(m + nlog® n), thus also achieving the optimal
bound on graphs that are not too sparse.

A detailed treatment of these applications is deferred to the full version [1]. Apart from these

examples, we are hopeful that our near-optimal randomized algorithm for finding the KT

partition of a weighted graph will find further applications.

2 KT partition algorithm

We now give a more detailed treatment of our algorithm to compute the KT partition A B2t

The first obstacle we face is that the number of near-minimum cuts in G can be Q(n?), so
we cannot afford to consider all of them. An idea to get around this is to try the following:

1. Efficiently find a “small” subset B’ C B2* such that A B’ = A B2'. We call such a subset
a generating set.

A greedy argument shows that such a subset B’ exists of size at most n — 1. We initialize
B’ = {{S,S}} for some element {S, S} in B'*. We then iterate through the elements {T, T}
of B and add it to B’ iff AB'U{T, T} # A B'. Each bipartition added to B’ increases the
number of elements in A B’ by at least 1. As this size can be at most n, and begins with
size 2 the total number of sets at termination is at most n — 1. This shows that a small
generating set exists, but there still remains the problem of finding such a generating set
efficiently.

Assuming we get past the first obstacle, there remains a second obstacle. The most
straightforward algorithm to compute the meet of k partitions of a set of size n takes time
©(knlogn), which is again too slow if K = ©(n). Thus we will also need to

2. Exploit the structure of B’ to compute A B’ efficiently.

Apers and Lee [2] give an approach to accomplish (1) and (2) following Karger’s framework
of tree respecting cuts. Karger shows that in near-linear time one can compute a set of
K € O(logn) spanning trees T71,...,Tk of G such that every (1 + ¢)-near minimum cut of
G 2-tespects at least one of these trees. Let B; C B be the bipartitions corresponding to
non-trivial near-minimum cuts that 2-respect T;. To compute A B it suffices to compute
C; = \B; for each i = 1,..., K and then compute /\1K:1 C;. The latter can be done in time
O(nlog?n) by the aforementioned algorithm. This leaves the problem of computing A B;.

32:5
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A key observation from [2] gives a generating set B} for B; of size O(n). It is constructed
as follows. First we add bipartitions to B; that correspond to near-minimum cuts that
I-respect T;. This is a set of size O(n), and Karger has shown that all near-minimum cuts
that 1-respect a tree can be found in time O(m).

Next, we focus on the cuts that strictly 2-respect T;. There can be O(n?) such cuts. To
handle them one creates a graph H whose nodes are the edges of T; and where there is an
edge between nodes e and f iff the 2-respecting cut of T; defined by {e, f} is a near-minimum
cut in B;. Let F' be a spanning forest of H. We then add to B; the 2-respecting cuts indexed
by the edges in E(F). The resulting set B; has size O(n) and it follows from [2, Lemma
29]that the resuling B} is a generating set for B;.

Apers and Lee give a quantum algorithm to find a spanning forest of H with running time
O(n3/?). They then give a randomized algorithm to compute A B in time O(n). As our
main technical contribution, we give a deterministic algorithm to find a spanning forest of H
in time O(mlog® n). We also replace the randomization used in the algorithm to compute
A B, with an appropriate data structure to give an O(n) deterministic algorithm to compute
the meet. The details of this last procedure are deferred to the full version [1].

3 Spanning tree of near-minimum 2-respecting cuts in near-linear time

By the preceding discussion, we reduced the problem of constructing the KT partition to
that of finding a spanning forest in a new graph H. This graph is derived from the original
graph G and a given spanning forest T of G. Here we describe a deterministic near-linear
time algorithm for this task, which is our main technical contribution.

Before describing the spanning forest algorithm, it is interesting to compare the problem
of finding a spanning forest of H with the original problem solved by Karger of finding a
minimum-weight 2-respecting cut of 7. To find a spanning forest of H we potentially have
to find Q(n) many (1 + ¢)-near minimum cuts, which we accomplish with only an additional
logarithmic overhead in the running time. The first insight to how this might be possible
is to note that Karger’s original algorithm to find the minimum weight 2-respecting cut
actually does something stronger than needed. Let cost(e, f) be the weight of the 2-respecting
cut of T' defined by {e, f}. For every edge e of T" Karger’s algorithm attempts to find an
f* € argming cost(e, f). It does not always succeed in this task, but if the candidate 1!
returned for edge e is not such a minimizer, then for f* € argmin  cost(e, f) it must be the
case that the candidate g returned for f* satisfies cost(f*, g) < cost(e, f*). In this way, the
algorithm still succeeds to find a minimum weight 2-respecting cut in the end.

In contrast, we give an algorithm that for every edge e of T actually finds

f* € argmin{cost(e, f) : {e, f} defines a non-trivial cut} .
f

We then show that this suffices to implement a round of Bortivka’s spanning forest algorithm
[22] on H in near-linear time. Boruvka’s spanning forest algorithm consists of log n rounds
and maintains the invariant of having a partition {Si, ..., Sg} of the vertex set and a spanning
tree for each set S;. The algorithm terminates when there is no outgoing edge from any set
of the partition, at which point the collection of spanning trees for the sets of the partition is
a spanning forest of H. The sets of the partition are initialized to be individual nodes of H.

In each round of Borivka’s algorithm the goal is to find an outgoing edge from each
set S; of the partition which is not already a connected component. Consider a node e of
H with e € S;. We can find the best partner f for e and check if {e, f} indeed gives rise
to a non-trivial (1 4 €)-near minimum cut and so is an edge of H. The problem is that f
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could also be in S; in which case the edge {e, f} is not an outgoing edge of S; as desired.

To handle this, we maintain a data structure that allows us to find both the best partner f

for e, but also the best partner f’ for e that lies in a different set of the partition from f.

We call this operation a categorical top two query. If there actually is an edge of H with
one endpoint e and the other endpoint outside of S; then either {e, f} or {e, f’'} will be such
an edge. Following the approach of [9] to the minimum-weight 2-respecting cut problem,
combined with an efficient data structure for handling categorical top two queries, we are
able to do this for all nodes e of H in near-linear time, which allows us to implement a round
of Boriivka’s algorithm in near-linear time.

3.1 Spanning tree of near-minimum 2-respecting cuts in near-linear time

We give a more precise description of the algorithm after settling on some notation. Let
G = (V,E,w) be a weighted undirected graph. We will assume throughout that G is
connected, and in particular that m > n —1, as the KT partition of a disconnected graph can
be easily determined from its connected components. Let T' be a spanning tree of G. We will
choose an r € V' with degree 1 in T to be the root of T. We view T as a directed graph with
all edges directed away from r. With some abuse of notation, we will also use T to refer to
this directed version. If we remove any edge e € E(T) from T then T becomes disconnected
into two components. We use et C V to denote the set of vertices in the component not
containing the root, and T, C E(T) to denote the set of edges in the subtree rooted at the
head of e, i.e. the edges in the subgraph of T induced by e*. We further use the shorthand
cost(e) = w(A(et)) for the weight of the cut with shore e¥.

Two edges e, f € E(T) define a unique cut in G which we denote by cutr(e, f) (or
cut(e, f) if it is clear from the context which T" we are referring to). The cut depends on the
relationship between e and f. If e € T¢ or f € T, then we say that e and f are descendant
edges. Without loss of generality, say that f € T.. Then the cut defined by e and f is

cut(e, f) = A(et\ f+). If e and f are not descendant edges, then we say they are independent.

For independent edges we see that cut(e, f) = A(et U f+). In both cases we use cost(e, f) to
denote the weight of the corresponding cut.

In a KT partition we are only interested in non-trivial cuts. We first state the following
simple claim that characterizes when cut(e, f) is trivial, the proof of which is in the full
version [1].

» Proposition 2. Let G = (V,E,w) be a connected graph with n vertices and let T be a
spanning tree of G with root r. For e, f € E(T) if cut(e, f) is trivial then
1. If e, f are independent then they must be the unique edges incident to the root.
2. Ife, f are descendant then there is a verter v € V such that e is the edge incoming to v
and f is the unique edge outgoing from v, or vice versa.
By choosing a root r for T' that has degree 1 we avoid the case of item 1 of Proposition 2.
Thus we only have to worry about trivial cuts when e, f are descendant.
With that out of the way, we now turn to our main theorem, which is the key routine in
our (1+ ¢)-KT partition algorithm.

» Theorem 3. Let G = (V, E,w) be a connected graph with n vertices and m edges and let
T be a spanning tree of G. For a given parameter 3, define the graph H, with V(H) = E(T)
and E(H) = {{e,f} € BE(T)® : cost(e, f) < B and cut(e, f) non-trivial}. There is a
deterministic algorithm that given adjacency list access to G and T outputs a spanning forest
of H in O(mlog*n) time.
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We prove Theorem 3 by following Bortuvka’s algorithm to find a spanning forest of H.
Throughout the algorithm we maintain a subgraph F of H that is a forest, initialized to
be the empty graph on vertex set V(H) = E(T). At the end of the algorithm, F' will be a
spanning forest of H. The algorithm proceeds in rounds. In each round, for every tree in the
forest, we find an edge connecting it to another tree in the forest, if such an edge exists. If
H has k connected components, then in each round the number of trees in F' minus k goes
down by at least a factor of 2, and so the algorithm terminates in O(logn) rounds.

The main work is implementing a round of Bortivka’s algorithm. We will think of the
nodes of F' as having colors, where nodes in the same tree of the forest have the same color,
and nodes in distinct trees have distinct colors. The goal of a single round is to find, for
each color ¢, a pair of edges e, f € T such that ¢ = color(e) # color(f) and {e, f} € E(H),
or detect that there is no such pair with these properties, in which case the nodes colored ¢
in F already form a connected component of H. As we need to refer to such pairs often we
make the following definition.

» Definition 4 (partner). Let T and H be as in Theorem 3. Given an assignment of colors
to the edges of T we say that f is a partner for e if {e, f} € E(H) and color(e) # color(f).

We will actually do something stronger than what is required to implement a round of
Bortvka’s algorithm, which we encapsulate in the following code header.

Algorithm 1 RoundEdges.

Input: Adjacency list access to G, a spanning tree T' of G, a parameter 3, and an assignment
of colors to each e € E(T).

Output: For every e € E(T) output a partner f € E(T), or report that no partner for e
exists.

The implementation of RoundEdges is our main technical contribution. Let us first see
how to use RoundEdges to find a spanning forest of H.

» Lemma 5. Let G, T and H be as in Theorem 3. There is a deterministic algorithm that
makes O(logn) calls to RoundEdges and in O(nlogn) additional time outputs a spanning
forest of H.

Proof. We construct a spanning forest of H by maintaining a collection of trees F' that
will be updated in rounds by Bortvka’s algorithm until it becomes a spanning forest. We
initialize F' = (E(T),0) and give all e € F(T) distinct colors. We maintain the invariants
that F is a forest and that nodes in the same tree have the same color and those in different
trees have distinct colors.

Consider a generic round where F' contains g trees. We call RoundEdges with the current
color assignment. For every e which has one we obtain a partner f such that {e, f} € E(H)
and color(e) # color(f). For each color class ¢ we select one e with color(e) = ¢ which has a
returned partner (if it exists) and let X be the set of selected edges. We then find a maximal
subset of edges X’ C X that do not create a cycle among the color classes by computing a
spanning forest of the graph whose supervertices are given by the color classes and edges
given by X. We add the edges in X’ to F(F). Finally we merge the color classes of the
connected components in F' by appropriately updating the color assignments, and we pass
the updated forest and color assignments to the next round of the algorithm. Each of the
steps in a single round can be executed in O(n) time.
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We have that | X’| > (¢ — cc(H))/2 where cc(H) is the number of connected components
of H. Each edge from X’ added to F' decreases the number of trees in F' by one. Thus
q — cc(H) decreases by at least a factor of 2 in each round and the algorithm terminates
after O(logn) rounds. The time spent outside of the calls to RoundEdges is O(n) for each of
the O(logn) rounds. This is O(nlogn) overall. <

If a node e has a partner f, then {e, f} can either be a pair of descendant or independent
edges. To implement RoundEdges we will separately handle these cases, as described in the
next two subsections.

3.2 Descendant edges

We follow the approach from [9] originally designed to find a single pair {e, f} of descendant
edges that minimizes cost(e, f) over all e, f € E(T) in O(mlogn) time. Their approach
actually does something stronger (as does Karger’s original algorithm): for every e € E(T) it

finds the best match in the subtree T, i.e., it returns an edge f* € arg min{cost(e, f) | f € T.}.

In order to implement the descendant edge part of RoundEdges we have three additional

complications to handle:

1. The edge f* might have the same color as e.

2. The resulting cut(e, f*) might be a trivial cut.

3. Edge e may have no partner in T, but still have a partner f such that e € Ty. This
partnership may not be discovered when we are looking for partners of f if there is
another g € Ty with cost(f, g) < cost(e, f).

Item 1 can be easily solved by, in addition to finding f*, also finding g* €
argmin{cost(e, f) | f € E(T.), color(f) # color(f*)}. Phrasing things in this way, rather
than simply looking for the edge h with color different from e which minimizes cost(e, h),
helps to limit the dependence of the query on e and thus reduce the query time. If there is
an f € T, with color(f) # color(e) and cost(e, f) < 3 then at least one of f*, g* will satisfy
this too.

For item 2, we use the result of Proposition 2 that descendant edges that give rise to
trivial cuts have a very constrained structure. This allow us to avoid trivial cuts when looking
for a partner of e.

Item 3 is relatively subtle and does not arise in the minimum weight 2-respecting cut
problem. To explain the issue we have to first say something about the high level structure
of our implementation of RoundEdges. We will perform an Euler tour of 7" and, when the
tour visits edge e for the first time, we will look for a partner f for e in T,. The issue is the
following, which we explain in the context of the very first round of Boruvka’s algorithm
so we do not have to worry about nodes having different colors. Suppose that in the graph
H the only edge incident to node e is a node f with e € Ty. Thus in the execution of
RoundEdges we want to find f as a partner of e. When the Euler tour is at e we will not
find any suitable partner for e, as there is none in T,. We would like to identify f as a
partner for e when the Euler tour visits f for the first time. However, if there is a g € T
with cost(f,g) < cost(f,e) then the algorithm will return g as a partner of f rather than
e. To handle this we will actually make two passes over T'. In the first pass, when we visit
edge e for the first time we look for a partner f in T,. In the second pass, we handle the
case where the partner of e might be an ancestor of e. To do this we need to de-activate
nodes. When the Euler tour visits f for the first time, we first find the lowest cost partner
for f in Ty. We then de-activate this node, and again find the best active partner for f in
Ty. Repeating this process, we will eventually find e if {e, f} is indeed an edge of H and e, f
have different colors.
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Now we turn to more specific implementation details. A key idea in [9] is that we can do
an Euler tour of T" while maintaining a data structure such that when we first visit an edge
e we can easily look up cost(e, f) for any f € T,. The way this is maintained can be best
understood by noting that for f € Tp:

cost(e, f) = w(A(er \ fY)
= w(er\ 4 (e0) +wleh \ 4 1
= cost(e) + cost(f) — 2w(f*, (e*)°) , (1)

scoree (f)

where for convenience we defined score.(f) = cost(f) — 2w(f*, (e*)¢), where the superscript
c denotes taking the complement.

We begin the algorithm by computing cost(e) for every e € E(T), which can be done in
O(m) time [15]. We then do an Euler of T' while maintaining a data structure such that,
when we are considering e € E(T), for every f € T, the value of the data structure at
location f is cost(e, f). For f & T, this will not in general be the case.

As can be seen from Equation (1), the key to maintaining this data structure is how to
update the values w(f¥, (e*)¢) when we descend edge e. Consider the case where we are
currently at edge €’ = (z,x) and move to a descending edge e = (x,y). For two vertices u,v
let p(u,v) be the set of edges on the path from u to v in T, and let lca(u,v) be their lowest
common ancestor in T. For f € T, we see that

w(f*, (e)%) = w(f*, (eM)°) + > w({u,v}) . (2)

{u,v}eB
fep(u,v),lca(u,v)=x

By its definition in (1) we can compute score.(f) from score. (f) by subtracting 2w({u,v})
from for every {u,v} € E such that f € p(u,v) and lca(u,v) = z. We implement this step
for all f by looping over all {u,v} € FE with lca(u,v) = x. After this update we have that
cost(e, f) = cost(e) + score(f) for every f € T.. This shows how to descend down T while
keeping the invariant. The full tree is then explored by taking an Euler tour through T,
and whenever we go back up in the tree we revert the score updates. This allows us to find
candidate f € T, for every e € E(T). To bound the number of updates, note that each of
the m edges has a unique lca, and we only do an update corresponding to an edge when the
lca is visited by the Euler tour. Since the Euler tour visits every vertex at most twice, the
number of updates is at most 2m. In addition, the number of categorical top two queries is
n— 1.

The resulting algorithm is formalized in the full version [1], and it leads to the following
theorem.

» Theorem 6. Given an assignment e.color for each e € E(T), there is a deterministic
algorithm that runs in time O(m log2 n) and for each e finds an f such that

1. {e,f} € H

2.ecTyor fel,

3. e.color # f.color

if such an f exists.

3.3 Independent edges

The goal now is to find, for every edge e € E(T), a partner f € E(T) such that e, f are
independent, or decide that there is no such f. As we chose the root of T' to have degree 1,
by Proposition 2 we do not have to worry about trivial cuts in the independent edge case.
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Instead of considering all edges e € E(T') one-by-one, we first find a so-called heavy path
decomposition of T [13,24], which is a partition of the edges of T into heavy paths. We
define this partition recursively: first, find the heavy path starting at the root by repeatedly
descending to the child of the current node with the largest subtree. This creates the topmost

heavy path starting at the root (called its head) and terminating at a leaf (called its tail).

Second, remove the topmost heavy path from 7T and repeat the reasoning on each of the
obtained smaller trees. The crucial property is that, for any node w, the path from u to the
root in T intersects at most logn heavy paths.

We can now iterate over all pairs of heavy paths h, h’ to look for a partner f € h’ for
every e € h. We cannot literally carry out this plan as the number of pairs of heavy paths
can be Q(n?) and so we cannot explicitly consider every pair. We show next that many pairs
h,h’ result in a trivial case and that all these trivial pairs can be solved together in one
batch. We then bound the number of non-trivial pairs and show that in near-linear time we
can explicitly process all of them. The idea of processing pairs of heavy paths, and explicitly
considering only the non-trivial ones, was introduced in the context of 2-respecting cuts by
Mukhopadhyay and Nanongkai [21] (see also [9]).

Consider two distinct heavy paths h, h’, where h is the path u; —us —--- — u, and A’ is
the path v1 — v — ... vy. Welet e; = (u;,uiq1) fori=1,...,¢g—1 and f; = (v, v;41) for
i=1,...,¢" — 1. It can be that not all pairs e;, f; are independent, see Figure 1. However,

we can easily identify the subpaths of h, ' containing pairwise independent edges in constant
time by computing the lowest common ancestor v of the tails of h, h’. If v = v, lies on A’

then e;, f; will be independent for 1 < i < ¢ and p’ < j < ¢/, and similarly if v lies on h.

In general we assume that p, p’ have been determined so that e;, f; are independent for all
p' <i<gandp <j<¢, and that these pairs comprise all of the independent pairs on
h,h'. We can associate to h, h' a (¢ — 1)-by-(¢’ — 1) matrix M ") where for p’ < i < ¢ and
p<ij<d

M(h’h/)[i,j] = cost(e;, f;)
= cost(e;) 4 cost(f;) — 2w(ef, fgl) ) (3)

and M """ is undefined otherwise.* All values of cost(e) can be computed in O(m) total
time [15]. To efficiently evaluate M"h) we will prepare a list L(h, ') of all edges that
contribute to w(e*, f+) for independent e, f with e € h, f € h’. For many h, b’ the list L(h, h')
will be empty, leading to the trivial case mentioned above. The following lemma bounds the
size of all the non-empty lists and shows they can be constructed efficiently (proof in full
version [1]).

» Lemma 7. The total length of all lists L(h,h') is O(mlog®n) and all non-empty lists
L(h,h) can be constructed deterministically in time O(mlog®n).

We can now describe how to find a partner f for every e such that e, f are independent.

The algorithm first solves together in one batch the case where the partner of e € h is in a
heavy path h' where L(h,h’) is empty. After that we explicitly consider all h, b’ with L(h,h')
non-empty. We consider these two cases in the next two subsections.

4 We could restrict M) to the submatrix on which it is defined, but find it notationally easier for the
1,7 indices in M) 6 match the edge labels.
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vj = lea(vy, v)

’Uq/

Figure 1 Contribution of an edge {u,v} € L(h, ') (denoted in green on the left) to M(h’h/)[~, ]
(denoted in grey on the right).

3.3.1 Empty lists

» Lemma 8. There is a deterministic algorithm that in time O(m + n) finds a partner for
every edge e € E(T) that has a partner f such that e, f are independent and e € h, f € b/
with L(h,h’) empty.

Proof. The key observation is that if L(h,h’) is empty then cost(e, f) = cost(e) + cost(f)
by Equation (3). As can be seen from Equation (1) and Equation (3), for any edge
f' it always holds that cost(e, ') < cost(e) + cost(f’), whether e, f' are descendant or
independent. Thus in this case it suffices for us to find any f’ of color different from e such
that cost(e) + cost(f’) < B, and cut(e, f’) is non-trivial as this ensures cost(e, f') < 3. We
are guaranteed such an f’ exists as f satisfies this.

We can compute cost(f’) for every f' € E(T) in time O(m) [15]. Then in time O(n) with
one pass over E(T) we compute the edge fi of lowest cost and the edge fs of lowest cost
that is of color different to f;. We then repeat this categorical top two query twice more,
each time excluding all previously found edges. At the end we obtain edges f1,..., fs. We
claim that for every e, at least one of these must be a valid partner.

Consider any particular e. The first categorical top two query can only fail to find a
valid partner for e if one of fi, fo creates a trivial cut with e. In this case, the second
categorical top two query can only fail if one of f3, f4 creates a trivial cut with e as well. By
Proposition 2, however, there are at most two possible edges that can create a trivial cut
with e, thus in this case the third categorical top two query must succeed and we find a valid
partner for e. |

3.3.2 Non-empty lists

The more difficult case is to find partners among pairs h, b’ with L(h, h’') non-empty. While we
defer the proof details to the full paper [1], we describe the key insight of the algorithm, which

relies on the special structure of M), As above, say that h is the path uy — ug — - - - — u,
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and b’ is the path v; —ve —. .. vy, and let e; = (ug, ui1) fori=1,...,¢—1 and f; = (v, vi41)
for i =1,...,¢ — 1. Further suppose e;, f; are independent for all p < ¢ < ¢,p’ <j <¢'. We
have that M"")[i, j] = cost(e;) 4 cost(f;) —2w(et, fj) forp <i<gq,p <j<¢. Recall that
L(h, ') is defined precisely as the list of edges that contribute to w(e*, f+) for independent
e € h, f' € h'. The contribution of a specific edge {u,v} € L(h,h') can be understood as
follows: let u; be the lowest common ancestor of v and u,, and v; be the lowest common
ancestor of v and vy . Then the weight of {u,v} contributes to Ma, b] for every p < a <1,
p’ < b < j. This is depicted in Figure 1. We can compute these indices ¢ and j for every
{u,v} € L(h,h’). This takes constant time per edge using an appropriate LCA structure [6],
and so total time O(|L(h,1')|).

Our algorithm crucially builds on this “sparse” representation of M (h.h") o efficiently
transfer non-empty lists. The following lemma is proven in the full version [1].

» Lemma9. Let F ={e|3h,h',f:e€ h,f €l e, [ are partners and L(h,h’) non-empty}.
There is a deterministic algorithm to find a partner for every e € F in time O(m log® n).
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