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Abstract
One of the most important and well-studied settings for network design is edge-connectivity re-
quirements. This encompasses uniform demands such as the Minimum k-Edge-Connected Spanning
Subgraph problem (k-ECSS), as well as nonuniform demands such as the Survivable Network
Design problem. A weakness of these formulations, though, is that we are not able to ask for
fault-tolerance larger than the connectivity. Taking inspiration from recent definitions and progress
in graph spanners, we introduce and study new variants of these problems under a notion of relative
fault-tolerance. Informally, we require not that two nodes are connected if there are a bounded
number of faults (as in the classical setting), but that two nodes are connected if there are a bounded
number of faults and the two nodes are connected in the underlying graph post-faults. That is, the
subgraph we build must “behave” identically to the underlying graph with respect to connectivity
after bounded faults.

We define and introduce these problems, and provide the first approximation algorithms: a
(1 + 4/k)-approximation for the unweighted relative version of k-ECSS, a 2-approximation for the
weighted relative version of k-ECSS, and a 27/4-approximation for the special case of Relative
Survivable Network Design with only a single demand with a connectivity requirement of 3. To
obtain these results, we introduce a number of technical ideas that may of independent interest.
First, we give a generalization of Jain’s iterative rounding analysis that works even when the
cut-requirement function is not weakly supermodular, but instead satisfies a weaker definition we
introduce and term local weak supermodularity. Second, we prove a structure theorem and design
an approximation algorithm utilizing a new decomposition based on important separators, which
are structures commonly used in fixed-parameter algorithms that have not commonly been used in
approximation algorithms.
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1 Introduction

Fault-tolerance has been a central object of study in approximation algorithms, particularly
for network design problems where the graphs that we study represent some physical objects
which might fail (communication links, transportation links, etc.). In these settings it is
natural to ask for whatever object we build to be fault-tolerant. The precise definition
of “fault-tolerance” is different in different settings, but a common formulation is edge
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41:2 Relative Survivable Network Design

fault-tolerance, which typically takes the form of edge connectivity. Informally, these look
like guarantees of the form “if up to k edges fail, then the nodes I want to be connected are
still connected.” For example, consider the following two classical problems.

The Minimum k-Edge Connected Subgraph problem (k-ECSS), where we are given a
graph G and a value k and are asked to find the k-edge connected subgraph of G of
minimum size (or weight). In other words, if fewer than k edges fail, the graph should
still be connected.
The more general Survivable Network Design problem (SND, sometimes referred to as
Generalized Steiner Network), where we are given a graph G and demands {(si, ti, ki)}i∈[ℓ],
and are supposed to find the minimum-weight subgraph H of G so that there are at least
ki edge-disjoint paths between si and ti for every i ∈ [ℓ]. In other words, for every i ∈ [ℓ],
if fewer than ki edges fail then si and ti will still be connected in H even after failures.

Both of these problems have been studied extensively (for a small sample, see [24, 19, 10,
17]), and are paradigmatic examples of network design problems. But there is a different
notion of fault-tolerance which is stronger, and in some ways more natural: relative fault-
tolerance. Relative fault-tolerance makes guarantees that rather than being absolute (“if
at most k edges fail the network still functions”) are relative to an underlying graph or
system (“if at most k edges fail, the subgraph functions just as well as the original graph
post-failures”). This allows us to generalize the traditional definition: if the underlying
graph has strong enough connectivity properties then the two definitions are the same, but
the relative version allows us to make interesting and nontrivial guarantees even when the
underlying graph does not have strong connectivity properties.

For example, the definition of Survivable Network Design has an important limitation:
if G itself can only support a small number of edge disjoint si − ti paths (e.g., 3), then of
course we cannot ask for a subgraph with more edge-disjoint paths. There simply would
be no feasible solution. But this is somewhat unsatisfactory. For example, while we cannot
guarantee that si and ti would be connected after any set of 5 faults (since those faults may
include an (si, ti) cut of size 3), clearly there could be some set of 5 faults which do not in
fact disconnect si from ti in G. And if these faults occur, it is natural to want si and ti

to still be connected in (what remains) of H. In other words: just because there exists a
small cut, why should we give up on being tolerant to a larger number of faults which do not
contain that cut?

1.1 Our Results and Techniques
In this paper we initiate the study of relative fault-tolerance in network design, by defining
relative versions of Survivable Network Design and k-ECSS.

▶ Definition 1. In the Relative Survivable Network Design problem (RSND), we are given a
graph G = (V, E) with edge weights w : E → R≥0 and demands {(si, ti, ki)}i∈[ℓ]. A feasible
solution is a subgraph H of G where for all i ∈ [ℓ] and F ⊆ E with |F | < ki, if there is a
path in G \ F from si to ti then there is also a path in H \ F from si to ti. Our goal is to
find the minimum weight feasible solution.

▶ Definition 2. The k-Edge Fault-Tolerant Subgraph problem (k-EFTS) is the special case
of RSND where there is a demand between all pairs and every ki is equal to k. In other
words, we are given a graph G = (V, E) with edge weights w : E → R≥0. A feasible solution
is a subgraph H of G where for all F ⊆ E with |F | < k, any two nodes which have a path
between them in G \ F also have a path between them in H \ F (the connected components of
H \ F are identical to the connected components of G \ F ). Our goal is to find the minimum
weight feasible solution.



M. Dinitz, A. Koranteng, and G. Kortsarz 41:3

For both of these problems, we say that they are unweighted if all edges have the same
weight (or equivalently w(e) = 1 for all e ∈ E). Note that if si and ti are ki-connected in
G for every i ∈ [ℓ], then RSND is exactly the same as SND, and if G is k-connected then
k-EFTS is exactly the same as k-ECSS. Hence we have generalized these classical problems.

We note that the fault-tolerance we achieve is really “one less” than the given number
(there are strict inequalities in the definitions). This is “off-by-one” from the related relative
fault-tolerance literature [9, 5, 6], but makes the connection to SND and k-ECSS cleaner.

Difficulties. Before discussing our results or techniques, we briefly discuss what makes these
problems difficult. The non-relative versions are classical and have been studied extensively:
why can’t we just re-use the ideas and techniques developed for them? Particularly since
there is only a difference in the setting when there are small cuts in the graph, in which case
we already know that the edges of those cuts must be included in any feasible solution?

Unfortunately, it turns out that this seemingly minor change has a dramatic impact on the
structure of the problem. Most importantly, the cut requirement function has dramatically
different properties. In k-ECSS, Menger’s theorem implies that H is a valid solution if and
only if for all S ⊂ V with S ̸= ∅, there are at least k edges between S and S̄. Hence we
can rephrase k-ECSS as the problem of finding a minimum cost subgraph such that that
there are at least f(S) edges across the cut (S, S̄) for all S ⊂ V with S ̸= ∅, where f(S) = k.
Similarly, we can rephrase SND as the same problem but where f(S) = maxi∈[ℓ]:si∈S,ti ̸∈S ki

(as was shown in [24]). Thus both problems can be thought of as choosing a minimum cost
subgraph subject to satisfying some cut-requirement covering function f : 2V → R. So a
natural starting point for any approximation algorithm is to write the natural covering LP
relaxation which has a covering constraint of f(S) for every cut S. And indeed, the covering
LP using the cut-requirement function was the starting point for both the primal-dual
O(maxi∈ℓ ki)-approximation for SND of [24] and the seminal 2-approximation for SND using
iterative rounding due to Jain [19]. It has also been used for k-ECSS [17], although (unlike
SND) there are also purely combinatorial approximations [10].

Hence the natural starting point for us to study RSND and k-EFTS would be to formulate
them in terms of cut-requirement functions and try the same approaches as were used in SND
and k-ECSS. But this is easier said than done. The functions are a little more complicated,
but it is not too hard to construct a cut requirement function that characterizes feasible
solutions. However, in order to use the iterative rounding technique of Jain [19] (or any of
the weaker techniques which it superceded), the cut requirement function needs to have a
structural property known as weak (or skew) supermodularity [19]. This turns out to be
crucial, and there are still (to the best of our knowledge) no successful uses of iterative
rounding in settings without weak supermodularity. And unfortunately, it turns out that
our cut requirement functions are not weakly supermodular. So while we can phrase our
problems as satisfying a cut requirement function, we cannot actually use iterative rounding,
uncrossing, or any other part of the extensive toolkit that has grown around [19].

Our approaches. We get around this difficulty in two ways. For k-EFTS, we define a new
property of cut requirement functions which we call local weak supermodularity, and prove
that our cut requirement function has this property and that it is sufficient for iterative
rounding. This is, to the best of our knowledge, the first use of iterative rounding without weak
supermodularity. For RSND with a single demand, we use an entirely different combinatorial
approach based on decomposing the graph into a chain of connected components using
important separators [22], an important tool from fixed-parameter tractability that, to the
best of our knowledge, has not been used before in approximation algorithms.

APPROX/RANDOM 2022



41:4 Relative Survivable Network Design

1.1.1 k-Edge Fault-Tolerant Subgraph
We begin in Section 2 with k-EFTS, where we prove the following two theorems.

▶ Theorem 3. There is a polynomial-time 2-approximation for the k-EFTS problem.

▶ Theorem 4. There is a polynomial-time (1 + 4/k)-approximation for the unweighted
k-EFTS problem.

Both of these theorems are consequences of a structural property we prove about the
cut-requirement function for k-EFTS: while it is not weakly supermodular, it does have a
weaker property which we term local weak supermodularity. We define this property formally
in Section 2.1.2, but at a high level it boils down to proving that while the inequalities
required for weak supermodularity do not hold everywhere (as would be required for weak
supermodularity), they hold for particular sets (i.e., they hold locally) which are the sets
where the inequalities are actually applied by Jain’s analysis. In other words, we prove
that the places in the function where weak supermodularity are violated are precisely the
places where we do not care if weak supermodularity holds. After overcoming a few more
technical complications (we actually need local weak supermodularity even in the “residual”
problem to use iterative rounding), this means that we can apply Jain’s algorithm to prove
Theorem 3.

To prove Theorem 4, it was observed for unweighted k-ECSS by [17] (with later im-
provements by [16]) that one of the main pieces of Jain’s approach, the fact that the tight
constraints can be “uncrossed” to get a laminar family with the same span, implies a
(1 + 4/k)-approximation via a trivial threshold rounding. They pointed out that the fact
that the linearly independent tight constraints form a laminar family implies that there are
only 2n linearly independent tight constraints, while there are m variables, and hence at any
basic feasible solution the remaining m − 2n tight constraints defining the point must be the
bounding constraints. These bounding constraints being tight means that the associated
variables are in {0, 1}, and hence there are only 2n fractional variables in any basic feasible
solution. Rounding all of these variables to 1 increases the cost by 2n, but since OPT ≥ kn/2
(since the input graph G must be k-connected) this results in a (1 + 4/k)-approximation.

Thanks to our local weak supermodularity characterization the laminar family result is
still true even for k-EFTS, so it is still true that there are at most 2n nonzero variables at any
extreme point. But since we are not guaranteed that G is k-connected we are not guaranteed
that OPT ≥ kn/2, and so this does not imply the desired approximation. Instead, we prove
that the number of fractional variables at any basic feasible solution is at most 2nh, where
nh is the number of “high-degree” nodes. It is then easy to argue that OPT ≥ nhk/2, which
gives Theorem 4.

1.1.2 Relative Survivable Network Design With a Single Demand
For k-EFTS, we strongly used the property that all pairs have the same demand. This is not
true for RSND, which makes the problem vastly more difficult. We still do not know whether
there exists a cut requirement function which characterizes the problem and is locally weakly
supermodular. In this paper, we study the simplest case where not all demands are the same:
when there is a single nonzero demand (s, t, k), and k is either 2 or 3 (the case of k = 1 is
simply the shortest-path problem). It turns out to be relatively straightforward to prove a
2-approximation for k = 2 even when there are many demands (see Section 3), but the k = 3
case is surprisingly difficult. We prove the following theorem in Section 4.
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▶ Theorem 5. In any RSND instance with a single demand (s, t, 3), there is a polynomial-time
7 − 1

4 = 27
4 -approximation.

To prove this, we start with the observation that if the minimum s − t cut is at least
3 then this is actually just the traditional SND problem (and in fact, the even simpler
problem of finding 3 edge-disjoint paths of minimum weight between s and t, which can
be solved efficiently via min-cost flow). So the only difficulty is when there are cuts of size
1 or 2. Cuts of size 1 can be dealt with easily (see Section 3), but cuts of size 2 are more
difficult. To get rid of them, we construct a “chain” of 2-separators (cuts of size 2 that
are also important separators [22]). Inside each component of the chain there are no 2-cuts
between the incoming separator and the outgoing separator, which allows us to characterize
the connectivity requirement of any feasible solution restricted to that component. These
connectivity requirements turn out to be quite complex even though we started with only
a single demand, as fault sets with different structure can force complicated connectivity
requirements in intermediate components. The vast majority of the technical work is proving
a structure lemma which characterizes them. With this lemma in hand, though, we can
simply approximate the optimal solution in each component.

Interestingly, to the best of our knowledge this is the first use of important separators in
approximation algorithms, despite their usefulness in fixed-parameter algorithms [22].

1.2 Related Work
The most directly related work is the 2-approximation of Jain for Survivable Network
Design [19], which introduced iterative rounding (see [20] for a detailed treatment of iterative
rounding in combinatorial optimization). This built off of an earlier line of work on survivable
network design beginning over 50 years ago with [23]. Since the success of Jain’s approach
for SND, there has been a significant amount of work on vertex-connectivity versions rather
than edge-connectivity, which is a significantly more difficult setting. This has culminated in
the state of the art approximation of [11]. There is also a long line of work on k-ECSS, most
notably including [10, 17].

While not technically related, the basic problems in this paper are heavily inspired by
recent work on relative notions of fault-tolerance in graph spanners and other non-optimization
network design settings. A relative definition of fault-tolerance for graph spanners which
is very similar to ours (but which takes distances into account due to the spanner setting)
was introduced by [9], who gave bounds on the size of f -fault-tolerant t-spanners for both
edge and vertex notions of fault-tolerance. This spawned a line of work which improved
these bounds for both vertex and edge fault-tolerance [14, 4, 7, 15, 5, 6], culminating in [5]
for vertex faults and [6] for edge faults. The basic spanner definition also inspired work
on relative fault-tolerant versions of related problems, including emulators [3], distance
sensitivity oracles for multiple faults [8], and single-source reachability subgraphs [2, 21].
What all of these results shared, though, was that they were not doing optimization: they
were looking for existential bounds (and algorithms to achieve them) for these objects. In this
paper, by contrast, we take the point of view of optimization and approximation algorithms
and compare to the instance-specific optimal solution.

2 k-Edge Fault-Tolerant Subgraph

Both Theorems 3 and 4 depend on the same LP relaxation, which is based on a modification
of the “obvious” cut-requirement function. So we begin by discussing this relaxation, and
then use it to prove the two main theorems.

APPROX/RANDOM 2022
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2.1 LP Relaxation
2.1.1 Basics
The natural place to start is the LP used by Jain [19], but with a cut requirement function
f(S) = min(|δG(S)|, k). Unfortunately, while this results in a valid LP relaxation, it
is not weakly supermodular (see Section 2.1.2 for the definition, and Appendix A for a
counterexample). So instead we modify this cut requirement function by removing edges
which are “forced”. For every subset S of V , let δG(S) be the set of edges with exactly one
endpoint in S. Let F = {e ∈ E | ∃S where e ∈ δG(S) and |δG(S)| ≤ k}. In other words, F

is the set of all edges that are in some cut of size at most k. Clearly we can compute F in
polynomial time by simply checking for every edge (u, v) whether the minimum u − v cut
in G has size at most k. For every set S ⊂ V with S ̸= ∅, we define the cut requirement
function fF (S) = min(k, |δG(S)|) − |δG(S) ∩ F |. Note that every edge in F must be in any
feasible solution, since if any edge is missing then a fault set consisting of the rest of the cut
(at most k − 1 edges) would disconnect the endpoints of the missing edge in the solution
but not in G, giving a contradiction. Then fF (S) is essentially the “remaining requirement”
after F has been removed.

Since iterative rounding will add other edges and remove them from the residual problem,
we will want to define a similar cut requirement function for supersets: formally, for any
F ′ ⊇ F , let fF ′(S) = min(k, |δG(S)|) − |δG(S) ∩ F ′|. For any F ′ ⊇ F , consider the following
linear program which we call LP(F ′), which has a variable xe for every edge e ∈ E \ F ′:

min
∑

e∈E\F ′

w(e)xe

s.t.
∑

e∈δG(S)\F ′

xe ≥ fF ′(S) ∀S ⊆ V

0 ≤ xe ≤ 1 ∀e ∈ E \ F ′

(LP(F ′))

It is not hard to see that this is a valid LP relaxation (when combined with F ′), but we
prove this for completeness.

▶ Lemma 6. Let H be a valid k-EFTS and let F ′ ⊇ F . For every edge e ∈ E \ F ′, let xe = 1
if e ∈ H, and let xe = 0 otherwise. Then x is a feasible integral solution to LP(F ′).

Proof. Clearly 0 ≤ xe ≤ 1 for all e ∈ E \ F ′. Consider some S ⊆ V . Since H is a valid
k-EFTS, the number of edges in H ∩ δG(S) is at least min(k, |δG(S)|) (or else the edges in
H ∩ δG(S) would be a fault set of size less than k such that the connected components of H

post-faults are different from the connected components of G post-faults). Hence∑
e∈δG(S)\F ′

xe = |(H ∩ δG(S)) \ F ′| = |H ∩ δG(S)| − |H ∩ δG(S) ∩ F ′|

≥ |H ∩ δG(S)| − |δG(S) ∩ F ′| ≥ min(k, |δG(S)|) − |δG(S) ∩ F ′| = fF ′(S),

as required. ◀

▶ Lemma 7. Let F ′ ⊇ F and let x be an integral solution to LP(F ′). Let E′ = {e : xe = 1}.
Then H = E′ ∪ F ′ is a valid k-EFTS.

Proof. Suppose for contradiction that H is not a valid k-EFTS. Then there are two nodes
u, v ∈ V and a minimal set A ⊆ E with |A| < k so that u, v are not connected in H \ A but
are connected in G \ A. Let S be the nodes reachable from u in G \ A, and so by minimality
of A we know that A = H ∩ δG(S).
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Note that |δG(S)| > k, or else all edges of δG(S) would be in F , implying that E ∩δG(S) =
H ∩ δG(S) = A and so u and v would not be connected in G \ A. Thus∑

e∈δG(S)\F ′

xe = |H ∩ δG(S)| − |F ′ ∩ δG(S)| = |A| − |δG(S) ∩ F ′|

< min(k, |δG(S)|) − |δG(S) ∩ F ′| = fF ′(S),

which contradicts x being a feasible solution to LP(F ′). ◀

These lemmas (together with the fact that every edge in F must be in any valid solution)
imply that if we can solve and round this LP while losing some factor α, then we can add F

to the rounded solution to get an α-approximation. Hence we are interested in solving and
rounding this LP.

We first argue that we can solve the LP using the Ellipsoid algorithm with a separation
oracle. Note that unlike k-ECSS, here a violated constraint does not just correspond to a cut
with LP values less than k, since our cut-requirement function is more complicated. Indeed,
if we compute a global minimum cut (with respect to the LP values) then we may end up
with a small cut which is not violated even though there are violated constraints. So we need
to argue more carefully that we can find a violated cut when one exists.

▶ Lemma 8. For every F ′ ⊇ F , LP(F ′) can be solved in polynomial time.

Proof. We give a separation oracle, which when combined with the Ellipsoid algorithm
implies the lemma [18]. Consider some vector x indexed by edges of E \ F ′. Suppose that x

is not a feasible LP solution, so we need to find a violated constraint. Obviously if there
is some xe ̸∈ [0, 1] then we can find this in linear time. So without loss of generality, we
may assume that there is some S ⊆ V such that

∑
e∈δG(S)\F ′ xe < fF ′(S). This implies that

fF ′(S) > 0 and that there is some edge e∗ ∈ δG(S) \ F ′ with xe∗ < 1 (since otherwise the LP
would not be satisfiable, contradicting Lemma 6 and the fact that G itself is a valid k-EFTS).
Let e∗ = {u, v}. Since e∗ ̸∈ F ′, and F ⊆ F ′, we know that e∗ cannot be part of any cuts in
G of size at most k, and thus the minimum u − v cut in G has more than k edges.

On the other hand, if we extend x to F ′ by setting xe = 1 for all e ∈ F ′, then since S is
a violated constraint we have that∑

e∈δG(S)

xe =
∑

e∈δG(S)\F ′

xe + |F ′ ∩ δG(S)| < fF ′(S) + |F ∩ δG(S)|

= min(k, |δG(S)|) − |δG(S) ∩ F ′| + |δG(S) ∩ F ′|
= k.

Thus if we interpret x as edge weights (with xe = 1 for all e ∈ F ), if we compute the
minimum s − t cut we will find a cut S′ with more than k edges (since all u − v cuts have
more than k edges) with total edge weight strictly less than k. Let S′ be this cut. Thus∑

e∈δG(S′)\F ′ xe < k − |δG(S′) \ F ′| = fF ′(S′), so S′ is also a violated constraint.
Hence for our separation oracle we simply compute a minimum s − t cut using x as edge

weights for all s, t ∈ V , and if any cut we finds corresponds to a violated constraint then we
return it. By the above discussion, if there is some violated constraint then this procedure
will find some violated constraint. Thus this is a valid separation oracle. ◀

After solving this LP, we apply an obvious transformation used also in [19]: we delete
every edge e with xe = 0. This allows us to assume without loss of generality that every edge
has LP value xe > 0 in our LP solution.

APPROX/RANDOM 2022
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2.1.2 Local Weak Supermodularity
As discussed in Section 1.1.1, it would be nice if this LP were weakly supermodular, as
this would immediately let us apply Jain’s iterative rounding algorithm to obtain a 2-
approximation. Recall the definition of weak supermodularity from [19].

▶ Definition 9. Let f : 2V → Z. Then f is weakly supermodular if for every A, B ⊆ V ,
either f(A) + f(B) ≤ f(A \ B) + f(B \ A), or f(A) + f(B) ≤ f(A ∩ B) + f(A ∪ B).

Unfortunately, our cut requirement function is not weakly supermodular; see Appendix A
for a counterexample. But we can make a simple observation that, to the best of our
knowledge, has not previously been noticed or utilized in iterative rounding: Jain’s iterative
rounding algorithm does not actually need the weak supermodularity conditions to hold for
all pairs of sets A, B. It only needs weak supermodularity to “uncross” the tight sets of
an LP solution into a laminar family of tight sets with the same span. Recall that a set is
tight in a given LP solution if its corresponding cut constraint is tight, i.e., is satisfied with
equality. Moreover, note that in our setting, depending on our choice of F ′ some cuts might
be entirely included in F ′. These cuts would not have any edges remaining, resulting in an
“empty” constraint in LP(F ′). Such a constraint cannot be tight by definition, and also is
not linearly independent with any other set of constraints.

Hence in order to use Jain’s iterative rounding, we simply need our cut-requirement
function fF ′ to satisfy the weak supermodularity requirements for A, B where there is actually
a nontrivial constraint for A, B and where F ′ ⊇ F (here F ′ will consist of F together with
edges that Jain’s iterative rounding algorithm has already set to 1). We formalize this as
follows. Given F ′ ⊇ F , we say that S is an empty cut if δG(S) ∩ F ′ = δG(S), and otherwise
it is nonempty.

▶ Definition 10. Given a graph G = (V, E), a set F ′ ⊆ E, and a function g : 2V → Z, we
say that g is locally weakly supermodular with respect to F ′ if for every A, B ⊆ V with both
A and B nonempty cuts, at least one of the following conditions holds:

g(A) + g(B) ≤ g(A \ B) + g(B \ A), or
g(A) + g(B) ≤ g(A ∩ B) + g(A ∪ B).

We will now prove that for any F ′ ⊇ F , the function fF ′ is locally weakly supermodular
with respect to any F ′. This is the key technical idea enabling Theorems 3 and 4.

We say that S is large if |δG(S)| > k, and otherwise S is small. Note that since F ′ ⊇ F ,
any small cut is also an empty cut. We first prove a useful lemma.

▶ Lemma 11. Let F ′ ⊇ F . If A and B are nonempty cuts for fF ′ , then either A \ B and
B \ A are nonempty cuts, or A ∩ B and A ∪ B are nonempty cuts.

Proof. Let

S1 = δG(A \ B, V \ (A ∪ B)), S2 = δG(A \ B, B \ A), S3 = δG(A \ B, A ∩ B),
S4 = δG(B \ A, V \ (A ∪ B)), S5 = δG(B \ A, A ∩ B), S6 = δG(A ∩ B, V \ (A ∪ B)).

Suppose that A \ B and A ∩ B are both empty cuts. Each edge in δG(A) is in S1, S2, S5,
or S6. Additionally, S1 and S2 are subsets of δG(A \ B), while S5 and S6 are subsets of
δG(A ∩ B). This means that every edge in δG(A) is in an empty cut, and so all edges in
δG(A) are in F ′. Thus A is an empty cut, contradicting the assumption of the lemma. Thus
at least one of A \ B and A ∩ B is nonempty. If we instead assume that B \ A and A ∩ B

are empty cuts, then we can use a similar argument to prove that B is an empty cut. This
proves that at least one of B \ A and A ∩ B are nonempty. Hence if A ∩ B is empty, then
both A \ B and B \ A are nonempty, proving the lemma.
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Now suppose that A \ B and A ∪ B are both empty cuts. Each edge in δG(B) is in S2,
S3, S4, or S6. Additionally, S2 and S3 are subsets of δG(A \ B), while S4 and S6 are subsets
of δG(A ∪ B). This means that every edge in δG(B) is in an empty cut, and so all edges in
δG(B) are in F ′. Thus B is an empty cut, contradicting the assumption of the lemma. Thus
at least one of A \ B and A ∪ B is nonempty. If we instead assume that B \ A and A ∪ B

are empty cuts, then we can use a similar argument to prove that A is empty, and hence at
least one of B \ A and A ∪ B is nonempty. Hence if A ∪ B is empty, then both A \ B and
B \ A are nonempty, proving the lemma.

Thus either both A \ B and B \ A are nonempty, or both A ∩ B and A ∪ B are nonempty,
proving the lemma. ◀

We can now prove the main technical result: fF ′ is locally weakly supermodular.
▶ Theorem 12 (Local Weak Supermodularity). For any F ′ ⊇ F , the cut requirement function
fF ′ is locally weakly supermodular with respect to F ′.
Proof. Let F ′ ⊇ F , and suppose A and B are nonempty cuts. Let

S1 = δG(A \ B, V \ (A ∪ B)), S2 = δG(A \ B, B \ A), S3 = δG(A \ B, A ∩ B),
S4 = δG(B \ A, V \ (A ∪ B)), S5 = δG(B \ A, A ∩ B), S6 = δG(A ∩ B, V \ (A ∪ B)).

We also let si = |Si ∩ F ′| for i ∈ [6].
A and B are nonempty cuts, so A and B must be large cuts and min(k, |δG(A)|) =

min(k, |δG(B)|) = k. Each edge in δG(A) is in exactly one of S1, S2, S5, and S6, and each edge
in δG(B) is in exactly one of S2, S3, S4, and S6, so we have that |δG(A)∩F ′| = s1 +s2 +s5 +s6
and |δG(B) ∩ F ′| = s2 + s3 + s4 + s6. We therefore have the following:

fF ′(A) = min(k, |δG(A)|) − |δG(A) ∩ F | = k − s1 − s2 − s5 − s6

fF ′(B) = min(k, |δG(B)|) − |δG(B) ∩ F | = k − s2 − s3 − s4 − s6

=⇒ fF ′(A) + fF ′(B) = 2k − s1 − 2s2 − s3 − s4 − s5 − 2s6. (1)

A and B are nonempty so by Lemma 11, either A \ B and B \ A are nonempty cuts, or
A ∩ B and A ∪ B are nonempty cuts. Suppose first that A \ B and B \ A are nonempty cuts,
which implies that min(k, |δG(A \ B)|) = min(k, |δG(B \ A)|) = k. Each edge in δG(A \ B)
is in exactly one of S1, S2, and S3, and each edge in δG(B \ A) is in exactly one of S2, S4,
and S5, so we have that |δG(A \ B) ∩ F ′| = s1 + s2 + s3 and |δG(B \ A) ∩ F ′| = s2 + s4 + s5.
Putting this all together, we get the following for fF ′(A \ B) and fF ′(B \ A):

fF ′(A \ B) = min(k, |δG(A \ B)|) − |δG(A \ B) ∩ F ′| = k − s1 − s2 − s3

fF ′(B \ A) = min(k, |δG(B \ A)|) − |δG(B \ A) ∩ F ′| = k − s2 − s4 − s5

=⇒ fF ′(A \ B) + f(B \ A) = 2k − s1 − 2s2 − s3 − s4 − s5.

This and (1) imply that fF ′(A) + fF ′(B) ≤ fF ′(A \ B) + fF ′(B \ A) if A \ B and B \ A are
nonempty cuts.

Now suppose that A ∩ B and A ∪ B are nonempty cuts, and so min(k, |δG(A \ B)|) =
min(k, |δG(B \A)|) = k. Each edge in δG(A∩B) is in exactly one of S3, S5, and S6, and each
edge in δG(A ∪ B) is in exactly one of S1, S4, and S6, so we have that |δG(A ∩ B) ∩ F ′| =
s3 + s5 + s6 and |δG(A ∪ B) ∩ F ′| = s1 + s4 + s6. Putting this all together, we get the
following for fF ′(A ∩ B) and fF ′(A ∪ B):

fF ′(A ∩ B) = min(k, |δG(A ∩ B)|) − |δG(A ∩ B) ∩ F ′| = k − s3 − s5 − s6

fF ′(A ∪ B) = min(k, |δG(A ∪ B)|) − |δG(A ∪ B) ∩ F ′| = k − s1 − s4 − s6

=⇒ fF ′(A ∩ B) + fF ′(A ∪ B) = 2k − s1 − s3 − s4 − s5 − 2s6.

This and (1) imply that fF ′(A) + fF ′(B) ≤ fF ′(A ∩ B) + fF ′(B ∪ A) if A ∩ B and A ∪ B are
nonempty cuts. ◀
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2.2 Unweighted k-EFTS
To prove Theorem 4 we need to look inside [19]. The following two lemmas from [19] are the
main “uncrossing” lemmas which depend on weak supermodularity, and in which we can
use local weak supermodularity instead without change. As in [19], for each S ⊆ V we use
AG(S) to denote the row of the constraint matrix corresponding to S. In other words AG(S)
is a vector indexed by elements of E \ F which has a 1 in the entry for e if e ∈ δG(S) \ F ,
and otherwise has a 0 in that entry.

▶ Lemma 13 (Lemma 4.1 of [19]). If two sets A and B are tight then at least one of the
following must hold
1. A \ B and B \ A are also tight, and AG(A) + AG(B) = AG(A \ B) + AG(B \ A)
2. A ∩ B and A ∪ B are also tight, and AG(A) + AG(B) = AG(A ∩ B) + AG(A ∪ B)

Let T denote the family of all tight sets. For any family F of tight sets, let Span(F)
denote the vector space spanned by {AG(S) : S ∈ F}.

▶ Lemma 14 (Lemma 4.2 of [19]). For any maximal laminar family L of tight sets, Span(L) =
Span(T ).

Recall that nh is the number of high-degree nodes, i.e., nodes of degree at least k in G.
Then we have the following lemma, which is a modification of Lemma 4.3 of [19] where we
give a stronger bound on the number of sets.

▶ Lemma 15. The dimension of Span(T ) is at most 2nh − 1.

Proof. Let L be a maximal laminar family of tight sets. Lemma 14 implies that Span(L) =
Span(T ), so it suffices to upper bound the number of sets in L. And since we care about the
span, if there are two sets S, S′ with AG(S) = AG(S′) then we can remove one of them from
L arbitrarily, so no two sets in L have identical rows in the constraint matrix.

Any set that consists of exclusively low degree nodes cannot be tight, since the set has no
corresponding row in the constraint matrix. Thus, all sets in L must contain at least one
high degree node, and hence all minimal sets in L have at least one high degree node.

Let S ∈ L, and let S′ ⊃ S so that every node in S′ \ S is a low-degree node. Then every
edge edge in (δG(S) \ δG(S′)) ∪ (δG(S′) \ δG(S)) must be incident on at least one low-degree
node and hence is in F . Thus AG(S) = AG(S′), and hence S′ is not in L. Therefore, any
superset S′ in the laminar family of some other set S in the laminar family must have at
least one more high degree node than S.

Since any minimal set in L has at least one high degree node, and every set in L contains
at least one more high degree node than any set in L that it contains, if we restrict each set
in L to the high-degree nodes then we have a laminar family on the high-degree nodes. Thus
|L| ≤ 2nh − 1. ◀

We can now prove Theorem 4.

Proof of Theorem 4. We first solve LP(F ) using Lemma 8 to get some basic feasible solution
x. Since there are |E \ F | variables, this point is defined by |E \ F | linearly independent
tight constraints. Lemma 15 implies that at most 2nh − 1 of these are from tight sets, and
hence all of the other tight constraints must be of the form xe = 0 or xe = 1 for some edge
e ∈ E \ F . Thus at most 2nh − 1 edges are assigned a fractional value in x. Hence if we
include all such edges in our solution H, together with all edges with xe = 1 and all edges in
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F , we have a solution which is feasible (by Lemma 7). Note that any high-degree node must
have degree at least k in any feasible solution, and thus OPT ≥ k

2 nh. Hence our solution H

has size at most

|H| ≤
∑

e∈E\F

xe + |F | + 2nh ≤ OPT + 2nh ≤ OPT + 4
k

OPT =
(

1 + 4
k

)
OPT. ◀

2.3 Weighted k-EFTS
Jain’s approximation algorithm solves the initial LP, rounds up and removes any edges with
xe ≥ 1/2 which results in a residual problem, and repeats. This is obviously a 2-approximation
(see [19] for details), but requires proving that there is always at least one edge with xe ≥ 1/2
so we can make progress (even in the residual problems). This is accomplished by proving
Lemmas 13 and 14 to show that the tight constraints can be “uncrossed” into a laminar
family. This requires weak supermodularity, but as discussed, since in our LP every tight
constraint must be a nonempty constraint, it is sufficient to replace this with local weak
supermodularity. Jain then uses a complex counting argument based on this laminar family
of tight constraints to prove that some edge e must have xe ≥ 1/2. Importantly, nothing
in this counting argument depends on the cut requirement having any particular structure
(e.g., weak supermodularity); it depends only on the fact that the family of tight constraints
can be uncrossed to be laminar.

Since local weak supermodularity is sufficient to uncross the tight constraints into a
laminar family, we can simply apply Jain’s counting argument on this family for LP(F ′) to
obtain the following lemma (as in Theorem 3.1 of [19]).

▶ Lemma 16. For all F ′ ⊇ F , in any basic feasible solution x of LP(F ′) there is at least
one e ∈ E \ F ′ with xe ≥ 1/2.

Hence we have the following iterative rounding algorithm for weighted k-EFTS:

Let F ′ = F

While F ′ is not a feasible solution:
Let x be a basic feasible solution for LP(F ′) (obtained in polynomial time using
Lemma 8)
Let E1/2 = {e ∈ E \ F ′ : xe ≥ 1/2}, which must be nonempty by Lemma 16
Add E1/2 to F ′

This clearly returns a feasible solution, and the analysis of [19] (particularly Theorem
3.2) implies that this is a 2-approximation, which implies Theorem 3.

3 2-Connectivity and k = 2

We will now move on from k-EFTS to the more general RSND problem. It turns out to
be relatively straightforward to handle cuts of size 1: removing such cuts gives a tree of
2-connected components, and we can essentially run an algorithm independently inside each
component. This gives the following theorem, the proof of which can be found in the full
version [13].

▶ Theorem 17. If there exists an α-approximation algorithm for RSND on 2-edge connected
graphs, then there is an α-approximation algorithm for RSND on general graphs.
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Extending this slightly gives the following theorem (proof in the full version [13]), where
2-RSND denotes the special case of the RSND problem where ki ≤ 2 for all i.

▶ Theorem 18. There is a 2-approximation algorithm for 2-RSND.

4 RSND with a Single Demand: k = 3

In this section we prove Theorem 5. In the Single Demand RSND problem, we are given a
graph G = (V, E) (possibly with edge weights w : E → R+) and a k-relative fault tolerance
demand for a single vertex pair (s, t). In other words, the set of connectivity demands is
just {(s, t, k)}. We give a 7 − 1

4 = 27
4 -approximation algorithm for the k = 3 Single Demand

RSND problem. The main idea is to partition the input graph using important separators,
prove a structure lemma which characterizes the required connectivity guarantees within each
component of the partition, and then achieve these guarantees using a variety of subroutines:
a min-cost flow algorithm, a 2-RSND approximation algorithm (Theorem 18), and a Steiner
Forest approximation algorithm [1].

4.1 Decomposition
By Theorem 17, an α-approximation algorithm for RSND on 2-connected graphs implies
an α-approximation algorithm for RSND on general graphs. Hence going forward, we will
assume the input graph G is 2-connected. In this section we define important separators and
describe how to construct what we call the s − t 2-chain of G.

▶ Definition 19. Let X and Y be vertex sets of a graph G. An (X, Y )-separator of G is a
set of edges S such that there is no path between any vertex x ∈ X and any vertex y ∈ Y in
G \ S. An (X, Y )-separator S is minimal if no subset S′ ⊂ S is also an (X, Y )-separator. If
X = {x} and Y = {y}, we say that S is an (x, y)-separator.

The next definition, which is a slight modification of the definition due to [22], is a
formalization of a notion of a “closest” separator.

▶ Definition 20. Let S be an (X, Y )-separator of graph G, and let R be the vertices reachable
from X in G \ S. Then S is an important (X, Y )-separator if S is minimal and there is no
(X, Y )-separator S′ such that |S′| ≤ |S| and R′ ⊂ R, where R′ is the set of vertices reachable
from X in G \ S′.

This definition corresponds to a “closest” separator, while the original definition of [22]
correspond to a “farthest” separator. Important separators have been studied extensively
due to their usefulness in fixed-parameter tractable algorithms, and so much is known about
them. For our purposes, we will only need the following lemma, which follows directly from
Theorem 2 of [22].

▶ Lemma 21. Let X, Y ⊆ V be two sets of vertices in graph G = (V, E), and let d ≥ 0. An
important (X, Y )-separator of size d can be found in time 4d · nO(1) (if one exists), where
n = |V |.

By Lemma 21, we can find an important (X, Y )-separator of size 2 in polynomial time.
We now describe how to use this to construct what we call the s − t 2-chain of G. First, if
there are no important (s, t)-separators of size 2 in G, then every (s, t)-separator has size at
least 3. Hence we can just use the 2-approximation for Survivable Network Design [19] with
demand (s, t, 3) to solve the problem (or can exactly solve it by finding the cheapest three
pairwise disjoint s − t paths in polynomial time using a min-cost flow algorithm).
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Figure 1 The s − t 2-chain of G.

If such an important separator exists, then we first find an important (s, t)-separator S0
of size 2 in G, and let R0 be the set of vertices reachable from s in G \ S0. We let V(0,r) be
the nodes in R0 incident on S0, and let V(1,ℓ) be the nodes in V \ R0 incident on S0. We
then proceed inductively. Given V(i,ℓ), if there is no important (V(i,ℓ), t) separator of size 2
in G \ (∪i−1

j=0Rj) then the chain is finished. Otherwise, let Si be such a separator, let Ri be
the nodes reachable from V(i,ℓ) in (G \ (∪i−1

j=0Rj)) \ Si, let V(i,r) be the nodes in Ri incident
on Si, and let V(i+1,ℓ) be the nodes in V \ (∪i

j=0Rj) incident on Si.
After this process completes we have our s−t 2-chain, consisting of components R0, . . . , Rp

along with important separators S0, . . . , Sp−1 between the components. See Figure 1.
We can now use this chain construction to give a structure lemma which characterizes

feasible solutions. Informally, the lemma states that a subgraph H of G is a feasible solution
if and only if in the s − t 2-chain of G, all edges between components are in H, and in every
component Ri certain connectivity requirements between V(i,ℓ) and V(i,r) are met.

Let G = (V, E) be a graph, and let H be a subgraph of G. Going forward, we will say
that in H, a vertex set A ⊂ V has a path to (or is reachable from) another vertex set B ⊂ V

if there is a path from a vertex a ∈ A to a vertex b ∈ B in H. Additionally, let X and Y

be vertex sets. We also say that H satisfies the RSND demand (X, Y, k) on input graph G

if the following is true: for every F ⊆ E with |F | < k, if there is a path from at least one
vertex in X to at least one vertex in Y in G \ F then there is a path from at least one vertex
in X to at least one vertex in Y in H \ F . The demand (X, Y, k) on input G is equivalent
to contracting all nodes in X to create super node vX , contracting all nodes in Y to create
super node vY , and including demand (vX , vY , k). We will also let G[Ri] and H[Ri] be the
subgraphs of G and H, respectively, induced by the component Ri.

▶ Lemma 22 (Structure Lemma). Let G be the input graph, and let H be a subgraph of
G. Additionally, let R0, . . . , Rp denote the components in the s − t 2-chain of G, and let
S0, . . . , Sp−1 denote the edge sets between components in the chain, as defined previously.
Let Gi = G[Ri], and Hi = H[Ri]. Then H is a feasible solution to the k = 3 Single Demand
RSND problem if and only if all edges in S0, . . . , Sp−1 are included in H, and Hi has the
following properties for every i:
1. There are at least 3 edge-disjoint paths from V(i,ℓ) to V(i,r).
2. Hi is a feasible solution to RSND on input graph Gi with demands{

(V(i,ℓ), vr, 2) : vr ∈ V(i,r)
}

∪
{

(V(i,r), vℓ, 2) : vℓ ∈ V(i,ℓ)
}

.

3. Hi is a feasible solution to RSND on input graph Gi with demands{
(u, v, 1) : (u, v) ∈ V(i,ℓ) × V(i,r)

}
.

The proof of this structure lemma is a highly technical case analysis, which due to space
constraints can be found in the full version [13]. At a very high level, though, our proof
is as follows. For the “only if” direction, we first assume that we are given some feasible
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solution H. Then for each of the properties in Lemma 22, we assume it is false and derive a
contradiction by finding a fault set F ⊆ E with |F | ≤ 2 where there is a path from s to t

in G \ F , but not in H \ F . The exact construction of such an F depends on which of the
properties of Lemma 22 we are analyzing.

For the more complicated “if” direction, we assume that H satisfies the conditions of
Lemma 22 and consider a fault set F ⊆ E with |F | ≤ 2 where s and t are connected in G \ F .
We want to show that s and t are connected in H \ F . We analyze two subchains of the
s − t 2-chain of G: the minimal prefix of the chain which contains at least 1 fault, and the
minimal prefix of the chain which contains both faults. We first show that the set of vertices
reachable from s at the end of the first subchain is the same in G \ F and in H \ F . We then
use this to show that there is at least one reachable vertex at the end of the second subchain
in H \ F , even though (unlike the first subchain) the set of reachable vertices at the end of
the second subchain may be smaller in H \ F than in G \ F . From there we show that there
is a path to t in H \ F from this one reachable vertex. There are a large number of cases
depending on the structure of F (whether it intersects some of the separators in the chain,
whether both faults are in the same component, etc.), and we have to use different properties
of Lemma 22 in different cases, making this proof technically involved.

4.2 Algorithm and Analysis
We can now use Lemma 22 to give a 7 − 1

4 = 27
4 -approximation algorithm for the k = 3

setting of Single Demand RSND on 2-connected graphs which, by Theorem 17, gives a
27
4 -approximation algorithm for the k = 3 Single Demand RSND problem on general graphs.

Our algorithm uses a variety of subroutines, including an algorithm for min-cost flow,
the 2-RSND approximation algorithm of Theorem 18, and a Steiner Forest approximation
algorithm. For reference, we state the latter of these.

▶ Lemma 23 ([1]). There is a
(
2 − 1

k

)
-approximation algorithm for the Steiner Forest

problem, where k is the number of terminal pairs in the input.

We can now give our algorithm. Given a graph G = (V, E) with edge weights w : E → R≥0
and demand {(s, t, 3)}, we first create the s − t 2-chain of G in polynomial time, as described
in Section 4.1. After building the chain, within each component we run a set of algorithms
to satisfy the demands characterized by Lemma 22: a combination of min-cost flow, 2-RSND,
and Steiner Forest algorithms. We include the outputs of these algorithms in our solution H,
together with all edges in the separators S = S1 ∪ S2 ∪ · · · ∪ Sp−1.

We first create an instance of min-cost flow on G[Ri] (in polynomial time). Contract
the vertices in V(i,ℓ) and contract the vertices in V(i,r) to create super nodes vℓ and vr,
respectively. Let vℓ be the source node and vr be the sink node. For each edge e ∈ E(Ri)
set the capacity of e to 1 and set the cost of e to w(e). Require a minimum flow of 3, and
run a polynomial-time min-cost flow algorithm on this instance [12]. Since all capacities are
integers the algorithm will return an integral flow, so we add to H all edges with non-zero
flow.

We then create our first instance of 2-RSND on G[Ri]. Contract the vertices in V(i,ℓ) to
create super node vℓ, and set demands {(vℓ, u, 2) : u ∈ V(i,r)}. For our second instance of 2-
RSND on Ri, contract V(i,r) to create super node vr, and set demands {(u, vr, 2) : u ∈ V(i,ℓ)}.
We run the 2-RSND algorithm (Theorem 18) on each of these instances and include all
selected edges in H.
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Finally, we create an instance of the Steiner Forest problem on G[Ri]. For each vertex
pair (vℓ, vr) ∈ V(i,ℓ) × V(i,r), we check in polynomial time if vℓ and vr are connected in
G[Ri]. If they are connected, then we include (vℓ, vr) as a terminal pair in the Steiner Forest
instance. Additionally, for e ∈ E(Ri), we set the cost of e to w(e). We run the Steiner Forest
approximation algorithm (Lemma 23) on this instance, and add all selected edges to H.

The following lemma is essentially directly from Lemma 22 (the structure lemma) and
the description of our algorithm.

▶ Lemma 24. H is a feasible solution.

Proof. For each i, let Hi denote the subgraph of H induced by Ri and let Gi denote the
subgraph of G induced by Ri. We will show that H satisfies the conditions of Lemma 22,
and hence is feasible. By construction, H contains all edges S in the important separators.

To show property 1 of Lemma 22, recall that in each Hi we included the edges selected
via a min-cost flow algorithm from V(i,ℓ) to V(i,r) with flow 3. Since there are at least three
edge-disjoint paths from V(i,ℓ) to V(i,r) in Gi (by Lemma 22 since G itself is feasible), this
will return three edge-disjoint paths from V(i,ℓ) to V(i,r). Hence H satisfies the first property.

Property 2 of Lemma 22 is direct from the algorithm, since Hi includes the output of
the 2-RSND algorithm from Theorem 18 when run on demands

{
(V(i,ℓ), vr, 2) : vr ∈ V(i,r)

}
∪{

(V(i,r), vℓ, 2) : vℓ ∈ V(i,ℓ)
}

. Similarly, within each component Hi in the s − t 2-chain, the
edges selected by the Steiner Forest algorithm form a path from vertex vℓ ∈ V(i,ℓ) to vertex
vr ∈ V(i,r) if vℓ and vr are connected in G. This satisfies Property 3 in Lemma 22. ◀

Let H∗ denote the optimal solution, and for any set of edges A ⊆ E, let w(A) =
∑

e∈A w(e).
The next lemma follows from combining the approximation ratios of each of the subroutines
used in our algorithm.

▶ Lemma 25. w(H) ≤ 27
4 · w(H∗)

Proof. Let Hi = H[Ri] be the subgraph of H induced by Ri, and let H∗
i = H∗[Ri] be the

subgraph of the optimal solution induced by Ri. We also let HM
i denote the subgraph of Hi

returned by the min-cost flow algorithm run on Ri (i.e., the set of edges with non-zero flow),
let HN1

i and HN2

i denote the subgraphs returned by the first and second 2-approximation
2-RSND algorithms run on Ri, respectively, and we let HF

i denote the subgraph of Hi

returned by the Steiner Forest algorithm on Ri. We also let M∗
i be the optimal solution to

the Minimum-Cost Flow instance on Ri, let N1∗

i and N2∗

i be the optimal solutions to the
first and second 2-RSND instances on Ri, respectively, and let F ∗

i be the optimal solution to
the Steiner Forest instance on Ri. Subgraph HM

i is given by an exact algorithm, subgraphs
HN1

i and HN2

i are given by a 2-approximation algorithm, and subgraph HF
i is given by a(

2 − 1
k

)
-approximation algorithm. Note that there are at most 4 terminal pairs in the Steiner

Forest instance, so k ≤ 4 and the algorithm gives a 7
4 -approximation. Hence we have the

following for each component Ri:

w(HM
i ) = w(M∗

i ), w(HN1

i ) ≤ 2w(N1∗

i ), w(HN2

i ) ≤ 2w(N2∗

i ), w(HF
i ) ≤ 7

4w(F ∗
i ).

Summing over all components in the chain, we get the following:
p∑

i=0
w(HM

i ) =
p∑

i=0
w(M∗

i ),
p∑

i=0
w(HN1

i ) ≤ 2 ·
p∑

i=0
w(N1∗

i ),

p∑
i=0

w(HN2

i ) ≤ 2 ·
p∑

i=0
w(N2∗

i ),
p∑

i=0
w(HF

i ) ≤ 7
4 ·

p∑
i=0

w(F ∗
i ).
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We also have that

w(Hi) ≤ w(HM
i ) + w(HN1

i ) + w(HN2

i ) + w(HF
i ).

Summing over all components in the chain and then substituting the above, we get the
following:

p∑
i=0

w(Hi) ≤
p∑

i=0
w(HM

i ) +
p∑

i=0
w(HN1

i ) +
p∑

i=0
w(HN2

i ) +
p∑

i=0
w(HF

i )

≤
p∑

i=0
w(M∗

i ) + 2 ·
p∑

i=0
w(N1∗

i ) + 2 ·
p∑

i=0
w(N2∗

i ) + 7
4 ·

p∑
i=0

w(F ∗
i ).

The optimal subgraph H∗ is a feasible solution, so by Lemma 22, each property in the
lemma statement must be met on subgraph H∗

i for all i. For all properties in the lemma
to be satisfied on H∗

i , the set of edges E(H∗
i ) must be a feasible solution to each of the

Minimum-Cost Flow, 2-RSND, and Steiner Forest instances on Ri. Therefore, the cost of
H∗

i must be at least the cost of the optimal solution to each of the Minimum-Cost Flow,
2-RSND, and Steiner Forest instances. We therefore have the following:

p∑
i=0

w(Hi) ≤
p∑

i=0
w(H∗

i ) + 2
p∑

i=0
w(H∗

i ) + 2
p∑

i=0
w(H∗

i ) + 7
4

p∑
i=0

w(H∗
i ) ≤ 27

4

p∑
i=0

w(H∗
i ).

Finally, we must account for the edges between components in the s − t 2-chain. Let S be
the set of edges between components in the chain that are included in the algorithm solution,
and let S∗ be the set of edges between components included in the optimal solution. By
Lemma 22, any feasible solution must include all edges between the components of the chain.
We therefore have that S = S∗ and we get the following:

w(H) =
p∑

i=0
w(Hi) + w(S) ≤ 27

4

p∑
i=0

w(H∗
i ) + w(S) ≤ 27

4

(
p∑

i=0
w(H∗

i ) + w(S∗)
)

≤ 27
4 w(H∗). ◀

Theorem 5 is directly implied by Lemmas 24 and 24 together with the obvious observation
that our algorithm runs in polynomial time.
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A Counterexamples from Section 2

We show some counterexample to obvious approaches to k-EFTS; in particular, we show
that our cut requirement function fF is not weakly supermodular, and the most obvious cut
requirement function f(S) = min(k, |δG(S)|) is also not weakly supermodular.

Recall that δG(S) denotes the edges in G with exactly one endpoint in S. We extend
this notation for disjoint sets A, B by letting δG(A, B) denote the edges with one endpoint
in A and one endpoint in B.

▶ Theorem 26. The function fF is not weakly supermodular.

Proof. Consider the following example. Set k = 100. We create a graph G = (V, E) which
has two sets A, B ⊆ V with the following properties.

|δG(A \ B, V \ (A ∪ B))| = 49 |δG(B \ A, V \ (A ∪ B))| = 105
|δG(A ∩ B, V \ (A ∪ B))| = 3 |δG(A \ B, B \ A)| = 0

|δG(A \ B, A ∩ B)| = 2 |δG(B \ A, A ∩ B)| = 49

Anything not specified is extremely dense and well-connected, so an edge is in F if and
only if it is part of a small cut made up of the above sets. It is not hard to see that the
small cuts are precisely A \ B (since |δG(A \ B)| = 49 + 0 + 2 = 51 < 100) and A ∩ B (since
|δG(A ∩ B) = 3 + 2 + 49 = 54 < 100). All other cuts are large. Hence F consists of all edges
involving A or B other than δG(B \ A, V \ (A ∪ B)), or more specifically,

F =δG(A \ B, V \ (A ∪ B)) ∪ δG(A ∩ B, V \ (A ∪ B))
∪ δG(A \ B, A ∩ B) ∪ δG(B \ A, A ∩ B).

We can now calculate fF on the subsets we care about:

fF (A) = 100 − 49 − 3 − 49 = −1
fF (B) = 100 − 3 − 2 = 95

fF (A \ B) = 0 (A \ B is small)
fF (B \ A) = 100 − 49 = 51
fF (A ∩ B) = 0 (A ∩ B is small)
fF (A ∪ B) = 100 − 49 − 3 = 48

Thus

fF (A) + fF (B) = 94 fF (A \ B) + fF (B \ A) = 51 fF (A ∪ B) + fF (A ∩ B) = 48

Hence fF is not weakly supermodular. ◀

Note that the above example is not a contradiction of f being locally weakly supermodular
since A is an empty cut.

▶ Theorem 27. The function f = min(k, |δG(S)|) is not weakly supermodular.

Proof. Consider the following example. Set k = 100. We create a graph G = (V, E) which
has two sets A, B ⊆ V with the following properties. All of A \ B and B \ A and A ∩ B and
V \ (A ∪ B) are extremely large and dense (e.g., large cliques). There are no edges between
A \ B, B \ A, or A ∩ B. The other cut sizes are:

|δG(A ∩ B, V \ (A ∪ B))| = 55
|δG(A \ B, V \ (A ∪ B))| = 95

|δG(B \ A), V \ (A ∪ B))| = 95
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Then it is easy to see that

f(A) = 100 f(b) = 100
f(A \ B) = 95 f(B \ A) = 95
f(A ∪ B) = 100 f(A ∩ B) = 55

Hence f is not weakly supermodular. ◀
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