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Abstract
We analyze the sketching approximability of constraint satisfaction problems on Boolean domains,
where the constraints are balanced linear threshold functions applied to literals. In particular, we
explore the approximability of monarchy-like functions where the value of the function is determined
by a weighted combination of the vote of the first variable (the president) and the sum of the votes of
all remaining variables. The pure version of this function is when the president can only be overruled
by when all remaining variables agree. For every k ≥ 5, we show that CSPs where the underlying
predicate is a pure monarchy function on k variables have no non-trivial sketching approximation
algorithm in o(

√
n) space. We also show infinitely many weaker monarchy functions for which

CSPs using such constraints are non-trivially approximable by O(log(n)) space sketching algorithms.
Moreover, we give the first example of sketching approximable asymmetric Boolean CSPs. Our
results work within the framework of Chou, Golovnev, Sudan, and Velusamy (FOCS 2021) that
characterizes the sketching approximability of all CSPs. Their framework can be applied naturally to
get a computer-aided analysis of the approximability of any specific constraint satisfaction problem.
The novelty of our work is in using their work to get an analysis that applies to infinitely many
problems simultaneously.

2012 ACM Subject Classification Theory of computation → Sketching and sampling; Theory of
computation → Approximation algorithms analysis

Keywords and phrases sketching algorithms, approximability, linear threshold functions

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2022.35

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2205.02345

Funding Chi-Ning Chou: Partially supported by NSF grants DMS-2134157 and CCF-1565264, DOE
grant DE-SC0022199, and the Simons foundation.
Amirbehshad Shahrasbi: The author was with Harvard University and supported by CRA-CCC
Computing Innovations Fellowship (CIFellowship 2020) during this work.
Madhu Sudan: Supported in part by a Simons Investigator Award and NSF Awards CCF 1715187
and CCF 2152413.
Santhoshini Velusamy: Supported in part by a Google Ph.D. Fellowship, a Simons Investigator
Award to Madhu Sudan, and NSF Awards CCF 1715187 and CCF 2152413.

Acknowledgements We thank the anonymous reviewers for their helpful and constructive comments.

© Chi-Ning Chou, Alexander Golovnev, Amirbehshad Shahrasbi, Madhu Sudan, and Santhoshini
Velusamy;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2022).
Editors: Amit Chakrabarti and Chaitanya Swamy; Article No. 35; pp. 35:1–35:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.35
https://arxiv.org/abs/2205.02345
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


35:2 Sketching Approximability of (Weak) Monarchy Predicates

1 Introduction

In this paper we consider the sketching complexity of solving constraint satisfaction problems
(CSPs) approximately where the constraints are given by linear threshold functions over a
collection of Boolean literals. We introduce these terms below.

CSPs

Given a Boolean function f : {−1, 1}k → {0, 1}, the Boolean CSP associated with f , denoted
Max-CSP(f) is the following optimization problem. Given m constraints C1, . . . , Cm on n

Boolean variables X1, . . . , Xn, where each constraint applies f to a sequence of k distinct
literals from the set {X1, . . . , Xn, −X1, . . . , −Xn}, find the maximum fraction of constraints
that can be satisfied by an assignment to the n variables. For an instance Ψ of Max-CSP(f)
we use valΨ to denote this maximum value. We are interested in approximating valΨ and
this task is known to be equivalent to solving a gapped decision version of Max-CSP(f). For
0 ≤ β < γ ≤ 1 we define the (γ, β)-gapped version of Max-CSP(f), abbreviated to (γ, β)-
Max-CSP(f), to be the following promise decision problem: Given an instance Ψ satisfying
valΨ ≥ γ or valΨ < β decide which one of the two conditions holds.

Sketching algorithms

The class of algorithms we consider (and rule out) are randomized sketching algorithms.
Inputs to these algorithms arrive as a stream of elements, in our case a stream of constraints.
We consider algorithms that use some bounded amount of space, denoted s(n), to process
the stream and maintain a sketch of their output. When the stream ends the algorithm
outputs it verdict based on the current sketch. A key restriction of a sketching algorithm
is that its sketch should satisfy the following composability property. Given two streams σ

and τ and a fixing of the randomness, the sketch of their concatenation S(σ ◦ τ) should be
determined by their sketches S(σ) and S(τ) alone.1 Most existing algorithms for streaming
CSPs are sketching algorithms. We say a sketching algorithm solves a (gapped) decision
problem if on every input its answer is correct with probability at least 2/3.

Approximability and approximation resistance

For α ∈ [0, 1], we say an algorithm is an α-approximation algorithm for Max-CSP(f) if the
following holds: on every input instance Ψ, the algorithm outputs v such that α · valΨ ≤
v ≤ valΨ with probability at least 2/3. Note that the existence of an α-approximation
algorithm is equivalent to the existence of an algorithm for solving (γ, β)-Max-CSP(f) for
every γ, β ∈ [0, 1] with β ≤ α · γ.

For a function f : {−1, 1}k → {0, 1}, define ρ(f) = 2−k · |{x ∈ {−1, 1}k|f(x) = 1}|. For
every f and every instance Ψ of Max-CSP(f), a random assignment satisfies ρ(f) fraction
of the constraints in expectation and so every Ψ satisfies valΨ ≥ ρ(f). Thus the (1, ρ(f))-
Max-CSP(f) problem is trivially solvable by the algorithm that always outputs valΨ ≥ 1
(since the set {Ψ|valΨ < ρ(f)} is empty). We say Max-CSP(f) is sketching approximable
within space s(n) if there is an ε > 0 and a sketching algorithm using at most s(n) space that
solves (1 − ε, ρ(f) + ε)-Max-CSP(f). We say that Max-CSP(f) is approximation resistant to
space s(n) if for every ε > 0, every sketching algorithm for (1, ρ(f) + ε)-Max-CSP(f) requires
Ω(s(n)) space.

1 In contrast, a general streaming algorithm maintains a state S(σ ◦ τ) that may depend on S(σ) and all
of τ .



C.-N. Chou, A. Golovnev, A. Shahrasbi, M. Sudan, and S. Velusamy 35:3

1.1 Motivation and related work
There has been an increasing interest in studying the approximability of CSPs in the streaming
setting [16, 13, 14, 8, 7, 15, 6, 4, 5, 19, 2, 3]. In particular, recently Chou, Golovnev, Sudan,
and Velusamy [4, 5] gave a dichotomy result for sketching approximability of all finite CSPs.
Specifically, they proved the following theorem.

▶ Theorem 1 ([5]). For every k, every predicate f : {−1, 1}k → {0, 1} and every 0 ≤ β <

γ ≤ 1 one of the following holds: (1) (γ, β)-Max-CSP(f) is solvable by an O(log(n))-space
sketching algorithm, or (2) for every ε > 0, (γ − ε, β + ε)-Max-CSP(f) is not solvable by any
o(

√
n)-space sketching algorithm. Furthermore there is a decidable procedure that determines,

given F , γ and β, which of the two conditions hold.

We note that a followup paper by the same authors [4] extends the result to a more
general setting: Specifically they allow non-Boolean variables, allow a set of predicates rather
than a single function; and allow the predicates to be applied to variables rather than literals.
While their result is more general all results in this paper work in the more restricted setting
of [5] and so we will describe our results in their language (which can be somewhat simpler
for problems that are expressible in their setting).

While the results of [5] imply a dichotomy, to explicitly get the optimal sketching
approximation ratio for a given predicate f , they need to solve an optimization problem
which in general needs computer-aided analysis. In order to get more explicit results one
needs to restrict the families of functions considered, and even then it is unclear if there
can be a closed-form expression. In the only example we are aware of, Boyland, Hwang,
Prasad, Singer, and Velusamy [2] gave closed-form expressions for the optimal sketching
approximation ratio of some symmetric Boolean CSPs. This still leaves the question of
exploring the sketching approximability of other subfamilies of CSPs and extracting some
qualitative results yielding necessary or sufficient conditions for non-trivial approximability.

1.2 Main results
In this paper we study sketching approximability of CSPs on linear threshold functions. Below
we define the classes of linear threshold functions and balanced linear threshold functions.

▶ Definition 2 (Linear threshold function). A linear threshold function, or LTF, is a Boolean
function f : {−1, 1}k → {0, 1} of the form

f(x) = sign
(

k∑
i=1

wixi + θ

)
,

where w1, . . . , wk, θ ∈ R. The function sign(z) has value 1 if z > 0 and 0 if z ≤ 0; w1, . . . , wk

are called the weights of f and θ is the threshold.

▶ Definition 3 (Balanced linear threshold function). A balanced linear threshold function, or
balanced LTF, is an LTF with threshold 0 and the additional restriction that for every x ∈
{−1, 1}k, we have

∑k
i=1 wixi ̸= 0. Specifically, a balanced LTF f satisfies f(−x) = 1 − f(x)

for every x.

Note that for a balanced LTF f , ρ(f) = 1/2, and the goal of approximability is to beat
this factor. Balanced LTFs form a technically important class of functions to study visavis
CSP approximability. For instance Potechin [18] studies them in the polynomial time regime
giving a (somewhat complex) approximation-resistant function in this class. In the sketching

APPROX/RANDOM 2022
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setting, interest in this class of functions comes from [5, Theorem 1.3] which shows that if a
function f supports one-wise independence (i.e., f−1 supports a distribution on {−1, 1}k

that is uniform on each of the k marginals) then Max-CSP(f) is approximation resistant to
o(

√
n) space streaming algorithms. Balanced LTFs are the most basic class of functions that

do not support one-wise independence and hence are not covered by this theorem. Studying
this class thus offers the possibility of finding new classes of CSPs that are approximation
resistant to o(

√
n)-space streaming algorithms.

Our first result shows that every balanced LTF on up to 4 variables is sketching approx-
imable. (So to search for new approximation resistant functions we need to look at functions
on more variables!) We note that there are only finitely many such LTFs, but already this
theorem gives the first example of an asymmetric Boolean CSP which is approximable by
sketching algorithms.2

▶ Theorem 4. For every balanced LTF f on k ≤ 4 variables, Max-CSP(f) is sketching
approximable in O(log(n)) space.

Our next result shows that there do exist balanced LTFs functions on 5 or more variables
that are sketching approximation resistant. The specific family of functions we show this
for are the “Monarchy” functions. For k ∈ N, MONk : {−1, 1}k → {0, 1} is given by
MONk(x1, . . . , xk) = sign ((k − 2)x1 + x2 + · · · + xk). It may be easily verified that MONk

is a balanced LTF. We have the following theorem.

▶ Theorem 5. For every k ≥ 5, Max-CSP(MONk) is sketching approximation resistant to
space o(

√
n).

Thus we get the first examples of functions that do not support one-wise independence
that are approximation resistant to space o(

√
n) sketching algorithms. In fact, the theorem

gives infinitely many such examples. We suspect that the Balanced LTF constructed in [18]
should also be approximation-resistant but so far we don’t have a proof. The monarchy
functions, by virtue of the simplicity allow a simpler analytic proof, though admittedly even
in this case we do not have great intuition for the proof and do not know how to extend it to
other classes of functions.

Finally we also give an infinite subclass of balanced LTFs that are approximable us-
ing O(log(n)) space. The functions we consider here are what we call “weak monarchy”
functions.3 For j ≤ k ∈ N, let WMONk,j : {−1, 1}k → {0, 1} be the function given by
WMONk,j(x1, . . . , xk) = sign (j · x1 + x2 + · · · + xk). It may be easily verified that when
j + k is even, then WMONk,j is a balanced LTF. We have

▶ Theorem 6. For all integers j ≥ 2 and k ≥ 7j3 such that k+j is even, Max-CSP(WMONk,j)
is sketching approximable in O(log(n)) space. In particular, for every j, there exist infinitely
many k such that Max-CSP(WMONk,j) is sketching approximable.

The results above give the first examples of asymmetric Boolean CSPs for which
Max-CSP(f) is sketching approximable. Again we get an infinite family of such functions.

2 Note that Max-DICUT (shown to be sketching approximable in [6, 4]) is not considered a Boolean CSP
in [5] since the Max-DICUT constraints are applied on variables and not on literals.

3 Such functions are also sometimes called presidential type predicates [10].



C.-N. Chou, A. Golovnev, A. Shahrasbi, M. Sudan, and S. Velusamy 35:5

Comparison to the polynomial time regime

Hast [9] proves that (a generalization of) Theorem 23 holds in the polynomial time regime
(thus, implying an analogue of Theorem 6 in the polynomial time regime). Austrin, Benabbas,
and Magen [1] prove that MONk is approximable in polynomial time, which is in sharp
contrast to the result of Theorem 5 in the sketching setting. Huang and Potechin [10] show
that almost all WMON predicates are approximable in polynomial time. Finally, Potechin [18]
gives a balanced LTF which is (conditionally) approximation resistant in the polynomial
time regime.

Organization of the paper

We start with giving formal definitions and stating relevant previous results in Section 2.
The three main theorems are proved in Section 3, Section 4, and Section 5, respectively.

2 Preliminaries

We use N,R, and R≥0 to denote the sets of all natural, real, and non-negative real numbers,
respectively. We use [n] to denote the set {1, . . . , n}. We write vector variables in boldface,
e.g., x, and we use xi to denote their ith entry. For two vectors of the same length x, y ∈ Rk,
x ⊙ y ∈ Rk denotes the entry-wise product of x and y. For p ∈ [0, 1], Bern(p) denotes the
Bernoulli distribution taking value 1 with probability p, and value −1 with probability 1 − p.
We adopt the convention that

(
n
k

)
= 0 for k < 0 or k > n. By

(
n

≤k

)
we denote the sum∑k

i=0
(

n
i

)
.

2.1 Sketching approximability and approximation resistance
For a function f : {−1, 1}k → {0, 1}, let ρ(f) = 2−k · |{a ∈ {−1, 1}k | f(a) = 1}| denote the
probability that a uniformly random assignment of the variables satisfies f .

▶ Definition 7 (Sketching approximation resistance). For a function f : {−1, 1}k → {0, 1},
we say that f is sketching approximation resistant to space s(n) if for every ε > 0, every
sketching algorithm for (1, ρ(f) + ε)-Max-CSP(f) requires Ω(

√
n) space.

▶ Definition 8 (Sketching approximability). For a function f : {−1, 1}k → {0, 1}, we say that
f is sketching approximable in space s(n) if there exist ε > 0 and a sketching algorithm that
solves (1 − ε, ρ(f) + ε)-Max-CSP(f) using space s(n).

At first glance, it seems that if f is not sketching approximation resistant then it’s
not necessarily sketching approximable. Nonetheless, [5] proved that every f is either
approximable or approximation resistant.4

2.2 Characterization of approximability from [5]
In this work, we focus on CSPs that use a single function f applied to literals. Thus, we
will use the machinery from [5] instead of the more general (and more notationally-heavy)
version in [4]. For a distribution D ∈ ∆({−1, 1}k), by µ(D) we denote its marginals, i.e.,
µ(D) = (µ1, . . . , µk) where µi = Eb∼D[bi] for all i ∈ [k].

4 Concretely, as the sets KY , KN are closed (see Lemma 10), an algorithm for (1, ρ(f) + ε)-Max-CSP(f)
implies an algorithm for (1 − ε′, ρ(f) + ε)-Max-CSP(f) for some ε′ > 0, which in turn implies that
Max-CSP(f) is approximable.

APPROX/RANDOM 2022
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▶ Definition 9 ([5, Definitions 2.1 and 2.2]). For γ, β ∈ R, we define the sets of distributions
SY

γ and SN
β as

SY
γ = SY

γ (f) = {DY ∈ ∆({−1, 1}k) | E
b∼DY

[f(b)] ≥ γ}

and

SN
β = SN

β (f) = {DN ∈ ∆({−1, 1}k) | E
b∼DN

E
a∼Bern(p)k

[f(b ⊙ a)] ≤ β, ∀p ∈ [0, 1]} ,

and the sets of marginals of these distributions

KY
γ = KY

γ (f) = { µ(DY ) | DY ∈ SY
γ }

and

KN
β = KN

β (f) = { µ(DN ) | DN ∈ SN
β } .

We will use the following properties of the sets KY
γ and KN

β .

▶ Lemma 10 ([5, Lemma 2.4]). For every γ, β ∈ [0, 1] the sets KN
γ and KY

β are bounded,
closed and convex.

With these definitions, we are ready to present the approximability criteria from [5].5

▶ Theorem 11 ([5, Corollary 1.2]). For every k ∈ N and every function f : {−1, 1}k → {0, 1},
if KY

1 (f) ∩ KN
ρ(f)(f) = ∅, then f is sketching approximable within space O(log(n)), if

KY
1 (f) ∩ KN

ρ(f)(f) ̸= ∅, then f is sketching approximation resistant to space o(
√

n).

2.3 (Weak) Monarchy functions
▶ Definition 12. A monarchy predicate on k ≥ 2 variables MONk : {−1, 1}k → {0, 1} is
defined as

MONk(x1, . . . , xk) = sign
(

(k − 2)x1 +
k∑

i=2
xi

)
.

Here x1 is commonly referred to as the president and the rest of xis are called citizens.

▶ Definition 13 (Weak monarchy functions). A weak monarchy predicate of order j on k ≥ 2
variables WMONk,j : {−1, 1}k → {0, 1} is defined as

WMONk,j(x1, . . . , xk) = sign
(

j · x1 +
k∑

i=2
xi

)
.

Similar to ordinary monarchy functions, x1 is commonly referred to as the president and the
rest of xis are called citizens.

It is straightforward to see that MONk is a balanced LTF for every k ≥ 2 and WMONk,j

is a balanced LTF whenever k + j is even.

5 Strictly speaking the statement in Corollary 1.2 in [5] is somewhat different, but their proof of
Corollary 1.2 asserts this explicitly.
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2.4 Fourier analysis of Boolean functions
We will need the following basic notions from Fourier analysis over the Boolean hypercube
(see, for instance, [17]).

▶ Definition 14 (Characteristic functions). For every S ⊆ [k] such that |S| ≥ 1, the charac-
teristic function χS : {−1, 1}k → {−1, 1} is defined as χS(x) =

∏
i∈S xi. The characteristic

function corresponding to the empty set is defined as the constant function χ∅(x) = 1 for all
x ∈ {−1, 1}k.

▶ Definition 15 (Fourier expansions). The Fourier expansion of a Boolean function f :
{−1, 1}k → {0, 1} is given by

f =
∑

S⊆[k]

f̂(S) · χS ,

where f̂(S) = Ex∼Unif{−1,1}k [f(x)·χS(x)] and Unif({−1, 1}k) denotes the uniform distribution
on {−1, 1}k.

▶ Definition 16 (Chow parameters). The Chow parameters of a Boolean function f :
{−1, 1}k → {0, 1} are the degree-0 Fourier coefficient and the k degree-1 Fourier coeffi-
cients of f , i.e., f̂(∅), f̂({1}), . . . , f̂({k}).

▶ Proposition 17. For every Boolean function f : {−1, 1}k → {0, 1},
1. ρ(f) = f̂(∅),
2. for every S ⊆ [k], |f̂(S)| ≤ f̂(∅), and
3. for every x ∈ {−1, 1}k, −f̂(∅) · k ≤

∑k
i=1 f̂({i}) · xi ≤ f̂(∅) · k.

Proof. The first statement of the proposition follows directly from the definition of ρ(f):
ρ(f) = Ex∼Unif({−1,1}k)[f(x)] = f̂(∅). For the second statement, observe that for all S ⊆ [k],

|f̂(S)| = |Ex∼Unif({−1,1}k)[f(x) · χS(x)]|
≤ Ex∼Unif({−1,1}k)[|f(x) · χS(x)|]
= Ex∼Unif({−1,1}k)[f(x)]

= f̂(∅) .

It immediately follows that for all x ∈ {−1, 1}k,∣∣∣∣∣
k∑

i=1
f̂({i}) · xi

∣∣∣∣∣ ≤
k∑

i=1
|f̂({i}) · xi| ≤ f̂(∅) · k . ◀

3 Approximability of Balanced LTFs on 4 variables

In this section, we show that all balanced LTFs on at most 4 variables are sketching
approximable in O(log(n)) space. We start by proving that Max-CSP(MON4) is approximable.

3.1 Approximability of MON4

Recall that by Theorem 11, it suffices to show that KY
1 (MON4)∩KN

1/2(MON4) = ∅. For k ≥ 2,
the inputs x2, . . . , xk are symmetric, and we will only consider distributions D ∈ ∆({−1, 1}k)
where all vectors having the same sum of coordinates and the same value in the first

APPROX/RANDOM 2022
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coordinate have the same probability masses. Concretely, for x, y ∈ {−1, 1}k, if x1 = y1
and

∑
i xi =

∑
i yi, then D(x) = D(y). Such a distribution D is uniquely specified by a

pair of vectors u = (u0, . . . , uk−1), v = (v0, . . . , vk−1) ∈ Rk
≥0 with

∑
i ui + vi = 1, where for

0 ≤ i ≤ k − 1,

ui = Pr{x1 = 1 and exactly i of the rest of xis are 1} ,

vi = Pr{x1 = −1 and exactly i of the rest of xis are 1} .

Note that when
∑

i ui + vi = 1, u, v define a distribution D with marginals µ(D) =
(µ1, µ′, . . . , µ′) where

µ1 =
k−1∑
i=0

(ui − vi) and µ′ =
k−1∑
i=0

( 2i

k − 1 − 1)(ui + vi) . (1)

Next we show that for MONk functions, restricting our attention to this class of distribu-
tions is without loss of generality.

▶ Definition 18. For γ, β ∈ R and k ≥ 2,

K̃Y
γ (MONk) = { (µ1, µ′) | (µ1, µ′, . . . , µ′) ∈ KY

γ (MONk)}

and K̃N
β (MONk) = { (µ1, µ′) | (µ1, µ′, . . . , µ′) ∈ KN

β (MONk)} .

▶ Lemma 19. For γ, β ∈ R and k ≥ 2,

KY
γ (MONk) ∩ KN

β (MONk) = ∅ if and only if K̃Y
γ (MONk) ∩ K̃N

β (MONk) = ∅ .

Proof. First, if (µ1, µ′, . . . , µ′) ∈ K̃Y
γ (MONk) ∩ K̃N

β (MONk), then by Definition 18,
(µ1, µ′, . . . , µ′) ∈ KY

γ (MONk) ∩ KN
β (MONk).

For the other direction. Assume that there is a vector µ = (µ1, µ2, . . . , µk) ∈ KY
γ (MONk)∩

KN
β (MONk). Consider two distribution DY ∈ SY

γ and DN ∈ SN
β yielding the vector µ =

µ(DY ) = µ(DN ). Given that the variables x2, · · · , xk are symmetric, any distribution that is
yielded by permuting x2, · · · , xk in DY (or DN ) is also in SY

γ (or SN
β ). Note that the marginals

of these distributions are also permutations of µ. By Lemma 10, KY
γ and KN

β are convex, so
they also contain the averages of these vectors: (µ1, µ′, . . . , µ′) ∈ KY

γ (MONk)∩KN
β (MONk) for

µ′ = (µ2+. . .+µk)/(k−1). Finally, by Definition 18, (µ1, µ′) ∈ K̃Y
γ (MONk)∩K̃N

β (MONk). ◀

Next, we characterize the set K̃Y
1 (MONk).

▶ Lemma 20. For every k ≥ 2, K̃Y
1 (MONk) = {(µ1, µ′) ∈ [−1, 1]2 : µ1(k−2)+µ′(k−1) ≥ 1}.

Proof. For µ1, µ′ ∈ [−1, 1] satisfying µ1(k − 2) + µ′(k − 1) ≥ 1, consider the distribution
DY given by u1 = (k−1)(1−µ′)

2(k−2) , uk−1 = (k−1)µ′+(k−2)µ1−1
2(k−2) , vk−1 = (1 − µ1)/2, and ui = 0 for

i ̸∈ {1, k − 1} and vj = 0 for j ̸= k − 1. Note that u1, vk−1 ≥ 0 from µ1, µ′ ∈ [−1, 1], and
uk−1 ≥ 0 from µ1(k − 2) + µ′(k − 1) ≥ 1. It is also easy to check that u1 + uk−1 + vk−1 = 1
which implies that DY is a distribution, and that it is supported on the preimages of 1 under
MONk. Therefore (µ1, µ′) ∈ K̃Y

1 (MONk).
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For the other direction, a distribution DY supported on the preimages of 1 under MONk

satisfies u1 + . . . + uk−1 + vk−1 = 1. Then, from (1),

µ1(k − 2) + µ′(k − 1) = (k − 2)
k−1∑
i=0

(ui − vi) +
k−1∑
i=0

(2i − k + 1)(ui + vi)

=
k−1∑
i=1

(2i − 1)ui + vk−1

≥
k−1∑
i=1

ui + vk−1 = 1 ,

where the second equality uses that u0 = 0 and vj = 0 for j < k − 1. This concludes the
proof of the lemma. ◀

Now we show that for the MON4 function, K̃Y
1 and K̃N

1/2 are disjoint, and, thus, MON4
is approximable in O(log(n)) space.

▶ Lemma 21. Max-CSP(MON4) is sketching approximable in O(log(n)) space.

Proof. Note that Lemma 20 gives that K̃Y
1 (MON4) = {(µ1, µ′) ∈ [−1, 1]2 : 2µ1 + 3µ′ ≥ 1}.

We show that K̃Y
1 and K̃N

1/2 are disjoint, and then Lemma 19 and Theorem 11 imply that
Max-CSP(MON4) is sketching approximable in space O(log(n)). Next, we prove that no
distribution D ∈ SN

1/2 has marginals that lie in K̃Y
1 .

We start by characterizing KN
1/2 (for general MONk). Take a distribution D ∈ ∆({−1, 1}k).

In order for D to lie within SN
1/2, the following needs to be satisfied:

E
b∼DN

E
a∼Bern(p)k

[f(b ⊙ a)] ≤ β, ∀p . (2)

Let the function hD(p) denote the probability of an assignment from D that has undergone
bit flips with respect to Bern(p)k to satisfy the monarchy predicate with the probability of
β = 1/2 or less. With this definition, D ∈ SN

1/2 if and only if hD(p) ≤ 1
2 for all 0 ≤ p ≤ 1.

Note that negating all variables xi flips the output of the monarchy predicate. Therefore, the
negation of a “true” assignment is “false” and vice versa. This gives that hD(p) = 1−hD(1−p)
for all 0 ≤ p ≤ 1 which implies that D ∈ SN

1/2 if and only if for all 0 ≤ p ≤ 1

hD(p) = 1
2 .

We now write down the coefficients of the polynomial hD(p) in terms of ui and vi

describing the distribution (as used earlier in this section).
If one draws an assignment from D where x1 = 1 and exactly i of the rest of the variables

are 1, the probability of the resulting assignment satisfying the monarchy predicate after the
Bernoulli flipping is

p(1 − (1 − p)ipk−1−i) + (1 − p)k−ipi .

Similarly, if x1 = −1 and exactly i of the rest of the variables are 1, the probability of the
resulting assignment satisfying the monarchy predicate after the Bernoulli flipping is

(1 − p)(1 − (1 − p)ipk−1−i) + (1 − p)k−1−ipi+1 .
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35:10 Sketching Approximability of (Weak) Monarchy Predicates

This gives that

hD(p) =
k−1∑
i=0

ui

[
p(1 − (1 − p)ipk−1−i) + (1 − p)k−ipi

]
+

k−1∑
i=0

vi

[
(1 − p)(1 − (1 − p)ipk−1−i) + (1 − p)k−1−ipi+1] (3)

To prove this lemma, we form the polynomial hD(p) for k = 4 and show that no set of
uis and vis satisfy both hD(p) = 1

2 and 2µ1 + 3µ′ ≥ 1 (where, by (1), µ1 =
∑3

i=0(ui − vi)
and µ′ =

∑3
i=0( 2i

3 − 1)(ui + vi).)

hD(p) = u0
[
p(1 − p3) + (1 − p)4]

+u1
[
p(1 − (1 − p)p2) + (1 − p)3p

]
+u2

[
p(1 − (1 − p)2p) + (1 − p)2p2]

+u3
[
p(1 − (1 − p)3) + (1 − p)p3]

+v0
[
(1 − p)(1 − p3) + (1 − p)3p

]
+v1

[
(1 − p)(1 − (1 − p)p2) + (1 − p)2p2]

+v2
[
(1 − p)(1 − (1 − p)2p) + (1 − p)p3]

+v3
[
(1 − p)(1 − (1 − p)3) + p4]

= u0 + v0 + v1 + v2

+p · (−3u0 + 2u1 + u2 − v1 − 2v2 + 3v3)
+p2 · (6u0 − 3u1 + 3u3 − 3v0 + 3v2 − 6v3)
+p3 · (−4u0 + 2u1 − 2u3 + 2v0 − 2v2 + 4v3)

Every distribution (whose marginals are) in K̃N
1/2(MON4) must satisfy the following

system of equations and inequalities, where (4)–(7) are equivalent to hD(p) = 1
2 , and (8)–(10)

guarantee that uis and vis describe a distribution.

u0 + v0 + v1 + v2 = 1
2 (4)

− 3u0 + 2u1 + u2 − v1 − 2v2 + 3v3 = 0 (5)
6u0 − 3u1 + 3u3 − 3v0 + 3v2 − 6v3 = 0 (6)
− 4u0 + 2u1 − 2u3 + 2v0 − 2v2 + 4v3 = 0 (7)

3∑
i=0

(ui + vi) = 1 (8)

ui ≥ 0, ∀0 ≤ i ≤ 3 (9)
vi ≥ 0, ∀0 ≤ i ≤ 3 (10)

Summing up (5) multiplied by 3, (7) multiplied by −13/6, and (8) multiplied by 2/3, we
have that

2/3 = u0/3 + 7u1/3 + 11u2/3 + 5u3 − 11v0/3 − 7v1/3 − v2 + v3

≥ −u0 + u1 + 3u2 + 5u3 − 5v0 − 3v1 − v2 + v3

= 2µ1 + 3µ′ ,

where the last equality uses (1). By Lemma 20, K̃Y
1 (MON4) = {(µ1, µ′) ∈ [−1, 1]2 : 2µ1 +

3µ′ ≥ 1}, and from the above inequality every vector (µ1, µ′) ∈ K̃N
1/2(MON4) satisfies

2µ1 + 3µ′ ≤ 2/3. This implies that K̃Y
1 (MON4) ∩ K̃N

1/2(MON4) = ∅, and finishes the
proof. ◀
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3.2 Balanced LTFs on 4 variables

In this section, we prove Theorem 4.

▶ Theorem 4. For every balanced LTF f on k ≤ 4 variables, Max-CSP(f) is sketching
approximable in O(log(n)) space.

We remark that there are non-balanced LTFs on fewer than four variables that are approx-
imation resistant. For example, if f(x1, x2) = x1 OR x2, then Max-CSP(f) is approximation
resistant to space o(n) even in the larger class of streaming algorithms (see, e.g., Corollary 4.2
in [6]).

Proof of Theorem 4. After relabeling and negating some of the variables of f , we can assume
that f(x1, x2, x3, x4) = sign(w1x1 + w2x2 + w3x3 + w4x4), where w1 ≥ w2 ≥ w3 ≥ w4 ≥ 0
(if f depends on i < 4 variables, then we set wi+1 = . . . = w4 = 0). Since f is balanced,
ξ1w1 + ξ2w2 + ξ3w3 + ξ4w4 ̸= 0 for all ξi ∈ {−1, 1}. Now consider the following three cases.

If w1 > w2 + w3 + w4, then f = sign(x1) is a dictator function, so Max-CSP(f) can be
trivially (1 − ε)-approximated in O(log(n)/ε2) space by an ℓ1-sketch algorithm [11, 12].
If w2 + w3 − w4 < w1 < w2 + w3 + w4, then f = MON4 is a monarchy function on k = 4
variables. Indeed, in this case only the sum of the votes of the three last variables overrules
the vote of the first variable. By Lemma 21, Max-CSP(f) is sketching approximable in
O(log(n)) space.
If w1 < w2 + w3 − w4, then f = MAJ(x1, x2, x3) is the majority function on 3 variables.
Indeed, the sum of any two weights of the first three variables outweighs the sum of
the remaining weights. In this case, Max-CSP(f) is known to be sketching approximable
in space O(log(n)) (this follows from the characterization of sketching approximable
symmetric functions in [5, Lemma 2.14] and the fact that a balanced LTF doesn’t support
one-wise independent distributions).
Another way to see that the majority function is sketching approximable is via Theorem 25.
Indeed, since majority is a symmetric function, the (non-empty) Chow parameters of
the majority function are all equal and non-zero (see, e.g., [17, Theorem 5.19] for
the exact values of the Fourier coefficients of the majority function). Then the Chow
parameters define the majority function itself, and, by Theorem 25, Max-CSP(f) is
sketching approximable in space O(log(n)). ◀

4 Approximation resistance of Monarchy Functions

In this section, we prove Theorem 5: we show that for k ≥ 5, the MONk function is
approximation resistant. Recall that by Lemma 19 it suffices to show that K̃Y

1 (MONk) ∩
K̃N

1/2(MONk) ̸= ∅ for k ≥ 5.
In the following we show that for k ≥ 5, there exist vectors (u, v) with certain properties

that will be useful in showing that K̃Y
1 (MONk) ∩ K̃N

1/2(MONk) ̸= ∅.
We defer the proof of Lemma 22 to the full version of the paper.

▶ Lemma 22. For every k ≥ 5, there exists u, v ∈ Rk
≥0 satisfying the following conditions.

(i)
∑

i(ui + vi) = 1, i.e., u, v define a distribution D. In particular, the marginals of D is
(µ1, µ′, . . . , µ′) where µ1 =

∑
i(ui − vi), and µ′ =

∑
i(

2i
k−1 − 1)(ui + vi).
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(ii) u and v satisfy

(1/2 − δ)
k−1∑
i=0

ui + (1/2 + δ)
k−1∑
i=0

vi

+
k−1∑
i=0

ui

(
−(1/2 + δ)i(1/2 − δ)k−i + (1/2 − δ)i(1/2 + δ)k−i

)
+

k−1∑
i=0

vi

(
−(1/2 + δ)i+1(1/2 − δ)k−1−i + (1/2 − δ)i+1(1/2 + δ)k−1−i

)
=1/2

for every δ ∈ [−1/2, 1/2]. In particular, this implies that D ∈ SN
1/2.

(iii) p′ ≥ 1 − k−2
k−1 p1 where p′ = Prx∼D[x2 = 1] = 1

k−1 (
∑

i iui +
∑

i ivi) and p1 =
Prx∼D[x1 = 1] =

∑
i ui. In particular, this implies the existence of DY ∈ SY

1 and
µ(DY ) = (µ1, µ′, . . . , µ′).

Now, we are ready to prove Theorem 5 using Lemma 22 and Theorem 11.

▶ Theorem 5. For every k ≥ 5, Max-CSP(MONk) is sketching approximation resistant to
space o(

√
n).

Proof. For every k ≥ 5, let u, v ∈ Rk
≥0, and µ1, µ′ ∈ [−1, 1] be the vectors given

by Lemma 22. Note that condition (i) guarantees that u, v define a distribution D with
marginal (µ1, µ′, . . . , µ′).

First, we show that condition (ii) is a sufficient condition for (µ1, µ′) ∈ K̃N
1/2. Recall that

DN ∈ SN
1/2(MONk) if for every δ ∈ [−1/2, 1/2], Eb∈DN

Ea∼Bern(1/2+δ)[MONk(b ⊙ a)] = 1/2.
Since Prx[MONk(x) = 1] = Prx[x1 = 1] − Prx[x = 10k−1] + Prx[x = 01k−1], we have that
Eb∈DN

Ea∼Bern(1/2+δ)[MONk(b⊙a)] = Pr
b,a

[b1 ⊙a1 = 1]− Pr
b,a

[b⊙a = 1(−1)k−1]+ Pr
b,a

[b⊙a = (−1)1k−1] .

We compute these three probabilities in terms of u, v, δ.

Pr
b,a

[b1 ⊙ a1 = 1] = (1/2 − δ)
k−1∑
i=0

ui + (1/2 + δ)
k−1∑
i=0

vi ,

Pr
b,a

[b ⊙ a = 1(−1)k−1] =
k−1∑
i=0

ui(1/2 + δ)i(1/2 − δ)k−i +
k−1∑
i=0

vi(1/2 + δ)i+1(1/2 − δ)k−1−i ,

Pr
b,a

[b ⊙ a = (−1)1k−1] =
k−1∑
i=0

ui(1/2 − δ)i(1/2 + δ)k−i +
k−1∑
i=0

vi(1/2 − δ)i+1(1/2 + δ)k−1−i .

Note that condition (ii) implies that

Pr
b,a

[b1 ⊙ a1 = 1] + Pr
b,a

[b ⊙ a = 1(−1)k−1] + Pr
b,a

[b ⊙ a = (−1)1k−1] = 1
2

for every δ ∈ [−1/2, 1/2] as desired. This implies that D ∈ SN
1/2(MONk). As condition (i)

gives µ(DN ) = (µ1, µ′, . . . , µ′), we have (µ1, µ′) ∈ K̃N
1/2 as desired.

Next, as p′ = µ′+1
2 and 1 − k−2

k−1 p1 = 1 − (k−2)(µ1+1)
2(k−1) , condition (iii) implies µ1(k − 2) +

µ′(k − 1) ≥ 1. By Lemma 20, this implies that (µ1, µ′) ∈ K̃Y
1 (MONk) as desired.

To sum up, Lemma 22 gives us (µ1, µ′) ∈ K̃Y
1 ∩ K̃N

1/2 for every k ≥ 5 and Lemma 19
implies (µ1, µ′, . . . , µ′) ∈ KY

1 ∩ KN
1/2. By Theorem 11, we conclude that MONk is sketching

approximation resistant to space o(
√

n) and, hence, complete the proof of Theorem 5. ◀
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5 Chow parameters and the approximability of weak monarchies

In this section, we prove that infinitely many weak monarchy functions are sketching
approximable within O(log(n)) space. We first prove in Section 5.1 that every LTF defined by
its Chow parameters (i.e., degree-1 Fourier coefficients as weights and threshold 0) is sketching
approximable within O(log(n)) space. And later in Section 5.2, we prove that infinitely many
weak monarchy functions are balanced LTFs defined by their Chow parameters.

5.1 Approximability of LTFs defined by their Chow parameters
▶ Theorem 23. For every Boolean function f : {−1, 1}k → {0, 1} of the form

f(x) = sign
(

k∑
i=1

f̂({i})xi

)
,

Max-CSP(f) is sketching approximable in O(log(n)) space.

▶ Definition 24. Define ε0(f) = min{
∑k

i=1 f̂({i}) · xi : f(x) = 1}. Define ε∗(f) =
min{ ε0(f)

3k , 2ε0(f)2

9ρ(f)k2 }.

We will use the following theorem to prove Theorem 23.

▶ Theorem 25. For every Boolean function f : {−1, 1}k → {0, 1} and every ε > 0, there
exists an O(log(n)) space (ρ(f) + ε∗(f) − ε)-approximation algorithm for Max-CSP(f).

First we show how to prove Theorem 23 using Theorem 25.

Proof of Theorem 23. If f(x) is the constant zero function, then it’s trivially approximable
in O(log(n)) space. Otherwise, when f(x) = sign

(∑k
i=1 f̂({i}) · xi

)
, we have ε0(f) =

min{
∑k

i=1 f̂({i}) · xi : f(x) = 1} > 0 and hence ε∗(f) > 0 by their definitions. Now for
ε = ε∗(f)/2, Theorem 25 implies that there is a (ρ(f) + ε∗(f)/2)-approximation algorithm
for Max-CSP(f), and finishes the proof. ◀

Before we prove Theorem 25, we will describe some useful definitions and lemmas from [5].
Let f : {−1, 1}k → {0, 1} be a Boolean constraint function of arity k and X1, . . . , Xn

be variables. A constraint C consists of j = (j1, . . . , jk) ∈ [n]k and b = (b1, . . . , bk) ∈
{−1, 1}k where the ji’s are distinct. The constraint C reads as requiring f(b ⊙ X|j) =
f(b1Xj1 , . . . , bkXjk

) = 1. A Max-CSP(f) instance Ψ contains m constraints C1, . . . , Cm with
non-negative weights w1, . . . , wm where Ci = (j(i), b(i)) and wi ∈ R for each i ∈ [m]. For an
assignment σ ∈ {−1, 1}n, the value valΨ(σ) of σ on Ψ is the fraction of weight of constraints
satisfied by σ, i.e., valΨ(σ) = 1

W

∑
i∈[m] wi · f(b(i) ⊙ σ|j(i)), where W =

∑m
i=1 wi. The

optimal value of Ψ is defined as valΨ = maxσ∈{−1,1}n valΨ(σ).

▶ Definition 26 (Bias (vector)). For λ = (λ1, . . . , λk) ∈ Rk, and instance Ψ =
(C1, . . . , Cm; w1, . . . , wm) of Max-CSP(f) where Ci = (j(i), b(i)) and wi ≥ 0, we let the
λ-bias vector of Ψ, denoted biasλ(Ψ), be the vector in Rn given by

biasλ(Ψ)ℓ = 1
W

·
∑

i∈[m],t∈[k]:j(i)t=ℓ

λtwi · b(i)t ,

for ℓ ∈ [n], where W =
∑

i∈[m] wi. The λ-bias of Ψ, denoted Bλ(Ψ), is the ℓ1 norm of
biasλ(Ψ), i.e., Bλ(Ψ) =

∑n
ℓ=1 |biasλ(Ψ)ℓ|.
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▶ Lemma 27 ([5, Lemma 4.7]). For every λ ∈ Rk, we have Bλ(Ψ) =
maxa∈{−1,1}n⟨a, biasλ(Ψ)⟩.

▶ Lemma 28 ([5, Lemma 4.4]). For every vector λ ∈ Rk and ε > 0, there exists a O(log(n))
space sketching algorithm A that on input a stream σ1, . . . , σℓ, representing an instance
Ψ = (C1, . . . , Cm; w1, . . . , wm), outputs a (1 ± ε)-approximation to Bλ(Ψ), i.e., for every Ψ,
(1 − ε)Bλ(Ψ) ≤ A(Ψ) ≤ (1 + ε)Bλ(Ψ), with probability at least 2/3.

Below, we describe Algorithm 1 and show that it is an O(log(n)) space (ρ(f) + ε∗(f) − ε)-
approximation algorithm for Max-CSP(f).

Algorithm 1 A sketching (ρ(f) + ε∗(f) − ε)-approximation algorithm for Max-CSP(f).

Input: a stream σ1, . . . , σℓ representing an instance Ψ of Max-CSP(f) where σi =
((j(i), b(i)), wi).

1: Let λ = (f̂({1}), . . . , f̂({k})) ∈ Rk and ε′ = ε/8.
2: Use the algorithm A from Lemma 28 to compute B̃ to be a (1 ± ε′) approximation to

Bλ(Ψ), i.e., (1 − ε′)Bλ(Ψ) ≤ B̃ ≤ (1 + ε′)Bλ(Ψ) with probability at least 2/3.
3: Let δ̃ = min{ 1

3k , 2B̃
9ρ(f)k2 }.

4: Output: v = ρ(f) + B̃δ̃
(1+ε′)2 .

It is clear that the algorithm above runs in O(log(n)) space (in particular by Lemma 28
for Step 2). We now turn to analyzing the correctness of the algorithm.

5.1.1 Analysis of the correctness of Algorithm 1
Before we analyse Algorithm 1, we establish some upper and lower bounds on valΨ in terms
of Bλ(Ψ) where λ = (f̂({1}), . . . , f̂({k})).

▶ Lemma 29 (Lower bound on valΨ). Let f : {−1, 1}k → {0, 1} be a Boolean function, and
Ψ be an instance of Max-CSP(f). Then

valΨ ≥ ρ(f) + Bλ(Ψ)δ(Ψ) ,

where λ = (f̂({1}), . . . , f̂({k})) and δ(Ψ) = min{ 1
3k , 2Bλ(Ψ)

9ρ(f)k2 }.

▶ Lemma 30 (Upper bound on valΨ). Let f : {−1, 1}k → {0, 1} be a Boolean function, ε0(f)
be as defined in Definition 24, and Ψ be an instance of Max-CSP(f). Then

valΨ ≤ Bλ(Ψ) + ρ(f) · k

ε0(f) + ρ(f) · k
,

where λ = (f̂({1}), . . . , f̂({k})).

We defer the proofs of Lemma 29 and Lemma 30 to the full version of the paper. We
now show the correctness of Algorithm 1 using these lemmas.

5.1.2 Proof of Theorem 25
Proof of Theorem 25. First, by Lemma 28, with probability at least 2/3, B̃ is a (1 ± ε′)
approximation to Bλ(Ψ), i.e., (1 − ε′)Bλ(Ψ) ≤ B̃ ≤ (1 + ε′)Bλ(Ψ). Next, we show that with
probability at least 2/3, (i) v ≤ valΨ and (ii) v ≥ (ρ(f) + ε∗(f) − ε) · valΨ.
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(i) v ≤ valΨ
We have

v = ρ(f) + B̃δ̃

(1 + ε′)2 ≤ ρ(f) + Bλ(Ψ)δ(Ψ) ≤ valΨ ,

where the last inequality follows from Lemma 29.

(ii) v ≥ (ρ(f) + ε∗(f) − ε) · valΨ
We have

v = ρ(f) + B̃δ̃

(1 + ε′)2 ≥ ρ(f) + Bλ(Ψ)δ(Ψ)
(

1 − ε′

1 + ε′

)2
≥ ρ(f) + Bλ(Ψ)δ(Ψ)(1 − ε) , (11)

where the last inequality follows from the choice of ε′. Let us first consider the case when
Bλ(Ψ) ≥ ε0(f). We have

Bλ(Ψ)δ(Ψ) ≥ ε0(f) · min
{

1
3k

,
2ε0(f)

9ρ(f)k2

}
≥ ε∗ , (12)

where the last equality follows from the definition of ε∗(f) in Definition 24.
Combining Equation (11) and Equation (12), we get

v ≥ ρ(f) + ε∗(f)(1 − ε) ≥ (ρ(f) + ε∗(f) − ε)valΨ ,

where the last inequality follows from valΨ ≤ 1.
Now, let us consider the case when Bλ(Ψ) < ε0(f). It follows from Proposition 17 that

ε0(f) ≤ ρ(f)k. Therefore,

2Bλ(Ψ)
9ρ(f)k2 ≤ 2ε0(f)

9ρ(f)k2 ≤ 2
9k

<
1
3k

,

and so δ(Ψ) = 2Bλ(Ψ)
9ρ(f)k2 . Combining Equation (11) and Lemma 30, we have

v

valΨ
≥ (1 − ε)

ρ(f) + 2Bλ(Ψ)2

9ρ(f)k2

ρ(f) + Bλ(Ψ)
k

(ρ(f) + ε0(f)
k

)
.

We show that for 0 ≤ Bλ(Ψ) ≤ ε0(f),

ρ(f) + 2Bλ(Ψ)2

9ρ(f)k2

ρ(f) + Bλ(Ψ)
k

≥
ρ(f) + 2ε0(f)2

9ρ(f)k2

ρ(f) + ε0(f)
k

. (13)

This immediately implies that

v

valΨ
≥ (1 − ε)

(
ρ(f) + 2ε0(f)2

9ρ(f)k2

)
≥ (1 − ε)(ρ(f) + ε∗(f)) > ρ(f) + ε∗(f) − ε .

Consider the function g(p) =
ρ(f)+ 2p2

9ρ(f)
ρ(f)+p . In order to show Equation (13), it suffices to show

that in the range p ∈ [0, ε0(f)
k ], g(p) attains the minimum value at p = ε0(f)

k , i.e, g′(p) < 0 in

this range. We have g′(p) =

(
2(p+ρ(f))2

9ρ(f) − 11ρ(f)
9

)
(ρ(f)+p)2 and for p ∈ [0, ε0(f)

k ], we have(
2(p + ρ(f))2

9ρ(f) − 11ρ(f)
9

)
≤
(

2(ε0(f)/k + ρ(f))2

9ρ(f) − 11ρ(f)
9

)
≤ 8ρ(f)

9 − 11ρ(f)
9 = −ρ(f)

3 < 0 .

This completes the proof of Theorem 25. ◀
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5.2 Approximability of weak monarchy functions
In this section, we analyze the streaming approximability of Max-CSP(f) where f is a weak
monarchy function. Note that in order for WMONk,j to be a balanced LTF, the total number
of votes, i.e., j + k − 1, needs to be odd. Therefore, we make such assumption throughout
the rest of this section. We defer the proof of Lemma 31 to the full version of the paper.

▶ Lemma 31. For all integers j ≥ 2 and k ≥ 7j3 such that k + j is even,

WMONk,j(x) = sign
(

k∑
i=1

̂WMONk,j({i})xi

)
.

Note that Lemma 31 along with Theorem 23 directly conclude Theorem 6 restated below.

▶ Theorem 6. For all integers j ≥ 2 and k ≥ 7j3 such that k+j is even, Max-CSP(WMONk,j)
is sketching approximable in O(log(n)) space. In particular, for every j, there exist infinitely
many k such that Max-CSP(WMONk,j) is sketching approximable.
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