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Abstract
We study a natural generalization of the celebrated ordered k-median problem, named robust ordered
k-median, also known as ordered k-median with outliers. We are given facilities F and clients
C in a metric space (F ∪ C, d), parameters k, m ∈ Z+ and a non-increasing non-negative vector
w ∈ Rm

+ . We seek to open k facilities F ⊆ F and serve m clients C ⊆ C, inducing a service
cost vector c = {d(j, F ) : j ∈ C}; the goal is to minimize the ordered objective w⊤c↓, where
d(j, F ) = mini∈F d(j, i) is the minimum distance between client j and facilities in F , and c↓ ∈ Rm

+

is the non-increasingly sorted version of c. Robust ordered k-median captures many interesting
clustering problems recently studied in the literature, e.g., robust k-median, ordered k-median, etc.

We obtain the first polynomial-time constant-factor approximation algorithm for robust ordered
k-median, achieving an approximation guarantee of 127. The main difficulty comes from the presence
of outliers, which already causes an unbounded integrality gap in the natural LP relaxation for robust
k-median. This appears to invalidate previous methods in approximating the highly non-linear
ordered objective. To overcome this issue, we introduce a novel yet very simple reduction framework
that enables linear analysis of the non-linear objective. We also devise the first constant-factor
approximations for ordered matroid median and ordered knapsack median using the same framework,
and the approximation factors are 19.8 and 41.6, respectively.
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1 Introduction

k-supplier and k-median are two of the most fundamental clustering problems. In both
problems, we are given facilities F and clients C in a metric space (F ∪C, d) and a parameter
k ∈ Z+; we need to select k facilities F ⊆ F , and only the objective functions are different.
In k-supplier, the goal is to minimize the maximum distance from each client to its nearest
facility in F , i.e., maxj∈C d(j, F ); k-supplier is NP-hard to approximate to a factor better
than 3 [18], and a tight 3-approximation is given in [18]. In k-median, the objective is
the sum of distances from each client to its nearest facility, i.e.,

∑
j∈C d(j, F ); k-median is

NP-hard to approximate to a factor of (1 + 2/e− ϵ) for every ϵ > 0 [20], and several constant-
factor approximations are developed [2, 9, 11, 14, 21, 26]; currently the best approximation
guarantee is (2.675 + ϵ) due to Byrka et al. [4].

Under the basic input (F , C, d, k), let c0 = {d(j, F ) : j ∈ C} be the service cost vector
induced by solution F . The theoretical computer science community has lately shown
increasingly more interests in clustering problems with more nuanced objective functions
than k-supplier and k-median. For example, the ordered k-median problem (OkMed) naturally
unifies these two problems via the ordered objective w⊤

0 c↓
0, where c↓

0 is the non-increasingly
sorted version of c0 and w0 is a given non-increasing non-negative vector; it is easy to
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34:2 Ordered k-Median with Outliers

see that OkMed recovers k-supplier and k-median using only 0-1 vectors for w0. Several
constant-factor approximations have been developed for OkMed [5, 7], and currently the best
ratio is (5 + ϵ) due to Chakrabarty and Swamy [8].

Meanwhile, a parallel line of research called robust clustering (also known as clustering
with outliers) also attracts a lot of attention. These problems allow us to discard a certain
number of clients and define the clustering objective on the remaining clients. In robust k-
center (RkCen), we are given an additional integer parameter m ≤ |C| besides the basic input
(F , C, d, k) where F = C; we need to open k facilities F ⊆ F and choose m clients C ⊆ C,
and the objective is the maximum service cost in C, i.e., maxj∈C d(j, F ). Charikar et al. [10]
give a 3-approximation algorithm for RkCen. Chakrabarty et al. [6] improve the result to a
best-possible 2-approximation (also see Harris et al. [17]). It is easy to see that the objective
of RkCen is equivalent to e⊤

|C|−m+1c↓
0, where et = {0, . . . , 0, 1, 0, . . . , 0} is the all-zero vector

except for its t-th coordinate, which is 1. In robust k-median (RkMed), the input is the same
as RkCen except that C and F are distinct, and the objective is the sum of service costs in
C, i.e.,

∑
j∈C d(j, F ). Chen [13] gives the first constant-factor approximation for RkMed.

Krishnaswamy et al. [23] employ an iterative rounding method and obtain an approximation
ratio of (7.081 + ϵ) for RkMed, which is later improved to (6.994 + ϵ) by Gupta et al. [16].
The objective of RkMed is equivalent to σ⊤

|C|−m+1c↓
0, where σt = {0, . . . , 0, 1, . . . , 1} is the

all-one vector except for its first (t− 1) coordinates, which are 0’s.
In this paper, we study a new problem called robust ordered k-median (ROkMed).

Formally, given the basic input (F , C, d, k), a parameter m ≤ |C| and a non-increasing
non-negative vector w ∈ Rm

+ , we are asked to open k facilities F ⊆ F and serve m clients
C ⊆ C, inducing a service cost vector c = {d(j, F ) : j ∈ C} ∈ RC

+ (notice that c is different
from c0, since c0 is indexed by C); the goal is to minimize w⊤c↓. Clearly, ROkMed unifies
the aforementioned problems of OkMed, RkCen and RkMed by choosing m and w suitably.

We can also define the objective of ROkMed using c0 = {d(j, F ) : j ∈ C} as follows. Let
w0 ∈ R|C|

+ be a non-negative vector, such that its first (|C| −m) coordinates are 0’s, and
the remaining coordinates are non-increasing; the objective of ROkMed is w⊤

0 c↓
0. We notice

that this weight vector w0 exhibits a distinctly unimodal shape; that is, there exists an
index t (which is (|C| −m + 1) here) such that w0 is non-decreasing on indexes {1, . . . , t}
and non-increasing on indexes {t, . . . , |C|} (see Figure 1 for an example). Therefore, this
objective function places a heavier emphasis on clients that are close to the “mode” of w0.
This can also be motivated by the following real-world scenario. Suppose the underlying
metric d models the latencies of an online streaming service in different regions (i.e., clients),
where the facilities represent potential data center locations. From a business point of view,
one could strategically disregard clients that have very poor latencies (they might stop using
the service anyway) and clients that have very good latencies (they typically have relatively
few issues or complaints); the majority of maintenance and servicing costs will then come
from clients with medium latencies. By choosing w0 properly, the objective of ROkMed can
be the sum of sorted service costs, say, between the 35th percentile and the 65th percentile,
thus acting as a good optimization objective for this scenario. We believe this motivating
example for ROkMed offers a practical clustering criterion, and our results will stimulate
more studies towards clustering objectives with arbitrary unimodal weight vectors.

1.1 Our Contributions
We first study robust ordered k-median and obtain the following main result of this paper.

▶ Theorem 1. There exists a polynomial-time 127-approximation algorithm for ROkMed.
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(b) RkMed.
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(c) OkMed.

w0

(d) ROkMed.

Figure 1 An illustration of different weight vectors used in the objectives of RkCen, RkMed,
OkMed and ROkMed. The coordinates are represented using unit-width rectangles.

At a high level, we build a simple reduction framework that reduces each ROkMed
instance I to an instance J of a new problem; the objective of J is still non-linear, but
is formulated as a simple sum and easier to approximate. Moreover, by (approximately)
solving the new problem, we show that the approximation guarantee of the solution in J

is preserved up to a constant factor in I (see Theorem 3 for the formal statement). Thus,
it suffices to obtain a constant-factor approximate solution for each new instance J . To
this end, we adapt the iterative rounding algorithm by Krishnaswamy et al. [23]. We note
that this rounding algorithm is only applicable to the non-linear objective of J thanks to
our parameterized reduction framework. Though Gupta et al. [16] give a slightly improved
iterative rounding algorithm, we do not adapt their algorithm here. We choose the original
algorithm in [23] for its simplicity of presentation. The improvement based on [16] is likely
to be small due to our different metric discretization method.

We extend our results to ordered matroid median (OMatMed) and ordered knapsack
median (OKnapMed), which are natural generalizations of OkMed by replacing the cardinality
constraint |F | ≤ k with a matroid constraint and a knapsack constraint, respectively (see
Section 3.2 for the formal definitions). To the best of our knowledge, no approximation
algorithms are known for OMatMed and OKnapMed prior to our study.

▶ Theorem 2. There exist a polynomial-time 19.8-approximation algorithm for OMatMed
and a polynomial-time 41.6-approximation algorithm for OKnapMed.

1.2 Overview of Techniques
Above all, we need to have apt approximate forms of the ordered objective and write a
suitable LP relaxation for ROkMed. To start with, let us first review the sparsification method
proposed by Aouad and Segev [1] and Byrka et al. [5] for OkMed. In the pre-processing phase,
one first guesses disjoint intervals I0, I1, . . . with each It ⊆ R+ having the form (x, (1 + ϵ)x]
for some small ϵ > 0, so that the service costs falling into the same interval differ by only a
multiplicative factor of (1 + ϵ). Let wavg

I be the average weight multiplied with service costs
in the interval I in a fixed optimal solution. If we apply the same weight wavg

I to all service
costs in I, we can show that the optimal solution exhibits a similar objective by only losing
a (1 + O(ϵ)) factor. The pre-processing phase proceeds to build the premise that the guessed
intervals {I0, I1, . . . } and the guessed average weights {wavg

I0
, wavg

I1
, . . . } roughly agree with

the unknown optimal solution; this is done by showing the number of necessary guesses is
bounded by a polynomial, thus we can use exhaustive search. To “pre-apply” the average
weights in an LP relaxation, we define a function f as f(d(i, j)) = wavg

I · d(i, j) for d(i, j) ∈ I,
and put f(d(i, j)) instead of d(i, j) in the LP objective. Byrka et al. [5] implicitly use such a
function and give a (38 + ϵ)-approximation for OkMed.

Unfortunately for ROkMed, this objective function seems to suffer from the inherent
unbounded integrality gap in the natural relaxation for basic RkMed (see, e.g., [23]; also
recall that RkMed is a special case of ROkMed). Note that this is not an issue for OkMed

APPROX/RANDOM 2022
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since the integrality gap in the natural relaxation for k-median is a constant [11, 20]. Roughly
speaking, to overcome this gap in the robust case and obtain constant-factor approximation
guarantees, one usually strengthens the relaxation by adding more constraints, obtains
an almost-integral solution via an auxiliary LP, and rounds the last few fractionally-open
facilities to integral ones. During the last step, extra facility-client connections will incur
extra costs; to the best of our efforts, the non-linearity of the ordered objective prevents us
from obtaining a constant-factor approximate solution, even if we use the aforementioned
new LP objective defined via f .

We overcome this technical barrier by considering another simple but effective objective
function. We replace f(d(i, j)) with f(λd(i, j)), where λ ∈ (0, 1] is a small constant parameter
and f is defined similarly as above. We note that the same function has been used in [1] to
provide a logarithmic approximation guarantee for OkMed; we give a much tighter analysis
here and achieve a constant guarantee. Intuitively speaking, by scaling the underlying metric
and still comparing the solutions with the original optimum, we can bound the extra costs
incurred in the robust case. We point out that for the optimal service cost vector o, the
gap between each f(oj) and f(λoj) may be ω(1/λ), since f is in fact non-decreasing and
superlinear. Nevertheless, we overcome this new gap by obtaining a linear upper bound for
any integral solution to the new relaxation. More specifically, let opt ≥ 0 be the optimum
of the original instance; we show that any integral solution with an objective of V in the
λ-scaled relaxation induces a solution to the original problem with an objective of at most
λ−1(V + O(1)opt). Furthermore, we show that there exists an algorithm which outputs an
integral solution with an objective of V = O(λ)opt. Combining these two results, we obtain
an approximate solution for ROkMed with an objective that is O(1/λ) times the optimum.

1.3 Other Related Work
Clustering problems with more general combinatorial constraints have been extensively
studied in recent years. Chen et al. [12] give a 3-approximation for matroid center.
Krishnaswamy et al. [22] give the first constant-factor approximation for matroid me-
dian, and thereafter the ratio is improved in [11, 27]; currently the best ratio is 7.081 due
to Krishnaswamy et al. [23]. Hochbaum and Shmoys [18] study knapsack center and give
a 3-approximation. As for knapsack median, Kumar [24] gives the first constant-factor
approximation algorithm; the ratio is later improved in [3, 11, 23, 27], and the best ratio so
far is (6.387 + ϵ) due to Gupta et al. [16].

2 The Reduction Framework

In this section, we maintain a generic problem called OrdClst, i.e., ordered clustering, which
can be later instantiated as different concrete problems such as ROkMed. An instance I of
OrdClst consists of a facility set F , a client set C, a finite metric d on F ∪C, feasible facility
sets F ⊆ 2F , feasible client sets C ⊆ 2C , and a non-increasing non-negative vector w ∈ Rm

+ ;
each C ∈ C satisfies |C| = m, and d(u, v) ≥ 1 for u, v ∈ F ∪ C that are not co-located. The
goal is to choose F ∈ F and C ∈ C that induce a service cost vector c = {d(j, F ) : j ∈ C}
such that the ordered objective cost(w; c) = w⊤c↓ is minimized.

We devise a general framework that reduces OrdClst instances to other clustering
problems with simpler objective functions. Given an instance I = (F , C, d, F , C , w) of
OrdClst and a non-decreasing function f : R+ → R+, we say J = (F , C, d, F , C , f) is a
reduced instance of I , whose goal of optimization is to choose F ∈ F and C ∈ C such that
the new objective

∑
j∈C f(d(j, F )) is minimized. Using this reduction, we will show that
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when f satisfies some certain nice properties, we only need to study the reduced instance
J , whose objective might be more tangible and easier to deal with. Moreover, we will show
that an approximate solution to the original instance I can be directly recovered from an
approximate solution to J by only losing a constant factor in the approximation guarantee.

The framework adapts previous sparsification methods [1, 5] for OkMed, and generalizes
the helper functions therein to overcome the technical difficulties that may be present in
OrdClst (see Section 1.2 for the discussion). For convenience, for each function f : R+ → R+
and λ > 0, we define fλ(x) := f(λx), ∀x ≥ 0. We let n0 = |F ∪ C| and present the following
core theorem of the reduction framework.

▶ Theorem 3. Let I = (F , C, d, F , C , w) be an instance of OrdClst with optimum opt ≥ 0.
For each ϵ ∈ (0, 1), there exists an algorithm that outputs (n0/ϵ)O(1/ϵ) non-decreasing
functions R+ → R+, such that there is an output f satisfying the following for each λ ∈ (0, 1].
We say such f is faithful.

The reduced instance Jfλ
= (F , C, d, F , C , fλ) has an optimum of at most λ(1 + 9ϵ)opt.

If an algorithm produces a solution with objective V for Jfλ
, the same solution attains

an objective of at most λ−1(V + (1 + 4ϵ)opt) for I .

As a direct consequence, if we obtain a solution to any “faithfully” reduced instance Jfλ

with an objective of V ≤ γopt, it is a λ−1(1 + γ + 4ϵ)-approximate solution to I . Before
we proceed with the proof, we discuss the sparsification method used for constructing such
functions. We shall only consider these functions in the remainder of this section. We note
that the same functions are also used in a much more straightforward fashion in [5].

Let (F ⋆, C⋆) be a fixed (unknown) optimal solution to the original problem, o ∈ RC⋆

+ be
the corresponding service cost vector, and opt = cost(w; o) be the optimal objective thereof.
We first guess the exact value of o↓

1, i.e., the largest service cost, which only has a polynomial
number of possible values. We use exhaustive search and assume o↓

1 is correctly guessed in
the sequel; we also assume o↓

1 > 0, otherwise the solution is trivial.
Let T be the smallest integer s.t. ϵ(1 + ϵ)T > m and define intervals IT +1, IT , ..., I0 where

IT +1 =
[

0,
ϵo↓

1
m

]
; It =

(
ϵo↓

1
m

(1 + ϵ)T −t,
ϵo↓

1
m

(1 + ϵ)T −t+1
]

, ∀t ∈ [T ]; I0 =
(

ϵo↓
1

m
(1 + ϵ)T , +∞

)
.

Since
⋃T +1

t=0 It = R+ and they are mutually disjoint, each d(i, j) falls into exactly one interval.
Next, to avoid technical difficulties caused by weights that are too small, we define a

new vector w̃ where w̃i = max{wi,
ϵw1
m }, i ∈ [m]. We obtain the following simple fact, by

observing w̃ ≥ w and cost(w̃; v)− cost(w; v) ≤ m · ϵw1
m · v↓

1 ≤ ϵ · cost(w; v).

▶ Fact 4. For each v ⊆ Rm
+ , one has cost(w; v) ≤ cost(w̃; v) ≤ (1 + ϵ)cost(w; v).

Now, let us consider the optimum opt = w⊤o↓. In particular, we consider the entries of
o↓ that fall into different intervals IT +1, IT , ..., I0, and (iteratively) define the average weight
wavg

t w.r.t. o↓, w̃ and interval It, such that wavg
0 = w̃1 and

wavg
t =


(∑

j:o↓
j

∈It
w̃j

)/ ∣∣o↓ ∩ It

∣∣ o↓ ∩ It ̸= ∅, t ≥ 1,

wavg
t−1 o↓ ∩ It = ∅, t ≥ 1.

Since w̃ is non-increasing, it follows that wavg is also non-increasing. Though the actual
sequence wavg is unknown, we can estimate it using another non-increasing sequence wgss

such that for each 0 ≤ t ≤ T + 1, wgss
t is an integer power of (1 + ϵ) and satisfies mins wavg

s ≤
wgss

t ≤ (1 + ϵ) maxs wavg
s . Since the entries of wavg are at least minj w̃j ≥ ϵw1/m and

APPROX/RANDOM 2022
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at most w1, the number of possible values is O(log1+ϵ(m/ϵ)). By the definition of T , we
have T = O(log1+ϵ(m/ϵ)). Thus, using routine calculation, the number of all possible non-
increasing sequences for wgss is at most (m/ϵ)O(1/ϵ). Up to now, we have only guessed o↓

1 and
wgss, hence the total number of possible guesses is at most (n0/ϵ)O(1/ϵ) since m ≤ |C| ≤ n0.

Proof of Theorem 3. For each guess (o↓
1, {wgss

t }T +1
t=0 ), we define a piece-wise linear function

f(x) = wgss
t x, x ∈ It, 0 ≤ t ≤ T + 1.

Because wgss is non-increasing, f : R+ → R+ is non-decreasing and superlinear (i.e.,
f(αx) ≥ αf(x) for each α ≥ 1 and x ≥ 0). According to the previous analysis, we consider
at most (n0/ϵ)O(1/ϵ) such functions.

To prove the theorem, it suffices to show the existence of a faithful function. In the sequel,
we assume that the guessed values are as desired; that is, o↓

1 is precisely the largest service
cost in the optimal solution and for each 0 ≤ t ≤ T + 1, one has wgss

t ∈ [wavg
t , (1 + ϵ)wavg

t ).
We show that the corresponding function f is faithful. We need the following two lemmas.

▶ Lemma 5. Let c = {d(j, F ) : j ∈ C} ∈ RC
+ where F ∈ F and C ∈ C . For each λ ∈ (0, 1],

one has λ · w̃⊤c↓ ≤
∑

j∈C f(λcj) + (1 + 3ϵ + ϵ2)opt.

Proof. Recall that |C| = m for each feasible C ∈ C . We suppose C = [m] for convenience.
Consider each j ∈ [m] s.t. λw̃jc↓

j > f(λc↓
j ). Notice that λc↓

j /∈ I0, otherwise one has
wgss

0 ≥ wavg
0 = w̃1 ≥ w̃j and λw̃jc↓

j > f(λc↓
j ) = wgss

0 (λc↓
j ) ≥ λw̃jc↓

j , which is a contradiction.
If λc↓

j ∈ IT +1 = [0, ϵo↓
1/m], one has λw̃jc↓

j ≤ w̃j(ϵo↓
1/m) ≤ ϵ ·w⊤o↓/m since w̃j ≤ w̃1 = w1.

Then, suppose λc↓
j ∈ It, t ∈ [T ]. We claim λc↓

j ≤ (1 + ϵ)o↓
j . For the sake of contradiction,

assume otherwise, i.e., λc↓
j > (1 + ϵ)o↓

j , thus λc↓
j and o↓

j must be in different intervals by the
definition of It. Suppose o↓

j ∈ It′ for some t′ > t, which implies wavg
t ≥ w̃j , because wavg

t

is the average weight on It w.r.t. o↓, and w̃j is the weight for o↓
j ∈ It′ . Therefore, because

wgss
t ≥ wavg

t using our initial conditions, we have f(λc↓
j ) = wgss

t (λc↓
j ) ≥ λwavg

t c↓
j ≥ λw̃jc↓

j ,
contradicting our initial assumption. Thus the claim is true.

The above analysis shows that λw̃jc↓
j ≤ f(λc↓

j ) + (1 + ϵ)w̃jo↓
j + ϵw⊤o↓/m for each

j ∈ [m]. We take the sum over j ∈ [m] and obtain

λ · w̃⊤c↓ = λ
∑

j∈[m]

w̃jc↓
j ≤

∑
j∈[m]

f(λc↓
j ) + (1 + ϵ)cost(w̃; o) + ϵ · cost(w; o).

Combining with Fact 4 and opt = cost(w; o), the lemma follows. ◀

▶ Lemma 6. For each λ ∈ (0, 1], one has
∑

j∈C⋆ f(λoj) ≤ λ((1 + ϵ)3 + ϵ + ϵ2)opt.

Proof. Recall that (F ⋆, C⋆) is optimal for I . Consider any non-empty o ∩ It, and it is easy
to verify that t > 0. Since λ ≤ 1, some entries in λ(o∩ It) may be “shifted” to It′ with t′ > t.
If t ≤ T , the contribution of λ(o ∩ It) on the LHS is at most∑

j:o↓
j

∈It,

λo↓
j

/∈It

λwgss
t+1o↓

j +
∑

j:o↓
j

∈It,

λo↓
j

∈It

λwgss
t o↓

j ≤ λ
∑

j:o↓
j

∈It

(1 + ϵ)wavg
t o↓

j ≤ λ(1 + ϵ)2
∑

j:o↓
j

∈It

w̃jo↓
j , (1)

where the first inequality is due to non-increasing wgss and wgss
t ∈ [wavg

t , (1 + ϵ)wavg
t ); the

second inequality is because within the same interval It where t ≤ T , the values of o↓
j differ

by a factor no more than (1 + ϵ). More formally, we have
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∑
j:o↓

j
∈It

wavg
t o↓

j =

 1
|o ∩ It|

∑
j:o↓

j
∈It

w̃j

 ∑
j′:o↓

j′ ∈It

o↓
j′

=
∑

j:o↓
j

∈It

 1
|o ∩ It|

∑
j′:o↓

j′ ∈It

o↓
j′

 w̃j ≤
∑

j:o↓
j

∈It

(1 + ϵ)o↓
j w̃j ,

hence the inequality above follows.
If t = T + 1, each such o↓

j ≤ ϵo↓
1/m, thus the contribution of λ(o ∩ IT +1) is at most

ϵλwgss
1 o↓

1 ≤ ϵ(1 + ϵ)λw̃1o↓
1 ≤ λ(ϵ + ϵ2)opt, since wgss

1 ≤ (1 + ϵ)wavg
1 ≤ (1 + ϵ)w̃1. The lemma

follows by taking the sum of (1) over each o ∩ It plus λ(ϵ + ϵ2)opt for o ∩ IT +1, which is

∑
j∈C⋆

f(λoj) ≤ λ(1 + ϵ)2
T∑

t=1

∑
j:o↓

j
∈It

w̃jo↓
j + λ(ϵ + ϵ2)opt

(Fact 4) ≤ λ(1 + ϵ)3cost(w; o) + λ(ϵ + ϵ2)opt. ◀

We return to the original theorem and fix λ ∈ (0, 1]. Since (F ⋆, C⋆) is a feasible solution
to both I and Jfλ

, the first assertion follows using ϵ < 1 and Lemma 6. For the second
assertion, let (F, C) be the solution returned by the algorithm, thus V =

∑
j∈C f(λd(j, F )).

Therefore, using Fact 4 and Lemma 5, the objective of (F, C) in the OrdClst instance I is
at most cost(w; c) ≤ cost(w̃; c) ≤ λ−1(V + (1 + 4ϵ)opt), where c = {d(j, F ) : j ∈ C}. ◀

3 Applications

In this section, we provide applications of our reduction framework in Theorem 3. Due to
the space limitations, we defer some proofs and details of the algorithms to the appendix.

3.1 Robust Ordered k-Median
In ROkMed, OrdClst is instantiated such that F consists of all subsets of F with cardinality
at most k, i.e., F = {F ⊆ F : |F | ≤ k}; C consists of all subsets of C with cardinality exactly
m, i.e., C = {C ⊆ C : |C| = m}. Via enumerating all possible functions in Theorem 3,
suppose that we have a faithful function f in what follows.

As noted before, using Theorem 3, we want to obtain a constant-factor approximate
solution to Jfλ

for some small constant λ ∈ (0, 1). We adapt the iterative rounding
algorithm [23]. Let xij ∈ [0, 1] denote the extent of assigning client j to facility i, and
yi ∈ [0, 1] denote the extent of opening facility i. The natural relaxation for Jfλ

is given as
follows.

min
∑
j∈C

∑
i∈F

xijfλ(d(i, j)) (LP(fλ))

s.t.
∑
j∈C

∑
i∈F

xij ≥ m

∑
i∈F

xij ≤ 1 ∀j ∈ C∑
i∈F

yi ≤ k

0 ≤ xij ≤ yi ≤ 1 ∀i ∈ F , j ∈ C.

APPROX/RANDOM 2022
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Before we look at the full algorithm, let us begin with a brief overview. The algorithm
consists of the following two phases, namely, pre-processing and iterative rounding.

Pre-processing. As is discussed in the introduction, the integrality gap in LP(fλ) is
unbounded since ROkMed recovers RkMed. Thus, instead of directly solving LP(fλ), we
employ some pre-processing techniques and simplify the instance. In what follows, let
λ1 ∈ (λ, 1] be another constant. The values of λ and λ1 will be determined in the full
algorithm.

First, we guess a constant number of facilities S0 as must-have choices and remove some
clients in advance. Consequently, we obtain a new extended instance J ′

f on the remaining
clients C′; the family C ′ ⊆ 2C′ of client subsets in J ′

f consists of all m′-subsets of C′, that
is, C ′ = {C ′ ⊆ C′ : |C ′| = m′} for some fixed parameter m′ ≤ m; J ′

f also requires that the
pre-selected facilities in S0 must be part of the solution. By exhaustive search, we show that
there exists some J ′

f with certain “sparse” properties, which is easier to approximate using
an LP relaxation. More specifically, there exists a solution (F, C) to J ′

f such that S0 ⊆ F

and (F, C) satisfies the following for two small constants ρ, δ ∈ (0, 1) (see Theorem 7). Here,
opt ≥ 0 is the optimum of the original ROkMed instance.

For each facility i ∈ F \ S0, the clients assigned to i contribute at most ρ · opt; that is,∑
j∈C assigned to i f(d(i, j)) ≤ ρ · opt.

For each p ∈ F ∪C′, let cp = d(p, F ). The product of (a) f((1− δ)cp) and (b) the number
of served clients in C within a distance of δcp from p is at most ρ · opt; that is,

|{j ∈ C : d(j, p) ≤ δcp}| · f((1− δ)cp) ≤ ρ · opt.

Intuitively speaking, this means that after removing the clients C \ C′, there cannot be
too many clients with “large” contributions inside any such closed ball.

Further, a straightforward greedy algorithm on the removed clients C \ C′ recovers a good
approximate solution to Jf . The two basic instances {J ′

f , Jf} will be useful in the analysis.
Second, we formulate a stronger relaxation S-LP(fλ1) that has the same objective as

LP(fλ) except for using a larger coefficient λ1. It has both the constraints of LP(fλ), and
additional constraints that guarantee certain sparse properties in its solutions; in particular,
J ′

f also conforms to these sparsity constraints. Thus, we show that any sparse solution
to J ′

fλ1
is also feasible to S-LP(fλ1). We emphasize that during the algorithm, we solve

S-LP(fλ1) instead of LP(fλ); LP(fλ) will only be used in the analysis of the algorithm.

Iterative rounding. After obtaining a fractional optimal solution to S-LP(fλ1), we use
the iterative rounding algorithm and obtain an integral solution (F̂ , Ĉ ′) to J ′

fλ1
. As

aforementioned, it is easy to extend (F̂ , Ĉ ′) to another solution (F̂ , Ĉ) that is feasible to
Jfλ1

. However, because the function f in the LP objective is superlinear and our rounding
algorithm incurs multiplicative factors on the input of f , we cannot directly analyze the
approximation guarantee via Jfλ1

and S-LP(fλ1). Nevertheless, (F̂ , Ĉ) is also feasible to
LP(fλ) where the coefficient λ is smaller than λ1, making it possible for us to bound the
objective of (F̂ , Ĉ) in the instance Jfλ

. Finally, we invoke Theorem 3 on Jfλ
and obtain

the overall approximation ratio.

3.1.1 The Algorithm for Robust Ordered k-Median
In this section, we present our constant-factor approximation algorithm for ROkMed and
prove Theorem 1. Suppose we have a faithful function f : R+ → R+ via Theorem 3 and
exhaustive search. Let the reduced instance be J = (F , C, d, F , C , f). Recall n0 = |F ∪ C|.
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3.1.1.1 The Sparse Instance

Let (F ⋆ ∈ F , C⋆ ∈ C ) be a fixed unknown optimal solution to the original ROkMed instance
I = (F , C, d, F , C , w) and opt ≥ 0 be the optimum thereof; define c⋆

p = mini∈F ⋆ d(p, i),
κ⋆

p = arg mini∈F ⋆ d(p, i) for each p ∈ F ∪ C (ties broken arbitrarily), and closed balls
BallS (p, R) = {i ∈ S : d(i, p) ≤ R}. We guess U ∈ [V ⋆, (1 + ϵ)V ⋆) via binary search, where
V ⋆ is the optimum of J . We have V ⋆ ≤ (1 + O(ϵ))opt using Theorem 3. We need the
following theorems on pre-processing. The proofs are given in the appendix.

▶ Theorem 7. (Similar to [23]). Given ρ, δ ∈ (0, 1) and U , there exists an n
O(1/ρ)
0 -time al-

gorithm that finds an extended instance J ′ = (F , C′, d, F , C ′, f, S0) satisfying the following.
(7.1) C′ ⊆ C, C ′ = {C ′ ⊆ C′ : |C ′| = m′ := |C⋆ ∩ C′|} and S0 ⊆ F ⋆ with |S0| = O(1/ρ).
(7.2) Denote C ′⋆ = C⋆ ∩ C′. For each i ∈ F ⋆ \ S0, we have

∑
j∈C′⋆:κ⋆

j
=i f(c⋆

j ) ≤ ρU .

(7.3) For each p ∈ F ∪ C′, we have
∣∣BallC′⋆

(
p, δc⋆

p

)∣∣ · f((1− δ)c⋆
p) ≤ ρU .

(7.4) Denote U ′ =
∑

j∈C′⋆ f(c⋆
j ). We have

∑
j∈C⋆\C′ f

(
1−δ
1+δ d(j, S0)

)
+ U ′ ≤ U.

Roughly speaking, Theorem 7 says that after removing a constant number of facilities
S0 from F ⋆ and some clients C \ C′ from C⋆, the remaining solution has some nice sparse
properties. Moreover, we can easily extend a solution on J ′ to another solution on J using
(7.4) such that the objective can still be bounded in terms of U ≤ (1 + O(ϵ))opt.

▶ Theorem 8. (Similar to [23]). Given the instance J ′ found in Theorem 7, we can
efficiently compute a set of upper bounds {R̂j ≥ 0 : j ∈ C′} satisfying the following.
(8.1) There exists a solution (F ⋆, C ′) to J ′, such that each j ∈ C ′ is assigned to κ′

j ∈ F ⋆

and c′
j := d(κ′

j , j) ≤ (1 + 3δ/4)R̂j. Moreover, one has

∑
j∈C′

f

(
2

2 + δ
c′

j

)
≤ U ′;

∑
j∈C′:κ′

j
=i

f

(
2

2 + δ
c′

j

)
≤ ρU, ∀i ∈ F ⋆ \ S0.

(8.2) For each t > 0 and p ∈ F ∪ C′, one has∣∣∣∣{j ∈ BallC′

(
p,

δ

4 t

)
: R̂j ≥ t

}∣∣∣∣ ≤ ρU

f((1− δ)(1− δ/4)t) .

Roughly speaking, Theorem 8 says that we can efficiently find an upper bound R̂j for
each j ∈ C′ such that there exists a solution for J ′ that roughly respects these upper
bounds and exhibits a similar sparse property as (7.2). Moreover, (8.2) is a stronger but
somewhat different version of (7.3); its parameterized form will be useful in the analysis of
the approximation guarantee.

3.1.1.2 The Strengthened LP

Let Rj = (1 + 3δ/4)R̂j in Theorem 8 and define the following stronger LP relaxation for
0 < λ1 ≤ 2/(2 + δ). We note that S-LP(fλ1) is built on the new instance J ′, hence admits
a more “regular” solution according to Theorem 8. In our algorithm, we solve S-LP(fλ1)
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instead of LP(fλ), and conduct iterative rounding on its solution.

min
∑
j∈C′

∑
i∈F

xijfλ1(d(i, j)) (S-LP(fλ1))

s.t.
∑
j∈C′

∑
i∈F

xij ≥ m′

∑
i∈F

xij ≤ 1 ∀j ∈ C′

∑
i∈F

yi ≤ k

0 ≤ xij ≤ yi ≤ 1 ∀i ∈ F , j ∈ C′

yi = 1 ∀i ∈ S0 (S-LP.5)
xij = 0 d(i, j) > Rj (S-LP.6)
xij = 0 ∀i /∈ S0, f (2d(i, j)/(2 + δ)) > ρU (S-LP.7)∑

j∈C′

f (2d(i, j)/(2 + δ)) xij ≤ ρUyi ∀i /∈ S0. (S-LP.8)

▶ Lemma 9. The optimal objective value of S-LP(fλ1) is at most λ1(2+δ)
2 U ′.

Proof. Using (8.1), there exists an integral solution with an objective of at most U ′ when
λ1 = 2/(2 + δ). For λ1 ≤ 2/(2 + δ), the same solution is still feasible because the constraints
are independent of λ1. For α ≤ 1, z > 0, we have f(αz) ≤ αf(z) because f is non-decreasing
and superlinear, thus

∑
j∈C′ f(λ1c′

j) ≤ λ1(2+δ)
2

∑
j∈C′ f

(
2

2+δ c′
j

)
≤ λ1(2+δ)

2 U ′. ◀

After we solve S-LP(fλ1) and obtain an optimal solution (x⋆, y⋆), to eliminate the x⋆

variables and work with an auxiliary LP that is purely on the y⋆ variables, we need the
following lemma due to [23]. Note that this is different from simple facility duplication [11],
since we need a certain sparse property of the modified solution (see 5), which helps us bound
the additional rounding cost in the final analysis.

▶ Lemma 10. We can add co-located copies to F , create a vector y⋆ ∈ [0, 1]F and define
subsets Fj ⊆ BallF (j, Rj) for each client j ∈ C′, such that the following holds.
(10.1) y⋆(Fj) ≤ 1 for each j ∈ C′ and

∑
j∈C′

( ∑
i∈Fj

y⋆
i

)
≥ m′.

(10.2)
∑

i∈F y⋆
i ≤ k.

(10.3) For each i ∈ S0,
∑

i′ co-located with i y⋆
i = 1.

(10.4)
∑

j∈C′
∑

i∈Fj
y⋆

i fλ1(d(i, j)) ≤ λ1(2+δ)
2 U ′.

(10.5) For each i not co-located with S0,
∑

j∈C′:i∈Fj
f

(
2

2+δ d(i, j)
)
≤ 2ρU .

Proof. We start with an optimal solution (x⋆, y⋆) to S-LP(fλ1) with objective at most
λ1(2+δ)

2 U ′ according to Lemma 9. To avoid confusion in notation, we create a copy F ′ = F ,
define Fj = {i ∈ F ′ : x⋆

ij > 0} and ȳ⋆ ← y⋆ both supported on F ′. For each copy i′ ∈ F ′ of
i ∈ F , define its star cost as

∑
j∈C′:i′∈Fj

f( 2
2+δ d(i, j)).

We iteratively perform the following procedures. For each i ∈ F and j ∈ C′ such that
x⋆

ij > 0, we sort all copies of i in F ′ in non-decreasing order of their current star costs, and
choose the first several copies such that their ȳ⋆ values add up to exactly x⋆

ij . If we need to
split a facility i′ into two copies to make the sum exact, we replace i′ with {i′

1, i′
2} in F ′, set

ȳ⋆
i′

1
to whichever value is needed and ȳ⋆

i′
2
← ȳ⋆

i′ − ȳ⋆
i′

1
. Remove from Fj all copies of i, and

add the selected copies to Fj again. For any other j′ ̸= j, if some i′ ∈ Fj′ is split in two,
Fj′ ← Fj′ \ {i′} ∪ {i′

1, i′
2}.



S. Deng and Q. Zhang 34:11

After the procedures, we set F ← F ′ and the corresponding y⋆ ← ȳ⋆, {Fj}j∈C′ such that
they are supported on F . 1 to 4 are easy to verify, since the original solution to S-LP(fλ1)
is preserved up to facility duplication. To see 5, consider each (original) facility i and all
clients j such that x⋆

ij > 0, denoted by Ji ⊆ C′. It is easy to see each copy of i only appears
in

⋃
j∈Ji

Fj . We use induction to show that, after each iteration, the difference between the
maximum and minimum star costs among all copies of i is at most ρU .

The copies of i and their star costs may only change after an iteration where i is selected.
Suppose Ji = {j1, . . . , jℓ} and we consider the iterations in the order of (i, j1), . . . , (i, jℓ). As
the base case, before (i, j1) is considered, the claim is true because i has only one copy in F ′.

Suppose the claim is true after (i, jt−1), t ≥ 1. In the start of the iteration on (i, jt), we
sort the copies of i in non-decreasing order of their current star costs; each client js, s ≥ t

contributes equally to the star cost of each copy of i, including jt in particular, and the
difference between the maximum and minimum is at most ρU , using the induction hypothesis.
During this iteration, we remove the contributions of jt to all copies, and add them back to
copies that have the smallest star costs. Since f( 2

2+δ d(i, jt)) ≤ ρU by (S-LP.7), it is easy to
verify that the difference between the maximum and minimum after the iteration is still at
most ρU . This finishes the induction.

For facility i, we let F(i) ⊆ F ′ be the copies of i after the procedures. It follows that∑
i′∈F(i)

ȳ⋆
i′

∑
j∈C′:i′∈Fj

f

(
2

2 + δ
d(i, j)

)
=

∑
j∈Ji

f

(
2

2 + δ
d(i, j)

) ∑
i′∈F(i)∩Fj

ȳ⋆
i′

=
∑
j∈Ji

x⋆
ijf

(
2

2 + δ
d(i, j)

)
≤ ρUy⋆

i ,

where the last inequality is due to (S-LP.8). Hence, the minimum star cost is at most
ρUy⋆

i /
∑

i′∈F(i) ȳ⋆
i′ = ρU , and the maximum is at most 2ρU , yielding 5. ◀

3.1.1.3 Iterative Rounding

We obtain y⋆ ∈ [0, 1]F and {Fj}j∈C′ using Lemma 10. To optimize our approximation factor,
we use the following deterministic metric discretization. Fix τ > 1; define D−2 = −1, D−1 = 0
and Dl = τ l for each l ≥ 0; let d′(i, j) = min{Dl ≥ d(i, j) : l ≥ −2}. For each j ∈ C′, we call
Fj its outer ball, define its radius level lj ∈ Z such that Dlj

= maxi∈Fj
d′(i, j), and define its

inner ball Bj = {i ∈ Fj : d′(i, j) ≤ Dlj−1}. For 0 < λ2 ≤ 1/τ , we define an auxiliary LP.

min
∑

j∈Cpart

∑
i∈Fj

yifλ2(d′(i, j)) +
∑

j∈Cfull

 ∑
i∈Bj

yifλ2(d′(i, j)) + (1− y(Bj))fλ2(Dlj
)


(A-LP(fλ2))

s.t. y(Fj) = 1 ∀j ∈ Ccore (A-LP.1)
0 ≤ yi ≤ 1 ∀i ∈ F (A-LP.2)
y(Bj) ≤ 1 ∀j ∈ Cfull (A-LP.3)
y(Fj) ≤ 1 ∀j ∈ Cpart (A-LP.4)
y(F) ≤ k (A-LP.5)

|Cfull|+
∑

j∈Cpart

y(Fj) ≥ m′. (A-LP.6)

The objective of A-LP(fλ2) is determined by three subsets of clients Cfull, Cpart, and
Ccore, such that Cfull ∪ Cpart = C′; each client in Cfull is to be assigned an open facility
relatively close to it, and Ccore is used for placing these facilities. Initially, we set Cfull = ∅,
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Cpart = C′ and Ccore = S0; each i ∈ S0 is called a virtual client and its initial radius level is
−1, since

∑
i′ co-located with i y⋆

i = 1 by 3 and D−1 = 0. We use the following Algorithm 1 to
iteratively change y⋆ and A-LP(fλ2).

Algorithm 1 Iterative Rounding [23].

Input : outer balls {Fj : j ∈ C′}, radius levels {lj : j ∈ C′}, inner balls
{Bj : j ∈ C′}, S0

Output : an output solution y′

1 Cfull ← ∅, Cpart ← C′, Ccore ← S0
2 while true do
3 find an optimal basic feasible solution y′ to A-LP(fλ2)
4 if there exists j ∈ Cpart such that y′(Fj) = 1 then
5 Cpart ← Cpart \ {j}, Cfull ← Cfull ∪ {j}, Bj ← {i ∈ Fj : d′(i, j) ≤ Dlj−1},

update-Ccore(j)
6 else if there exists j ∈ Cfull such that y′(Bj) = 1 then
7 lj ← lj − 1, Fj ← Bj , Bj ← {i ∈ Fj : d′(i, j) ≤ Dlj−1}, update-Ccore(j)
8 else break
9 return y′

10 update-Ccore(j)
11 if there exists no j′ ∈ Ccore with lj′ ≤ lj and Fj ∩ F ′

j ̸= ∅ then
12 remove from Ccore all j′ such that Fj ∩ Fj′ ̸= ∅, Ccore ← Ccore ∪ {j}

▶ Lemma 11. In each iteration, y′ is feasible after modifying the LP. The objective value of
y′ is non-increasing throughout the algorithm.

Proof. There are two cases. The first is when we move some j from Cpart to Cfull when
y′(Fj) = 1. Since Bj ⊆ Fj , it satisfies the new constraints in (A-LP.3) and (A-LP.1), if it is
added to Ccore. Since Fj = Bj ∪ (Fj \Bj), the contribution of j to the new objective is the
same as when it is in Cpart, because each i ∈ Fj \Bj satisfies d′(i, j) = Dlj

by definition.
The second case is when we decrease the radius level lj and invoke the subroutine on

j ∈ Cfull, where y′(Bj) = 1. Comparing the contributions of j before and after the iteration,
they are equal since the old contribution has 1− y′(Bj) = 0, and we can partition the new
outer ball Fj ← Bj in the same way as above.

In both cases, the objective of y′ does not change during an iteration. At the beginning
of each iteration, we solve for an optimal basic feasible solution, thus the lemma follows. ◀

▶ Property 12. After each iteration of Algorithm 1, the following properties hold.
(12.1) Cfull and Cpart form a partition of C′, S0 ⊆ Ccore and Ccore \ S0 ⊆ Cfull.
(12.2) {Fj : j ∈ Ccore} are mutually disjoint.
(12.3) For each j ∈ C′, Dlj

≤ τRj.
(12.4) For each j ∈ C′, lj ≥ −1.
(12.5) For each i not co-located with S0,

∑
j∈C′:i∈Fj

f( 2
2+δ d(i, j)) ≤ 2ρU .

Proof. First, by iteratively decreasing the radius levels, we claim that no client can have a
radius level of −2 or smaller. This is because when lj = −1, its inner ball is Bj = {i ∈ Fj :
d′(i, j) ≤ D−2 = −1} = ∅, the constraint y(Bj) ≤ 1 cannot be tight, and we will not invoke
the subroutine update-Ccore on j. This shows (12.4).
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To see (12.1), we only need to show that virtual clients in S0 cannot be removed from
Ccore. From the subroutine update-Ccore, j′ can be removed by j only when lj < lj′ . But
each virtual client starts with a radius level of −1, and removing any such virtual client
means a radius level of −2, a contradiction.

(12.2) clearly follows by the definition of the subroutine. (12.3) is due to Fj ⊆ BallF (j, Rj)
at the beginning of iterative rounding, hence Dlj

≤ maxi∈Fj
d′(i, j) ≤ τ maxi∈Fj

d(i, j) ≤ τRj .
Lastly, since each Fj , j ∈ C′ is inclusion-wise non-increasing during Algorithm 1, the sum in
(12.5), being the star cost of i, is also non-increasing and at most 2ρU due to 5. This yields
(12.5). ◀

We now establish the connection between S-LP(fλ1) and A-LP(fλ2), making it possible
to compare their objectives, before and after the iterative rounding process.

▶ Lemma 13. For each λ1 ∈ (0, 1] and λ2 = λ1/τ , the solution y⋆ obtained in Lemma 10 is
feasible to A-LP(fλ2) with its objective not increased.

Proof. y⋆ is the same as the optimal solution for S-LP(fλ1) up to facility duplication. Before
Algorithm 1, we have Ccore = S0. Because we require yi = 1 for each i ∈ S0 in S-LP(fλ1) and
we can let Fi consist of all copies of i (as a virtual client), (A-LP.1) is satisfied by y⋆. Initially,
Cfull is empty and we only have y(Fj) ≤ 1 for j ∈ C′ (i.e., (A-LP.4)) and

∑
j∈C′ y(Fj) ≥ m′

(i.e., (A-LP.6)), which are also satisfied by y⋆ due to Lemma 10. Therefore, y⋆ is indeed
feasible to A-LP(fλ2).

In S-LP(fλ1), each facility-client pair (i, j) has a contribution of x⋆
ijfλ1(d(i, j)). In

A-LP(fλ2), because Cfull = ∅, its contribution is y⋆
i fλ2(d′(i, j)) only when i ∈ Fj and zero

otherwise. Since d′ is rounded-up by a factor of at most τ and λ1 = τλ2, we further obtain

y⋆
i f(λ2d′(i, j)) ≤ y⋆

i f(λ1d(i, j)),

thus for y⋆, the objective of A-LP(fλ2) is at most the objective of S-LP(fλ1). ◀

▶ Lemma 14. There are at most two fractional variables in the output solution y′. At the
conclusion of the algorithm, for each j ∈ Cfull,∑

i∈F :d(i,j)≤ 3τ−1
τ−1 Dlj

y′
i ≥ 1.

Proof. Since y′ is an optimal basic feasible solution, if it has t > 0 strictly fractional variables,
there are at least t non-trivial (i.e., not in the form of yi ≥ 0 or yi ≤ 1) and independent
constraints of A-LP(fλ2) that are tight at y′ (see, e.g., [25]). The remaining constraints form
a knapsack constraint (A-LP.6), and a laminar family (A-LP.1) plus (A-LP.5), according to
(12.2). The number of such tight independent constraints is therefore at most t/2 + 1. This
means that t/2 + 1 ≥ t, and thus t ∈ {1, 2}.

To show the second assertion, we first use induction to show that, for each j that is added to
Ccore during Algorithm 1 with radius level l, the final solution satisfies

∑
i∈F :d(i,j)≤ τ+1

τ−1 Dl
y′

i ≥
1. The base case is simple for l = −1, since we know such j cannot be removed from Ccore,
and y′ satisfies the inequality due to (A-LP.1). Suppose the claim is true up to l − 1, l ≥ 0.
For j added to Ccore with radius level l, if it is not later removed from Ccore, the claim
directly follows from (A-LP.1). Otherwise, if j is later removed by j′ with lj′ < lj = l

and Fj′ ∩ Fj ̸= ∅, using the induction hypothesis, the inequality holds for j′ and lj′ , where
Dlj′ ≤ Dl/τ . Using the triangle inequality, all these facilities are at a distance at most
τ+1
τ−1 Dlj′ + Dlj′ + Dl ≤ ( τ+1

τ(τ−1) + 1
τ + 1)Dl = τ+1

τ−1 Dl from j, showing the induction step.
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Back to the proof of the lemma. When we invoke j on its final radius lj , if we can indeed
add j to Ccore, the claim above is sufficient since τ+1

τ−1 ≤
3τ−1
τ−1 . If it cannot be added to Ccore,

it is because there exists j′ ∈ Ccore with Fj′ ∩ Fj ≠ ∅ and lj′ ≤ lj . Using the claim on the
iteration when we add j′ to Ccore with radius level lj′ , and using the triangle inequality, all
the facilities in the sum are at a distance at most τ+1

τ−1 Dlj′ + Dlj′ + Dlj
≤ 3τ−1

τ−1 Dlj
, whence

the lemma follows. ◀

The following lemma is concerned with the objective value of y′ in LP(fλ), where we
replace (m, C) with (m′, C′) and use the name LP(fλ) here with a slight abuse of notation.

▶ Lemma 15. Let 0 < λ ≤ 2τ−2
τ(3τ−1)(2+δ) . Let y⋆ and outer balls {Fj}j∈C′ be obtained

from Lemma 10 and S-LP(fλ1) where λ1 = τ(3τ−1)
τ−1 λ. The iterative rounding algorithm on

A-LP(fλ2) where λ2 = 3τ−1
τ−1 λ returns a solution y′ with at most two fractions. Moreover, y′

is a feasible solution to LP(fλ) with objective at most λτ(3τ−1)(2+δ)
2τ−2 U ′.

Proof. From Lemma 9 and Lemma 13, y⋆ is feasible to A-LP(fλ2) and its objective value is
upper bounded by λ1(2+δ)

2 U ′ = λτ(3τ−1)(2+δ)
2(τ−1) U ′. From Lemma 14, the final solution y′ has

at most two fractional values; if we further take y′ to LP(fλ), we can assign each client in
Cfull \ Ccore to an extent of 1 to facilities at most 3τ−1

τ−1 Dlj
away; the feasibility of y′ w.r.t.

LP(fλ) is guaranteed by Lemma 11 and Property 12. From Lemma 11 and Lemma 13, the
objective value of y′ in LP(fλ) is upper-bounded by (recall that d′ ≥ d and Cfull ∪ Cpart is a
partition of C′)

∑
j∈Cpart

∑
i∈Fj

y′
ifλ(d′(i, j)) +

∑
j∈Cfull

 ∑
i∈Bj

y′
ifλ(d′(i, j)) + (1− y′(Bj))fλ

(
3τ − 1
τ − 1 Dlj

) . (2)

Because λ2 = λ 3τ−1
τ−1 , (2) is at most the objective of A-LP(fλ2) and ≤ λτ(3τ−1)(2+δ)

2τ−2 U ′. ◀

The following theorem converts the almost-integral solution y′ to an integral one ŷ.

▶ Theorem 16. There exists λ > 0 depending on δ and τ such that we can efficiently compute
an integral solution ŷ to LP(fλ) with objective value at most 5ρU larger than that of y′.

Proof. The case of less than 2 fractions are easier thus omitted here; in the rest of the proof,
suppose y′

i1
and y′

i2
are the two fractional variables. Because y′ is a basic feasible solution,

we must have y′
i1

+ y′
i2

= 1 since the tight constraints in A-LP(fλ2) represent the intersection
of a laminar family and a knapsack constraint. Let C1 = {j ∈ Cpart : i1 ∈ Fj , i2 /∈ Fj}
and C2 = {j ∈ Cpart : i1 /∈ Fj , i2 ∈ Fj}. W.l.o.g., we assume |C1| ≥ |C2|. One has
|C1|+ |Cfull| ≥ y′

i1
|C1|+ y′

i2
|C2|+ |Cfull| ≥ m′ using (A-LP.6). Define ŷ such that ŷi1 = 1,

ŷi2 = 0 and ŷi = y′
i for i ∈ F \ {i1, i2}. Let F̂ = {i ∈ F : ŷi = 1} and Ĉ ′ = C1 ∪ Cfull.

Using (12.5), the extra cost of assigning all of C1 to i1 is at most∑
j∈C1

fλ(d(i1, j)) ≤
∑

j∈C1

f

(
2d(i1, j)

2 + δ

)
≤

∑
j:i1∈Fj

f

(
2d(i1, j)

2 + δ

)
≤ 2ρU ⇐ λ ≤ 2

2 + δ
. (3)

Next, because we reduce the extent of opening i2 to zero, it remains to bound the extra
cost of re-assigning full clients that were assigned to i2, defined as J = {j ∈ Cfull : i2 ∈ Bj};
we choose J here because these are the full clients whose contributions are changed in (2).
Let γ > 0 be some constant which we will determine later. Let i⋆ be the nearest facility to
i2 in F̂ and t′ = d(i2, i⋆). Let J1 = {j ∈ J : d(j, i2) > γt′} and J2 = {j ∈ J : d(j, i2) ≤ γt′}.
For j ∈ J1, we have d(j, i⋆) ≤ d(j, i2)+d(i2, i⋆) < (1+ 1

γ )d(j, i2), thus if we want the following
upper bound on the extra assignment costs,
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∑
j∈J1

f(λd(j, i⋆)) ≤
∑
j∈J1

f

(
2

2 + δ
d(j, i2)

)
≤ 2ρU ⇐ λ ≤ 2

2 + δ
· γ

1 + γ
. (4)

For j ∈ J2, let i′ be the nearest open facility to j. It is easy to verify that d(j, i′) ≤ 3τ−1
τ−1 Dlj

using Lemma 14 and the definition of ŷ. Since i⋆ is the nearest to i2, one has

d(j, i′) ≥ d(i2, i′)− d(j, i2) ≥ d(i2, i⋆)− γt′ = (1− γ)t′

using the triangle inequality, and thus Rj ≥ Dlj
/τ ≥ τ−1

τ(3τ−1) (1−γ)t′. Let t = τ−1
τ(3τ−1) (1−γ)t′.

Suppose that δ
4+3δ t ≥ γt′, then using (8.2) and recalling Rj = (1 + 3δ/4)R̂j , we have

|J2| ≤
∣∣∣∣{j ∈ BallC′

(
i2,

δ

4 + 3δ
t

)
: Rj ≥ t

}∣∣∣∣ ≤ ρU

f( (1−δ)(1−δ/4)
1+3δ/4 t)

.

Using the triangle inequality, we have d(j, i⋆) ≤ (1 + γ)t′. The total extra cost of assigning
J2 to i⋆ is at most∑

j∈J2

f(λd(j, i⋆)) ≤ f(λ(1 + γ)t′)|J2| ≤ ρU ⇐ λ ≤ (1− δ)(1− δ/4)
(1 + 3δ/4) · τ − 1

τ(3τ − 1) ·
1− γ

1 + γ
. (5)

Denote σ = τ−1
τ(3τ−1) and let γ = δσ

4+3δ+δσ so that δ
4+3δ t = γt′. By letting λ be the

minimum of (3)(4)(5) and summing over the three cases, the increase of objective value w.r.t.
LP(fλ) is at most 2ρU + 2ρU + ρU = 5ρU , thus the theorem follows. ◀

3.1.1.4 Proof of Theorem 1

Let τ−1
τ(3τ−1) = 0.101 and δ = 0.81765, thus λ ∈ (0.008856, 0.008857) (see the proof of

Theorem 16). We fix ϵ > 0 and obtain a faithful function f using Theorem 3. Fix two
small constants δ, ρ > 0, compute C′, m′, S0, {Rj : j ∈ C′} via Theorem 7 and Theorem 8,
and solve S-LP(fλ1) with λ1 = τ(3τ−1)

τ−1 λ. Using iterative rounding, we obtain an almost-
integral solution to LP(fλ) using Lemma 15. Next, we compute an integral solution ŷ using
Theorem 16, with the objective w.r.t. LP(fλ) increased by at most 5ρU .

Let F̂ = {i ∈ F : ŷi = 1} and Ĉ ′ = C1 ∪ Cfull as in the proof of Theorem 16. There are
at least m′ clients in Ĉ ′. We assume |Ĉ ′| ≤ m, otherwise the following argument is simpler.
We greedily connect m − |Ĉ ′| ≤ m −m′ clients in C \ C′ to their nearest open facilities in
F̂ , minimizing f

(
1−δ
1+δ d(j, F̂ )

)
for each of them and output the final solution (F̂ , Ĉ). We

consider the objective of (F̂ , Ĉ) in Jfλ
on Ĉ \ C′ and Ĉ ∩ C′ separately.∑

j∈Ĉ\C′

f(λd(j, F̂ )) +
∑

j∈Ĉ∩C′

f(λd(j, F̂ ))

≤
∑

j∈C⋆\C′

λ(1 + δ)
1− δ

f

(
1− δ

1 + δ
d(j, F̂ )

)
+

(
λτ(3τ − 1)(2 + δ)

2τ − 2 U ′ + 5ρU

)

≤max
{

λ(1 + δ)
1− δ

,
λτ(3τ − 1)(2 + δ)

2τ − 2

}  ∑
j∈C⋆\C′

f

(
1− δ

1 + δ
d(j, S0)

)
+ U ′

 + 5ρU

≤ 0.12354U + 5ρU. (6)

In the above, the first inequality is due to Lemma 15, Theorem 16 and the greedy selection of
Ĉ \ C′. The second is because S0 ⊆ F̂ . The last is due to (7.4) and our choices of parameters.

APPROX/RANDOM 2022
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Recall that U ≤ (1+ϵ)V ⋆ where V ⋆ is the optimal objective of Jf and U ≤ (1+O(ϵ))opt.
Using (6) and Theorem 3 again, the objective of (F̂ , Ĉ) in the original instance I is at most
(0.12354U + 5ρU + (1 + O(ϵ))opt)/λ ≤ (126.9 + O(ϵ + ρ))opt ≤ 127opt, by choosing small
enough ρ and ϵ. The running time is obtained from the enumeration process and bounded
by a polynomial. ◀

3.2 Ordered Matroid/Knapsack Median
We consider the ordered matroid median problem (OMatMed) and the ordered knapsack
median problem (OKnapMed). Formally, in OMatMed, we instantiate OrdClst such that
F is the set of independent sets of an arbitrary matroid M = (F , F ) and C = {C}; in
OKnapMed, we instantiate OrdClst such that each facility i ∈ F has a weight wti ≥ 0, F is
the set of facility subsets with total weight at most W , i.e., F = {F ⊆ F :

∑
i∈F wti ≤W}

and C = {C}. It is easy to see that OMatMed and OKnapMed generalize matroid center and
matroid median, knapsack center and knapsack median, respectively. Moreover, since the
cardinality constraint |F | ≤ k is trivially recovered by the matroid and knapsack constraints,
OkMed is also generalized by OMatMed and OKnapMed.

Theorem 2 is obtained using the same reduction by Theorem 3 and similar iterative
rounding algorithms as ROkMed. We provide the details of the algorithms and the proofs in
Appendix B and Appendix C.
▶ Remark. We remark on the difficulties of OMatMed and OKnapMed under previous methods
for OkMed. The integrality gap in the natural relaxation for matroid median is a constant
(see, e.g., [22]), thus it is likely that the algorithm by Byrka et al. [5] could provide a
constant-factor approximation for OMatMed after some modifications; this would hardly be
surprising since our reduction algorithm also gives a simpler analysis for OMatMed, compared
with ROkMed. For OKnapMed, however, it appears that previous methods will fail due to
the unbounded integrality gap in the natural relaxation for knapsack median (see, e.g., [24]);
our reduction framework can circumvent this issue analogously to ROkMed.

4 Conclusion

In this paper, we present a reduction framework for a class of clustering problems with
ordered objectives, which preserves the approximation guarantee up to constant factors. This
leads to the first polynomial-time constant-factor approximation algorithms for three natural
clustering problems, namely, robust ordered k-median, ordered matroid median and ordered
knapsack median. We find the problem of robust ordered k-median particularly interesting,
since its objective exhibits a certain unimodal shape, which can be nicely motivated by
real-world applications.

We list some open questions here that we find interesting.
Our reduction framework is based upon the sparsification methods proposed by Aouad
and Segev [1] and Byrka et al. [5]. On the ordered objective and symmetric monotone
norms in general, there have been other approximation methods, e.g., [8, 19]. It would be
interesting to see whether our approximation guarantees can be improved by leveraging
other techniques and ideas in the literature.
Although the objective of robust ordered k-median is distinctly unimodal in its shape
(see Figure 1), there are still more general unimodal objective functions that are not
captured by it. Obtaining an approximation algorithm for arbitrary unimodal vectors,
even with an O(log n)-factor approximation guarantee, is beyond the scope of our current
framework, so it might require some brand new ideas to handle these objectives.
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A Missing Proofs for Robust Ordered k-Median

Proof of Theorem 7. Let us first assume we know (F ⋆, C⋆); we will remedy this assumption
after the construction of J ′. Recall that U ∈ [V ⋆, (1 + ϵ)V ⋆) and V ⋆ =

∑
j∈C⋆ f(c⋆

j ).
Set S0 = ∅, C′ = C. Whenever there exists i ∈ F ⋆ \ S0 such that

∑
j∈C⋆:κ⋆

j
=i f(c⋆

j ) ≥ ρU ,
we set S0 ← S0 ∪ {i}. This process can be repeated for at most O(1/ρ) times, because the
subsets of clients assigned to the facilities in S0 are mutually disjoint by the definition of κ⋆

j ,
and the overall sum of f values is at most V ⋆ ≤ U . The remaining facilities in F ⋆ \ S0 will
always satisfy (7.2) because we will only add facilities to S0 and remove clients from C′.

Next, we put C ′⋆ = C⋆ ∩ C′ at all times. Whenever there exists p ∈ F ∪ C′ such that∣∣BallC′⋆

(
p, δc⋆

p

)∣∣ · f((1− δ)c⋆
p) ≥ ρU , set C′ ← C′ \ BallC′

(
p, δc⋆

p

)
and S0 ← S0 ∪ {κ⋆

p}. Each
removed client j is from C′ and satisfies f(c⋆

j ) ≥ f(c⋆
p−d(j, p)) ≥ f((1−δ)c⋆

p) using the triangle
inequality. Thus the total f value removed is at least

∣∣BallC′⋆

(
p, δc⋆

p

)∣∣ · f((1− δ)c⋆
p) ≥ ρU .

Using a similar argument, this process can also be repeated for at most O(1/ρ) times. The
condition in (7.3) is then satisfied by definition.

Note that each such removed client j ∈ C \ C′ has, by the triangle inequality again,

f

(
1− δ

1 + δ
d(j, S0)

)
≤ f

(
1− δ

1 + δ
(d(j, p) + d(p, κ⋆

p))
)
≤ f((1− δ)c⋆

p) ≤ f(c⋆
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where the last inequality is because c⋆
j ≥ c⋆

p − d(j, p) ≥ (1 − δ)c⋆
p. Therefore, by summing

over all j ∈ C⋆, (7.4) follows since∑
j∈C⋆\C′

f

(
1− δ

1 + δ
d(j, S0)

)
+ U ′ ≤

∑
j∈C⋆\C′

f(c⋆
j ) +

∑
j∈C⋆∩C′

f(c⋆
j ) = V ⋆ ≤ U.

Finally, we remove the dependence of the procedures on (F ⋆, C⋆), by noticing that
|S0| = O(1/ρ), and C′ is obtained from C by removing O(1/ρ) closed balls. Since m′ = |C⋆∩C′|
only takes values in [m], the total number of possible outcomes is at most n

O(1/ρ)
0 , and

we can simply enumerate all possible configurations of (C′, m′, S0). (7.1) also follows by
definition. ◀

Proof of Theorem 8. We iteratively construct {R̂j : j ∈ C′} that always maintain (8.2),
then prove (8.1). Initially, let R̂j = 0 for each j ∈ C′. In each iteration k ≥ 1, we try to
assign the k-th largest distance t′ in {d(i, j) : i ∈ F , j ∈ C′} \ {0} sequentially to unassigned
clients {j ∈ C′ : R̂j = 0} without violating (8.2); it is easy to verify that (8.2) is always
maintained, since it suffices to consider the case of t = t′ for each p ∈ F ∪ C′ (cf. [23]).

Recall that C ′⋆ = C⋆ ∩ C′. We construct a one-to-one mapping ϕ : C ′⋆ → C′ and show
the solution (F ⋆, ϕ(C ′⋆)) satisfies (8.1). Initially, we let ϕ be the identity function on C ′⋆.
Consider the clients in {j ∈ C ′⋆ : c⋆

j > (1 + 3δ/4)R̂j} in non-decreasing order of c⋆
j . For each

such j, we want to update ϕ(j) to an “unused” client in the current C′ \ ϕ(C ′⋆) such that
d(ϕ(j), j) ≤ δc⋆

j /2 and R̂ϕ(j) ≥ c⋆
j . If such ϕ(j) exists for each j ∈ C ′⋆, we assign ϕ(j) to κ⋆

j ,
define κ′

ϕ(j) = κ⋆
j and thus c′

ϕ(j) = d(ϕ(j), κ⋆
j ) ≤ c⋆

j +d(j, ϕ(j)) ≤ (1+δ/2)c⋆
j ≤ (1+δ/2)R̂ϕ(j).

Moreover, one has

∀i ∈ F ⋆ \ S0,
∑

j∈ϕ(C′⋆):κ′
j
=i

f

(
2

2 + δ
c′

j

)
≤

∑
j∈C′⋆:κ⋆

j
=i

f(c⋆
j ) ≤ ρU,

where the last inequality is due to (7.2). Similarly, one has∑
j∈ϕ(C′⋆)

f

(
2

2 + δ
c′

j

)
=

∑
j∈C′⋆

f

(
2

2 + δ
c′

ϕ(j)

)
≤

∑
j∈C′⋆

f(c⋆
j ) = U ′,

therefore (8.1) is satisfied by (F ⋆, ϕ(C ′⋆)) in this case.
It remains to show that such an unused j′ ∈ C′ \ ϕ(C ′⋆) can always be found for each

j ∈ C ′⋆ with c⋆
j > (1 + 3δ/4)R̂j . Notice that we have R̂j = 0 when t′ = c⋆

j is considered
during the construction, so setting R̂j = c⋆

j would be a violation in (8.2); that is, there exists
p ∈ F ∪ C′ such that d(p, j) ≤ δc⋆

j /4 and the set Hj =
{

j′ ∈ BallC′
(
p, δc⋆

j /4
)

: R̂j′ ≥ c⋆
j

}
satisfies

|Hj ∪ {j}| = |Hj |+ 1 >
ρU

f((1− δ)(1− δ/4)c⋆
j ) . (7)

Further, if there exists some j′ ∈ Hj \ ϕ(C ′⋆), we can set ϕ(j) = j′ since R̂j′ ≥ c⋆
j and

d(j, j′) ≤ d(j′, p) + d(p, j) ≤ δc⋆
j /2 using the triangle inequality. Therefore, it suffices to

prove Hj ̸⊆ ϕ(C ′⋆).
For the sake of contradiction, assume Hj ⊆ ϕ(C ′⋆) when we want to update ϕ(j). For

each ϕ(ĵ) ∈ Hj , we have d(p, ĵ) ≤ d(p, ϕ(ĵ)) + d(ĵ, ϕ(ĵ)) ≤ 3c⋆
j /4, because we consider

the clients in non-decreasing order of c⋆
j and hence d(ĵ, ϕ(ĵ)) ≤ δc⋆

ĵ
/2 ≤ δc⋆

j /2 in earlier
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iterations. This shows that (currently) ϕ−1(Hj) ⊆ BallC′⋆

(
p, 3δc⋆

j /4
)
. We further have

c⋆
p ≥ c⋆

j − d(p, j) ≥ (1− δ/4)c⋆
j and δc⋆

p ≥ δ(1− δ/4)c⋆
j ≥ (3δ/4)c⋆

j as δ < 1. Thus ϕ−1(Hj) ⊆
BallC′⋆

(
p, 3δc⋆

j /4
)
⊆ BallC′⋆

(
p, δc⋆

p

)
. Because j /∈ ϕ−1(Hj) and j ∈ BallC′⋆

(
p, δc⋆

p

)
, we have∣∣BallC′⋆

(
p, δc⋆

p

)∣∣ · f((1− δ)c⋆
p) ≥ (|Hj |+ 1)f((1− δ)c⋆

p)
≥ (|Hj |+ 1)f((1− δ)(1− δ/4)c⋆

j ) >(7) ρU,

which is a contradiction to (7.3). ◀

B Ordered Matroid Median

In this section, we give the first constant-factor approximation for OMatMed. As is pointed
out in [23], the natural LP relaxation for matroid median has a small integrality gap; we
skip the pre-processing steps of ROkMed and provide a sketch on how the iterative rounding
algorithm directly outputs the desired approximate solution. Suppose we have a faithful
function f in what follows via Theorem 3 and exhaustive search.
1. Ignore the pre-processing steps (i.e., Theorem 7 and Theorem 8) in the ROkMed algorithm.

To obtain a natural relaxation for any reduced instance Jfλ
, replace the cardinality

constraint
∑

i∈F yi ≤ k in LP(fλ) with
∑

i∈S yi ≤ rM(S), ∀S ⊆ F ; here, rM is the rank
function of the given matroidM = (F , F ), and these matroid polytope constraints follow
from a classic result by Edmonds [15].

2. We no longer have the stronger relaxation as the ROkMed case does. We solve the natural
relaxation and proceed to the auxiliary LP, which is similar to A-LP(fλ2) except for the
matroid constraints; because each client is fully assigned to an extent of 1 in OMatMed, we
also remove (A-LP.6) and change (A-LP.4) to equality constraints. We use Algorithm 1
for iterative rounding; since we do not have S0 or virtual clients, Algorithm 1 starts with
Cpart ← C and Ccore ← ∅.

3. Because we do not have any outliers and each client will end up in Cfull, the remaining
tight constraints after iterative rounding are either from a partition matroid (i.e., y(Fj) = 1
for each j ∈ Ccore) or from the input matroid (i.e.,

∑
i∈S yi ≤ rM(S) for each S ⊆ F).

Therefore, the corresponding output solution y′ is integral [15].
4. Using the same argument as Lemma 15, the objective value of y′ in the natural relaxation

LP(fλ) (we use the same names as ROkMed here with a slight abuse of notation) is
bounded by the objective of y′ in A-LP(fλ2) where λ2 = 3τ−1

τ−1 λ, and further bounded by
the optimal objective of LP(fλ1) where λ1 = τ(3τ−1)

τ−1 λ. Similar to Lemma 9, the optimum
of LP(fλ1) is at most λ1(1 + O(ϵ))opt, so the objective of y′ in LP(fλ) is also at most
λ1(1 + O(ϵ))opt.

5. Using Theorem 3 on the reduced instance Jfλ
, the integral solution induced by y′ has

an approximation ratio of

1
λ

(λ1(1 + O(ϵ)) + (1 + O(ϵ))) = (1 + O(ϵ))
(

τ(3τ − 1)
τ − 1 + 1

λ

)
,

where we have λ ≤ τ−1
τ(3τ−1) ∈ (0, 5 − 2

√
6] because λ1 ≤ 1 in LP(fλ1). Therefore, the

approximation ratio is minimized when λ = τ−1
τ(3τ−1) and τ(3τ−1)

τ−1 is minimized, giving

10 + 4
√

6 + O(ϵ) ≤ 19.798 + O(ϵ) ≤ 19.8,

where we choose a small enough constant ϵ > 0.
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C Ordered Knapsack Median

In this section, we give the first constant-factor approximation for OKnapMed. We closely
follow the procedures in [23] and use an iterative rounding algorithm akin to ROkMed.
Suppose we have a faithful function f in what follows via Theorem 3 and exhaustive search.
The following two theorems are similar to Theorem 7 and Theorem 8 in ROkMed. Let
(F ⋆, C⋆ = C) be the optimal solution to the original OKnapMed instance I with optimum
opt ≥ 0. Recall that we guess U ∈ [V ⋆, (1+ϵ)V ⋆) via binary search, where V ⋆ is the optimum
of J = (F , C, d, F , C , f); we have V ⋆ ≤ (1 + O(ϵ))opt using Theorem 3.

▶ Theorem 17. Given ρ, δ ∈ (0, 1) and U , there exists an n
O(1/ρ)
0 -time algorithm that finds

an extended instance J ′ = (F , C′, d, F , C ′, f, S0) satisfying the following.
(17.1) C′ ⊆ C, C ′ = {C′} and S0 ⊆ F ⋆ with |S0| = O(1/ρ).
(17.2) For each i ∈ F ⋆ \ S0, we have

∑
j∈C′:κ⋆

j
=i f(c⋆

j ) ≤ ρU ,

(17.3) For each p ∈ F ∪ C′, we have
∣∣BallC′

(
p, δc⋆

p

)∣∣ · f((1− δ)c⋆
p) < ρU ,

(17.4) Denote U ′ =
∑

j∈C′ f(c⋆
j ). We have

∑
j∈C\C′ f

(
1−δ
1+δ d(j, S0)

)
+ U ′ ≤ U.

▶ Theorem 18. Given the instance found in Theorem 17, we can efficiently compute a set
of upper bounds {Rj ≥ 0 : j ∈ C′} such that for each j ∈ C′, we have

c⋆
j ≤ Rj = max {R > 0 : |BallC′ (j, δR)| · f((1− δ)R) ≤ ρU} .

The two theorems above are almost identical to those for ROkMed, thus we omit their
proofs here. By replacing the cardinality constraint y(F ) ≤ k with the relaxed knapsack
constraint

∑
i∈F wti · yi ≤W , and removing the coverage constraint for outliers, we consider

a stronger LP similar to S-LP(fλ1). We also use iterative rounding on an auxiliary LP similar
to A-LP(fλ2). Using a similar argument as in Lemma 14, we see that after iterative rounding,
the resulting solution y′ corresponds to the intersection of a laminar family and a knapsack
constraint, hence it contains at most 2 fractional variables. We now focus on obtaining an
integral solution ŷ from y′.

▶ Theorem 19. There exists λ > 0 depending on δ and τ , such that we can efficiently
compute an integral solution ŷ to LP(fλ) (in the knapsack case), and its objective value is at
most 3ρU larger than that of y′.

Proof. If there is only one fractional facility i2, we close it. If there are two, suppose i1, i2
are the two fractional facilities and i1 is the one with a smaller weight; because y′ is a basic
feasible solution, we again have y′

i1
+ y′

i2
= 1; we fully open i1 and close i2. The set of open

facilities F̂ is similarly defined as in Theorem 16. Because wti1 ≤ wti2 , it is also easy to
verify that

∑
i∈F wti ≤W , thus F̂ is indeed a feasible solution.

Unlike ROkMed, each client is fully assigned, so it remains to bound the cost incurred
from re-assigning clients that were assigned to i2, that is, J = {j ∈ Cfull : i2 ∈ Bj}. Let
γ > 0 be a constant that we determine later, i⋆ be the nearest open facility to i2 in F̂ and
t′ = d(i2, i⋆). Let J1 = {j ∈ J : d(j, i2) > γt′} and J2 = {j ∈ J : d(j, i2) ≤ γt′}. For j ∈ J1,
we have d(j, i⋆) ≤ d(j, i2) + d(i2, i⋆) < (1 + 1

γ )d(j, i2), thus

∑
j∈J1

f(λd(j, i⋆)) ≤
∑
j∈J1

f (d(j, i2)) ≤ 2ρU ⇐ λ ≤ γ

1 + γ
. (8)
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Fix some j ∈ J2. Similar as before, we have Rj ≥ Dlj /τ ≥ τ−1
τ(3τ−1) (t′ − d(j, i2)) ≥

τ−1
τ(3τ−1) (1− γ)t′. Suppose δRj ≥ 2γt′, then by Theorem 18 and the triangle inequality,

|J2| ≤ |BallC′ (i2, γt′)| ≤ |BallC′ (j, 2γt′)| ≤ |BallC′ (j, δRj)| ≤ ρU

f((1− δ)Rj) .

Using the triangle inequality again, we have d(j, i⋆) ≤ (1 + γ)t′ and the following total cost
of assigning J2 to i⋆ is at most∑

j∈J2

f(λd(j, i⋆)) ≤ |J2|f(λ(1 + γ)t′) ≤ ρU ⇐ λ ≤ (1− δ) · τ − 1
τ(3τ − 1) ·

1− γ

1 + γ
. (9)

We let σ = τ−1
τ(3τ−1) and let γ = δσ

2+δσ so that δRj ≥ 2γt′. By letting λ be the minimum
of (8)(9) and summing over the two cases, the increase of objective value w.r.t. LP(fλ) is at
most 2ρU + ρU = 3ρU , thus the theorem follows. ◀

Let δ = 2/3 and thus λ = σ
3+2σ . Similar to Lemma 9, the objective value of S-LP(fλ1),

λ1 = τ(3τ−1)
τ−1 λ is at most λ1U ′. Using the same argument as Lemma 15, the objective value

of y′ in the original relaxation LP(fλ) is at most that of A-LP(fλ2), λ2 = 3τ−1
τ−1 λ, which can

be bounded by λ1U ′ akin to Lemma 13. Using Theorem 19, the objective of ŷ to LP(fλ) is
at most λ1U ′ + 3ρU . Finally, using (17.4) and similarly to (6), the approximation ratio is(

max
{

5λ,
τ(3τ − 1)

τ − 1 λ

}
+ 1 + O(ρ)

)
1 + ϵ

λ
=

(
λ

σ
+ 1 + O(ρ)

)
1 + ϵ

λ
= 1

σ
+ 1

λ
+O(ϵ+ρ).

By letting τ = 1 +
√

2
3 and σ = 5− 2

√
6, the approximation ratio is at most

4
σ

+ 2 + O(ϵ + ρ) = 22 + 8
√

6 + O(ϵ + ρ) ≤ 41.596 + O(ϵ + ρ) ≤ 41.6,

where one chooses ϵ and ρ that are small enough. The running time is obtained from the
enumeration process and bounded by a polynomial.
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