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Abstract
Let H(k, n, p) be the distribution on k-uniform hypergraphs where every subset of [n] of size k is
included as an hyperedge with probability p independently. In this work, we design and analyze
a simple spectral algorithm that certifies a bound on the size of the largest clique, ω(H), in
hypergraphs H ∼ H(k, n, p). For example, for any constant p, with high probability over the choice
of the hypergraph, our spectral algorithm certifies a bound of Õ(

√
n) on the clique number in

polynomial time. This matches, up to polylog(n) factors, the best known certificate for the clique
number in random graphs, which is the special case of k = 2.

Prior to our work, the best known refutation algorithms [4, 1] rely on a reduction to the problem
of refuting random k-XOR via Feige’s XOR trick [6], and yield a polynomially worse bound of
Õ(n3/4) on the clique number when p = O(1). Our algorithm bypasses the XOR trick and relies
instead on a natural generalization of the Lovász theta semidefinite programming relaxation for
cliques in hypergraphs.
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1 Introduction

In this work, we study the average-case search problem of finding refutations, i.e., certificates
of the tightest possible upper bounds, on the clique number ω(H) (size of the largest clique)
of random k-uniform hypergraphs H drawn from the distribution H(k, n, p), where each
hyperedge is included in H independently with probability p. A clique in a k-uniform
hypergraph H is a set S of vertices such that all subsets C ⊆ S with |C| = k are edges in
the hypergraph H, and we will adopt the convention that if |S| ≤ k − 1, then S is trivially
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a clique. With high probability, the clique number of such hypergraphs is O(log(n)
1

k−1 )
for constant p, and approaches n as p approaches 1 − O(n−(k−1)) [11]. Our goal is to find
polynomial time algorithms that certify a bound as close to this ground truth as possible.

In the case of Erdös-Renyi random graphs from G(n, p), i.e., when k = 2, the Lovász
theta function provides a semidefinite programming relaxation that certifies a bound of
O(

√
n) in polynomial time with high probability over the draw of the graph, when p = O(1).

A long line of work [7, 8, 13, 5, 9, 14, 3] has explored the power of spectral methods and
semidefinite programming hierarchies for improving on this bound. This question is also
closely related to the planted clique problem [10, 12, 2, 7, 8], where the size of the cliques
that can be efficiently recovered is similar to the best known polynomially-certifiable upper
bounds on the clique number of random graphs.

For k > 2, the problem was first studied by Coja-Oghlan, Goerdt and Lanka [4], who
provided a polynomial time algorithm based on spectral methods to certify an upper bound
of εn on the clique number of random 3- and 4-uniform hypergraphs, where ε is a constant.
Unlike the case of k = 2, their algorithm relies on a reduction, via the famous XOR trick of
Feige [6], to the problem of refuting random k-XOR formulas. Specifically, they construct
a polynomial f(x) = 1

(n
k)

∑
C∈([n]

k ) bC

∏
i∈C xi, where bC = 1 − p if C ∈ H and bC = −p if

C /∈ H, and they show that (1) if ω(H) is large, then f(x) is large for some x ∈ [−1, 1]n, and
(2) with high probability over H ∼ H(k, n, p), their k-XOR refutation algorithm certifies a
nontrivial upper bound on maxx∈[−1,1]n f(x), and thus on ω(H). This connection was later
utilized by Allen, O’Donnell and Witmer [1] who used their k-XOR refutation algorithms
to improve the bounds and handle the case of all k ≥ 3. For any k, when p = O(1), the
algorithm of [1] certifies ω(H) ≤ Õ(n3/4).1

In this paper, we show that the certificates obtained via the “XOR method” are in fact
suboptimal by providing a substantially improved certificate for the clique numbers of random
hypergraphs at all densities p. Our certificates are based on a natural generalization of the
“direct” Lovász SDP for clique numbers of graphs. The bounds obtained by our algorithm for
any fixed k match those obtained in the case of graphs (i.e., k = 2) up to polylogarithmic
factors in n.2 Specifically, we show:

▶ Theorem 1 (Theorem 3, specialized to poly(n)-time and p = O(1)). There is an algorithm
that takes as input a k-uniform hypergraph H on n vertices and a parameter p ∈ [0, 1]
with p = O(1), and outputs in nO(k)-time a value ωalg(H) ∈ [0, n] with the following two
properties:
(1) Completeness: ω(H) ≤ ωalg(H), for all H.
(2) High probability bound: If H ∼ H(k, n, p), then with probability 1 − 1/poly(n), ωalg(H) ≤

Õ(
√

n).
The result above is based on a (surprisingly) simple spectral algorithm that is a natural
analog, for k-uniform hypergraphs, of the algorithm that uses the spectral norm of the
adjacency matrix of a graph to certify an upper bound on its clique number. This is in
contrast to the methods from [4, 1] that rely on a reduction to refuting random k-XOR
formulas.

1 We use the notation Õ(f(n)) to mean O(f(n)polylog(n)).
2 We believe that with a more fine-grained analysis, our bound can be improved from Õ(

√
n) to O(

√
n).

However, for simplicity we use “off-the-shelf” concentration inequalities, which lose polylog(n) factors
over sharper methods.
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It is easy to observe that a clique in H is an independent set in the complement hypergraph
H := {C : C /∈ H}, and that H ∼ H(k, n, 1 − p) when H ∼ H(k, n, p). Thus, Theorem 1
certifies a bound of Õ(

√
n) on the size of the maximum independent set in a random

H ∼ H(k, n, 1 − p) with high probability, and hence also certifies with high probability that
the chromatic number of a random H is at least Ω̃(

√
n).

Theorem 1 is a special case of our more general theorem (Theorem 3), which we present
in full in Section 2. The algorithm in Theorem 3 has a tradeoff between the runtime and the
strength of the certificate, and also handles the more general case of nonconstant p.

▶ Remark 2 (Detecting planted cliques vs. refutation). We note that it is easy to distinguish
between a random H ∼ H(k, n, 1/2) and a random H ∼ H(k, n, 1/2) with a planted clique of
size Θ̃(

√
n); the extra polylog(n) factor makes the degrees of vertices in the planted clique be

noticeably larger than other vertices, so one can easily extract the planted clique. However,
we are considering the formally harder task of refutation, so merely being able to distinguish
a random H ∼ H(k, n, 1/2) from a H from this particular planted distribution is insufficient.
For example, it is easy to construct a hypergraph H where the vertices in the planted clique
do not have larger-than-average degree, which would, e.g., trivially fool the aforementioned
simple distinguisher.

2 The Spectral Algorithm

In this section, we prove the following theorem, which has Theorem 1 as a special case.

▶ Theorem 3. There is an algorithm that takes as input a k-uniform hypergraph H on
n vertices, a parameter p := p(n) ∈ [0, 1], and an integer d := d(n) ≥ 1, and outputs in
nO(d+k)-time a value ωalg(H) ∈ [0, n] with the following two properties:
(1) Completeness: ω(H) ≤ ωalg(H), for all H.
(2) High probability bound: If H ∼ H(k, n, p), then with probability 1 − 1/poly(n),

ωalg(H) ≤ d + O(k)
(

d log2 n

1 − p

) 2
k′ √

max(np( d
k′−1), d log n) ,

where k′ = k if k is even, and k′ = k − 1 if k is odd.
Before continuing with the proof, we first interpret Theorem 3 and compare it to the works
of [4, 1].

When k = 3, [4] certifies ω(H) ≤ εn for constant ε when p ≤ 1 − O(n−3/2), and when
k = 4, [4] certifies ω(H) ≤ εn for constant ε for p ≤ 1 − O( 1

n2 ). [1] improves upon [4] and
certifies ω(H) ≤ Õ(n3/4+θ/2k) when p = 1 − Õ(n−θ); in particular, for, e.g., p = 1

2 , they
certify that ω(H) ≤ Õ(n3/4), and this bound gets worse as p increases. When p = O(1), our
algorithm certifies a bound of ω ≤ Õ(

√
n) in polynomial time for any fixed k. Theorem 3

thus beats the current best known algorithm in [1] by a factor of n1/4, i.e., a polynomial
factor.

More generally, for any d ∈ N, our algorithm certifies a bound of ω ≤ Õ(1)+Õ(
√

np( d
k′−1))

in time nO(d+k). On the other hand, for H ∼ H(k, n, p) with p ≤ 1 − O(n−(k−1)), [11] shows
that with high probability, the true clique size is ω(H) ≤ O((1−p)− 1

k−1 (log(nk−1(1−p)))
1

k−1 ).
So, for, e.g., d = O(log n) and p ≤ O(1), our algorithm outputs ωalg(H) ≤ Õ(1), which is the
true clique number up to polylog(n) factors.

We now turn to the proof of Theorem 3.

APPROX/RANDOM 2022
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Proof of Theorem 3. We break the proof of Theorem 3 into three steps. First, we give a
simple refutation algorithm that achieves the guarantees of Theorem 3 when k is even and
d = 1. Then, we prove the case when k is even and d is arbitrary by reduction to the case
when d = 1. Finally, we reduce the case of odd k to the case of even k.

For a set S and integer t, we will let
(

S
t

)
denote the set of all subsets of S of size exactly

t. E.g.,
([n]

k

)
:= {C ⊆ [n], |C| = k}.

The basic refutation algorithm. We first give a basic refutation algorithm. This algorithm
achieves the guarantees of Theorem 3 in the case when k is even and d = 1.

▶ Lemma 4. Let k be even. There is an algorithm A that takes as input a k-uniform
hypergraph H on n vertices and a parameter p := p(n) ∈ [0, 1], and outputs in nO(k)-time a
value ωalg(H) ∈ [0, n] with the following two properties:
(1) Completeness: ω(H) ≤ ωalg(H), for all H ⊆

([n]
k

)
.

(2) High probability bound: If H ∼ H(k, n, p), then for any c ≥ 1, with probability 1 − n−c,

ωalg(H) ≤ O(k)
(

c log n

1 − p

) 2
k √

n .

We prove Lemma 4 in Section 2.1.

Case 1: k is even. We now prove Theorem 3 when k is even. To do this, we need the
following claim.

▷ Claim 5. Let H be a k-uniform hypergraph on n vertices, let d ≥ k − 1 be a positive
integer, and let J ⊆ [n] be a set of size d. Let VJ = {i ∈ [n] \ J : ∀J ′ ∈

(
J

k−1
)
, J ′ ∪ {i} ∈ H},

and let HJ =
(

VJ

k

)
∩ H. Then, ω(H) ≤ d + maxJ∈(n

d) ω(HJ). Moreover, if H ∼ H(k, n, p),

then |VJ | ∼ Bin(n − d, p( d
k−1)), and conditioned on VJ , HJ ∼ H(k, |VJ |, p).

We prove Claim 5 in Section 2.2
With Claim 5 in hand, we finish the proof of Theorem 3 when k is even. Let A be the

algorithm in Lemma 4, and let the algorithm A′ operate as follows: on input H, (1) enumerate
over all J ∈

([n]
d

)
and compute A(HJ), and then (2) output d + max

J∈([n]
d ) A(HJ). Clearly,

A′ runs in nO(d) ·nO(k) = nO(d+k) time. We observe that by Lemma 4 and Claim 5, we clearly
have that ω(H) ≤ d + max

J∈([n]
d ) ω(HJ) ≤ d + max

J∈([n]
d ) A(HJ) = A′(H), so Item 1 holds.

We now prove Item 2. Fix J ∈
([n]

d

)
. We observe that by Claim 5, VJ ∼ Bin(n − d, p( d

k−1)).
We bound |VJ | using the standard Chernoff bound, which we recall below.

▶ Fact 6 (Chernoff Bound). Let X ∼ Bin(n, p), and let δ ≥ 0. Then, Pr[X ≥ (1 + δ)np] ≤
exp( −δ2np

2+δ ).

Fact 6 implies that |VJ | ≤ max(np( d
k−1), d log n) with probability ≥ 1−n−2d. Now, conditioned

on |VJ |, by Claim 5 we have that HJ ∼ H(k, |VJ |, p). Hence, if |VJ | ≥ 1, setting c = O(d log n)

in Lemma 4, we have that with probability ≥ 1 − n−2d, A(HJ) ≤ O(k)
(

d log2 n
1−p

) 2
k √

|VJ |.
(If |VJ | = 0, then A(HJ) = k − 1.) Hence, for a fixed J , with probability ≥ 1 − 2n−2d,

we have A(HJ) ≤ O(k)
(

d log2 n
1−p

) 2
k

√
max(np( d

k−1), d log n). By union bound over all J , we

thus conclude that A′(H) ≤ d + O(k)
(

d log2 n
1−p

) 2
k

√
max(np( d

k−1), d log n) with probability
≥ 1 − 2n−d = 1 − 1/poly(n). This finishes the proof of Theorem 3 when k is even.
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Case 2: k is odd We now turn to the case when k is odd. For the odd case, we use the
following claim, which we prove in Section 2.3.

▷ Claim 7. Let H be a k-uniform hypergraph on n vertices with k ≥ 3. For each i ∈ [n],
let Hi = {C \ {i} : C ∈ H ∧ i ∈ C}. Then, ω(H) ≤ 1 + maxi∈[n] ω(Hi). Moreover, if
H ∼ H(k, n, p), then for any fixed i ∈ [n], Hi ∼ H(k, n − 1, p).

Let A′ be the algorithm in Theorem 3 when k is even, described earlier. Let A′′ be
the algorithm that operates as follows: on input H, a k-uniform hypergraph where k

is odd, (1) for each i ∈ [n], compute A′(Hi), (2) output 1 + maxi∈[n] A′(Hi). Clearly,
A′′ runs in nO(d+k) time, and by Claim 7, we have that ω(H) ≤ 1 + maxi∈[n] ω(Hi) ≤
1 + maxi∈[n] A′(Hi) = A′′(H). Thus, Item 1 holds. To see Item 2, we observe that
by Claim 7, Hi ∼ H(k, n − 1, p). Hence, with probability ≥ 1 − 2n−d, it holds that

A′(Hi) ≤ d + O(k)
(

d log2 n
1−p

) 2
k−1

√
max(np( d

k−2), d log2 n). By union bound over the choice
of i, we see that with probability 1 − 1/poly(n),

A′′(H) ≤ d + O(k)
(

d log2 n

1 − p

) 2
k−1 √

max(np( d
k−2), d log n) ,

which finishes the proof of Theorem 3. ◀

2.1 The basic algorithm: proof of Lemma 4

Proof. For C ∈
([n]

k

)
, let AC ∈ R( [n]

k/2)×( [n]
k/2) be the matrix where AC(S, T ) = 1 if S ∪ T = C,

and 0 otherwise. Note that this implies that S ∩ T = ∅ also.
Let A =

∑
C∈([n]

k ) bCAC , where bC = 1 − p if C ∈ H, and bC = −p if C /∈ H. The output

of the algorithm is ωalg(H) := ω = max(k − 1, k
(

p
1−p

(
k

k/2
)

· ∥A∥2
2

) 1
k ). We observe that A

can be constructed in nO(k) time and has size nO(k), and so we can compute ∥A∥2 (and thus
also ω) in nO(k) time.

We now prove Item 1. Let I ⊆ [n] be a clique in H. If |I| ≤ k − 1, then we are done,
as ω ≥ k − 1 always holds. So, suppose that |I| ≥ k. Let x ∈ R( [n]

k/2) be defined as xS = 1
if S ⊆ I, and 0 otherwise. Note that ∥x∥2

2 =
( |I|

k/2
)
. We observe that x⊤Ax is simply√

1−p
p

(|I|
k

)
·
(

k
k/2

)
. This is because for each C ∈

(
I
k

)
, there are

(
k

k/2
)

ways to partition C into
(S, T ), and all such C are in H, and thus bC = 1 − p. We thus conclude that

∥A∥2 ≥ x⊤Ax

∥x∥2
2

= (1 − p)
(

|I|
k

)
·
(

k

k/2

)
· 1( |I|

k/2
)

≥ (1 − p)

√(
|I|
k

)(
k

k/2

)
≥ (1 − p)

√(
|I|
k

)k (
k

k/2

)
,

where we use that (|I|
k )

( |I|
k/2)

2 ≥ 1
( k

k/2)
, and that

(|I|
k

)
≥

(
|I|
k

)k

. Hence, we have shown that

ω ≥ k

(
1

(1 − p)2

(
k

k/2

)
· ∥A∥2

2

) 1
k

≥ |I|

for any clique I in H with |I| ≥ k. This finishes the proof of Item 1.
We now prove Item 2. The key step here is to show an upper bound on ∥A∥2, with high

probability over H ∼ H(k, n, p). We will do this by applying the standard Matrix Bernstein
concentration inequality, which we recall below.

APPROX/RANDOM 2022
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▶ Fact 8 (Matrix Bernstein, Theorem 1.4 of [15]). Let X1, . . . , Xk be independent random
n × n symmetric matrices with E[Xi] = 0 and ∥Xi∥2 ≤ R for all i. Let σ2 ≥ ∥E[

∑k
i=1 X2

i ]∥2.
Then for any c > 0, Pr[∥

∑k
i=1 Xi∥2 ≥ O(Rc log n + σ

√
c log n)] ≤ n−c.

We observe that A =
∑

C∈([n]
k ) bCAC is the sum of

(
n
k

)
independent, mean 0 random matrices.

We have that ∥AC∥2 ≤ R := max(p, 1 − p) = 1 for every C, as each row/column of AC has
at most one nonzero entry, which is at most R in magnitude. We also observe that E[A2] =∑

C A2
C is a diagonal matrix, where the S-th diagonal entry is ≤

(
n−k/2
k−k/2

)
=

(
n−k/2

k/2
)

≤ nk/2,
as each A2

C is diagonal, has E[b2
C ] in the S-th diagonal entry if S ⊆ C, and E[b2

C ] ≤ 1. Hence,
by Fact 8, with probability 1 − n−c, we have that

∥A∥2 ≤ O(Rc log nk/2) + O(
√

cnk/2 log nk/2) ≤ O(n k
4 ck log n)

=⇒ k

(
1

(1 − p)2

(
k

k/2

)
· ∥A∥2

2

) 1
k

≤ k

(
1

(1 − p)2

(
k

k/2

)
· O(nk/2c2k2 log2 n)

) 1
k

≤ O(k)
(

c log n

1 − p

) 2
k √

n .

Finally, we have that

ω = max(k − 1, O(k)
(

c log n

1 − p

) 2
k √

n) = O(k)
(

c log n

1 − p

) 2
k √

n. ◀

2.2 Reduction for larger d: proof of Claim 5
Proof. Let I be a clique in H with |I| = ω(H). Let J ⊆ I be an arbitrary subset of size d.
We claim that I ′ := I \ J is a clique in HJ . Indeed, we first observe that for each i ∈ I ′, we
have i ∈ VJ , as for any J ′ ∈

(
J

k−1
)
, we have J ′ ∪ {i} is a subset of I of size k, and hence is in

H. Next, let C ⊆ I ′ be any subset of size k (if |I ′| ≤ k − 1, so that no such C exists, then I ′

is trivially a clique in HJ). Then, C ∈ H, as I was a clique, and so C ∈ HJ . Hence, I ′ is a
clique in HJ . As ω(H) = |J | + |I ′| = d + |I ′| ≤ d + ω(HJ), this proves the first part of the
claim.

For the second part of the claim, we think of sampling H as follows. First, for every
J ′ ∈

(
J

k−1
)

and i ∈ [n], add J ′ ∪ {i} to H with probability p. Then, add every other C ∈
([n]

k

)
to H with probability p. We note that H ∼ H(k, n, p) clearly, and that after the first step,
we have determined VJ . In the first step, we see that i is added to VJ independently for each
i /∈ J , and each i is added with probability p( d

k−1). Hence, |VJ | ∼ Bin(n − d, p( d
k−1)). As all

the hyperedges in HJ are sampled in the second step, the claim follows. ◀

2.3 Reduction from odd k to even k: proof of Claim 7
Proof. Let I ∈ H be a clique with |I| = ω(H). If |I| = k − 1, then we are done, as
ω(Hi) ≥ k − 2 for all i since k ≥ 3. So, suppose |I| ≥ k. Let i ∈ I, and let J = I \ {i}. Then,
J is a clique in Hi. Indeed, for any C ′ ∈

(
J

k−1
)
, we must have C ′ ∪ {i} ∈ H, and therefore

we have C ′ ∈ Hi. So, it follows that ω(Hi) ≥ |J | = |I| − 1, which finishes the proof of the
first part of the claim.

For the second part, we observe that if H ∼ H(k, n, p), then each C ∈
([n]

k

)
with i ∈ C

is added to H independently with probability p. So, each C ′ ∈
([n]\{i}

k−1
)

is added to Hi

independently with probability p, which finishes the proof. ◀
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