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Abstract
In submodular optimization we often deal with the expected value of a submodular function f

on a distribution D over sets of elements. In this work we study such submodular expectations
for negatively dependent distributions. We introduce a natural notion of negative dependence,
which we call Weak Negative Regression (WNR), that generalizes both Negative Association and
Negative Regression. We observe that WNR distributions satisfy Submodular Dominance, whereby
the expected value of f under D is at least the expected value of f under a product distribution
with the same element-marginals.

Next, we give several applications of Submodular Dominance to submodular optimization. In
particular, we improve the best known submodular prophet inequalities, we develop new rounding
techniques for polytopes of set systems that admit negatively dependent distributions, and we prove
existence of contention resolution schemes for WNR distributions.
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1 Introduction

A function f : 2U → R on universe U = {1, . . . , n} is submodular if it satisfies f(S) + f(T ) ≥
f(S ∪ T ) + f(S ∩ T ) for all S, T ⊆ U . These functions capture the concept of diminishing
returns, and are therefore useful in many fields such as machine learning, operations research,
mechanism design, and combinatorial optimization; see books [20, 3, 36, 31].

Although f is a discrete function, for many applications it is useful to define a continuous
relaxation fcont : [0, 1]n → R of f , since that allows us to use techniques from continuous
optimization. Here, by a relaxation we mean that fcont equals f at the indicator vectors
of the sets, i.e., fcont(1S) = f(S) for all S ⊆ U . A standard way to define such continuous
relaxations is to first define a probability distribution D(x) over subsets of U with element-
marginals x ∈ [0, 1]n, and then define fcont(x) to be the expectation with respect to this
distribution, i.e., fcont(x) := ES∼D(x)[f(S)], where S is a random set drawn from D(x). For
example, the popular multilinear relaxation F (x) is defined by taking D(x) to be the product
distribution with marginals x. Other examples include the convex closure relaxation f−(x)
(which is equivalent to the Lovász extension for submodular functions), the concave closure
relaxation f+(x), and the relaxation f∗(x) [38]. Studying the properties of submodular
expectations for these distributions has been a fruitful direction, which has led us to several
optimal/approximation algorithms for submodular optimization [3, 39, 7, 18, 2, 16].

Given the success of the above continuous relaxations, it is natural to ask what other
continuous relaxations, or equivalently, what other submodular expectations and distributions
D(x) could be defined that are useful for new or improved applications. In this work, we study
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44:2 Submodular Dominance and Applications

submodular expectations for negatively dependent distributions and use them to improve
the best known submodular prophet inequalities, to develop new rounding techniques, and
to design contention resolution schemes for negatively dependent distributions.

1.1 Submodular Dominance
Since the multilinear extension F is commonly employed in combinatorial optimization, one
avenue to explore other continuous relaxations is by comparing them to F .

▶ Definition 1 (Submodular Dominance). A distribution D over 2U with marginals x ∈ [0, 1]n
satisfies Submodular Dominance if for every submodular function f : 2U → R,

E
S∼D

[f(S)] ≥ F (x) .

Shao [37] studied a similar concept that he called a comparison theorem, which involved
a subclass of submodular functions. Christofides and Vaggelatou [13] later studied what they
called the supermodular ordering, which is essentially equivalent to Submodular Dominance.
Both viewed the problem through the lens of probability theory, whereas we approach it
from the standpoint of combinatorial optimization.

It is not difficult to see how one might apply Submodular Dominance, e.g., it immediately
yields an algorithm to round multilinear extension subject to feasibility constraints. However,
Submodular Dominance implies a much wider variety of results in stochastic settings, where
most of our current understanding relies on the independence of random variables. By
relating product distributions to more complex distributions, Submodular Dominance allows
us to improve existing results and study more general problems.

1.2 Negative Dependence and Submodular Dominance
Positive correlations can only decrease the expectations of submodular functions due to their
diminishing marginal returns, so we turn our attention to negatively dependent distributions.
Pemantle initiated a systematic study of such distributions in [32]. In this work, we introduce
the following generalization of Negative Association (NA) and Negative Regression (NR),
two popular notions of negative dependence (details in Section 2).

▶ Definition 2 (WNR). A distribution D over 2U satisfies Weak Negative Regression (WNR)
if for any i ∈ U and any monotone function f : 2U → R,1

E
S∼D

[f(S \ i) | i ∈ S] ≤ E
S∼D

[f(S \ i) | i ̸∈ S] . (1)

Equivalently, D is WNR if S \ i conditioned on i ̸∈ S stochastically dominates S \ i condi-
tioned on i ∈ S for all i ∈ U . This captures an intuitive notion of negative dependence where
conditioning on including an element lowers the probability of other inclusion events. WNR
distributions satisfy Submodular Dominance as well as many desirable closure properties.

Submodular Dominance for Negatively Dependent Distributions. Christofides and Vag-
gelatou [13] proved that NA distributions over continuous random variables satisfy Submod-
ular Dominance for a continuous generalization of submodular functions. We strengthen
their result in Section 3 in the setting of Bernoulli random variables from NA to WNR
distributions, a strict superset of the union of NA and NR distributions.

1 A function f is monotone if it satisfies f(S) ≤ f(T ) for all S ⊆ T . Elements should be taken as singleton
sets depending on context, e.g., S \ i means S \ {i}.
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▶ Theorem 3. WNR distributions satisfy Submodular Dominance.

It turns out that there exist distributions that satisfy Submodular Dominance but are not
WNR. This raises the question: what conditions are necessary for Submodular Dominance?
We first recall the classic notion of Negative Cylinder Dependence (see, e.g., [21]).

▶ Definition 4 (NCD). A distribution D over 2U with marginals x satisfies Negative Cylinder
Dependence (NCD) if for any T ⊆ U ,2

Pr
S∼D

[T ⊆ S] ≤ Pr
S∼x

[T ⊆ S] and Pr
S∼D

[T ⊆ Sc] ≤ Pr
S∼x

[T ⊆ Sc] .

NCD can be interpreted as saying that any subset of elements are negatively correlated.

▶ Theorem 5. All distributions that satisfy Submodular Dominance are NCD.

This can be useful when Submodular Dominance is an easier property to prove. For
example, the distribution arising from randomized swap rounding can be shown to satisfy
Submodular Dominance via a straightforward convexity argument, but a direct proof that
the distribution is NCD is more involved [10]; this theorem shows that such results follow due
to a natural relationship between Submodular Dominance and negative dependence rather
than any algorithm specific properties.

Although NCD is necessary for Submodular Dominance, it is insufficient on its own.
While this insufficiency result was previously known [11],3 we strengthen it by constructing
an example of an NCD distribution which violates Submodular Dominance and is additionally
homogeneous, meaning it is distributed only on sets of the same size. Such distributions
occur often enough to be of interest, e.g., distributions over the bases of a matroid.

1.3 Applications
Besides being a natural question, Submodular Dominance has several applications.

Submodular Prophet Inequalities. The Prophet Inequality is a classical problem where a
gambler sees the realizations of non-negative random variables one-by-one, choosing a random
variable in an online fashion and attempting to maximize its value. The celebrated result of
Krengel, Sucheston, and Garling [28, 29] demonstrates a 1/2 prophet inequality, meaning that
just knowing the distributions in advance is enough to obtain 1/2 the expectation obtained
by the prophet that knows all the realizations in advance.

Motivated by applications to mechanism design, several works extended the 1/2 prophet
inequality to gamblers selecting multiple random variables subject to a packing constraint
to maximize a linear objective function, e.g., [24, 8, 1, 27, 34]. The Submodular Prophet
Inequality (SPI) was introduced by Rubinstein and Singla [35] as a further generalization to
submodular objective functions to capture combinatorial applications.

One significant complication in SPI is that beyond simple Bernoulli settings, we deal with
expectations that are no longer taken over product distributions. Chekuri and Livanos [9]
obtain an efficient4 c · (1− e−b) · (e−b − ϵ) SPI for set systems with solvable polytopes5 and

2 S ∼ x means S is sampled from the product distribution with marginals x.
3 Observing that certain randomized rounding algorithms give rise to distributions satisfying both

Submodular Dominance and NCD, Chekuri, Vondrák, and Zenklusen [11] remarked that there exist
NCD distributions which violate Submodular Dominance, so NCD was not sufficient for Submodular
Dominance. Our Theorem 5 shows the other direction, that Submodular Dominance implies NCD.

4 We use efficient to mean algorithms that run in probabilistic polynomial time.
5 The polytope PI of a set system I is formed by taking the convex hull of the indicator vectors of

maximal independent sets in I, and is solvable if linear objective functions can be efficiently maximized
over it.

APPROX/RANDOM 2022
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an efficient (b, c)-selectable greedy online contention resolution scheme (OCRS) for product
distributions (see formal definitions in Section 4). Crucially, their result loses a factor of
e−b − ϵ to handle the non-product distributions of SPI. We use Submodular Dominance to
re-analyze the performance of greedy OCRSs in Section 4.3, which allows us to save this
factor of e−b − ϵ and improve the best known SPIs.

▶ Theorem 6 (Submodular Prophet Inequalities). For fixed ϵ > 0, if a set system I ⊆ 2U has
a solvable polytope and an efficient (b, c)-selectable greedy OCRS for product distributions:

There is an efficient c · (1− e−b− ϵ) SPI for monotone non-negative submodular functions.
There is an efficient c/4 · (1− e−b − ϵ) SPI for general non-negative submodular functions.

Combining with known greedy OCRSs, this implies efficient SPIs as given in Table 1.

Table 1 Submodular Prophet Inequalities for different feasibility constraints.

Feasibility Constraint Prior Best [9] Our Results

Monotone General Monotone General

Uniform Matroid of rank k → ∞ 1/4.30 1/17.20 1 − 1/e − ϵ 1/6.33

Matroid 1/7.39 1/29.54 1/5.02 1/20.07

Matching 1/9.49 1/37.93 1/6.75 1/27.00

Knapsack 1/17.41 1/69.64 1/13.40 1/53.60

It is known that even for offline monotone submodular maximization over uniform
matroids, no efficient algorithm can do better than a (1− 1/e)-approximation [30]. Thus, we
obtain the first optimal efficient 1− 1/e− ϵ monotone SPI over large rank uniform matroids.

Submodular Maximization. Another application is sampling from WNR distributions as
a randomized rounding technique where the integral solution obtains at least the value of
the fractional solution in expectation. A common method in submodular optimization is
to first maximize the multilinear extension, which Vondrák [39] showed can be done for
downward-closed set systems with solvable polytopes. For matroids, we know of methods
which round the fractional solutions to sets without losing value [6, 10, 11], but set systems
with solvable polytopes are far more general than matroids. Thus, the challenge in going
beyond matroids is rounding the multilinear extension. By Submodular Dominance, an
algorithm that efficiently generates a WNR distribution for a polytope automatically rounds
the multilinear extension, which we show has immediate consequences for submodular
maximization (details in Section 5.1).

▶ Theorem 7 (Submodular Maximization). Let f : 2U → R≥0 be a monotone submodular
function. If a downward-closed set system I ⊆ 2U has a solvable polytope and efficiently
admits WNR distributions, there exists an efficient algorithm that returns T ∈ I such that
E[f(T )] ≥ (1− 1/e− o(1)) ·maxS∈I f(S).

Adaptivity Gaps for Stochastic Probing. A natural generalization of submodular maximiz-
ation is by adding stochasticity: replace elements by random variables called items. Such
problems are often known as Stochastic Probing [22, 2, 23, 5, 17]. In addition to knowing the
distributions of the items, we also allow algorithms to learn the realization of an item after
selecting it. This opens up the concept of adaptive algorithms, which modify their behavior
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conditioned on such realizations. Though adaptivity can result in better algorithms, it also
introduces significant complexity; for example, a decision tree can be of exponential size.
Therefore, non-adaptive algorithms may be preferable if their performance is comparable to
that of the optimal adaptive algorithm, a concept known as the adaptivity gap. By sampling
from WNR distributions to round the multilinear extension, we adapt the analysis of the
adaptivity gap upper bound by Asadpour and Nazerzadeh [2] from matroids to any set
system for which WNR distributions exist (details in Section 5.2).

▶ Theorem 8 (Stochastic Probing). For a downward-closed set system I that admits WNR
distributions, the adaptivity gap for Stochastic Probing is upper-bounded by e

e−1 .

Contention Resolution Schemes. Contention resolution schemes (CRS) are another random-
ized rounding technique, with the concept being formally introduced by [12] for submodular
maximization. (Similar but less thoroughly explored notions appear in earlier works such
as [4].) Since submodular maximization usually occurs via approximations of the multilinear
extension, CRSs have generally been studied with respect to product distributions. Recently,
Dughmi [14, 15] initiated the study of CRSs for non-product distributions because of their
applications in settings such as the Matroid Secretary Problem. We extend the CRS of [12]
for matroids from product distributions to WNR distributions, which gives possible directions
to generalize our understanding of CRSs (details in Section 5.3).

▶ Theorem 9 (Contention Resolution Schemes). For a matroid M, there exists a (1− 1/e)-
selectable CRS for any WNR distribution with marginals x ∈ PM.

2 WNR and Other Negatively Dependent Distributions

In this section, we first discuss popular notions of negative dependence, and then introduce
WNR and study its various properties. Lengthier proofs are deferred to Appendix A.1.

▶ Definition 10 (NA). A distribution D over 2U satisfies Negative Association (NA) if for
any monotone f, g : 2U → R depending on disjoint sets of elements, CovS∼D[f(S), g(S)] ≤ 0.

This property is very similar to the Positive Association (PA) condition in the FKG
inequality, with the main difference being the reversed inequality and disjoint sets. Although
the FKG Inequality gives a straightforward condition to check for PA, no analogous result
exists for NA, and in general, it is difficult to prove that a distribution is NA [26, 32].

Another way to define negative dependence is based on the idea that conditioning on
“larger” inclusion events should reduce the probability of other inclusion events.

▶ Definition 11 (NR). A distribution D over 2U satisfies Negative Regression (NR) if for
any sets R−, R+, T ⊆ U such that R− ⊆ R+ ⊆ T and any monotone function f : 2U → R,

E
S∼D

[f(S \ T ) | (S ∩ T ) = R+] ≤ E
S∼D

[f(S \ T ) | (S ∩ T ) = R−] .

Equivalently, D is NR if S \ T conditioned on S ∩ T = R− stochastically dominates S \ T

conditioned on S∩T = R+ for all R− ⊊ R+ ⊆ T ⊆ U . It turns out that NR is also a difficult
property to check.

Since NA and NR are both natural forms of negative dependence, it is surprising that the
exact relationship between them is unknown. While it is known that NA does not imply NR,
it is conjectured that NR implies NA [32]. One might then ask whether we can generalize

APPROX/RANDOM 2022
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NA and NR to get the best of both worlds: a weaker notion of negative dependence that is
easier to check while still satisfying many desirable properties. This is our motivations for
defining WNR distributions.

We first reformulate the WNR condition in terms of covariance.

▷ Claim 12. The WNR condition (1) is equivalent to CovS∼D[f(S \ i),1i∈S ] ≤ 0.

Proof. Let D have marginals x. The covariance inequality is equivalent to ES∼D[f(S \ i) ·
1i∈S ] ≤ ES∼D[f(S \ i)]ES∼D[1i∈S ]. Then observe that if we expand LHS by conditioning
on i, the expectation conditioned on i ̸∈ S is 0 due to the indicator. We can also simplify
RHS using ES∼D[1i∈S ] = xi, so the covariance inequality is equivalent to

xi · E
S∼D

[f(S \ i) · 1i∈S | i ∈ S] ≤ E
S∼D

[f(S \ i)] · xi .

Canceling the xi and noting that the indicator on LHS is always 1, we have ES∼D[f(S\i) | i ∈
S] ≤ ES∼D[f(S \ i)]. This is equivalent to the WNR condition since the expectation is just a
weighted sum of the conditional expectation on i ∈ S and i ̸∈ S. ◁

Next, we prove that WNR distributions generalize NA and NR distributions.

▶ Proposition 13. NA and NR imply WNR, and WNR implies NCD, but the reverse
implications do not hold. In other words, the union of NA and NR distributions is a strict
subset of WNR distributions, which is a strict subset of NCD distributions.

Proof. The WNR condition is a special case of the NR condition when T := {i}, and by
Claim 12, it is also a special case of the NA condition when g(S) := 1i∈S , so both NA and
NR imply WNR. For strict containment, we give a WNR distribution that is neither NA
nor NR in Appendix A.1. Theorems 3 and 5 and the example distributions in Section 3
demonstrate that WNR distributions are a strict subset of NCD distributions. ◀

Negative
Association

Negative
Regression

Negative Cylinder Dependence

Submodular Dominance

Weak Negative Regression

Figure 1 Hierarchy of negative dependence and its relation to Submodular Dominance.

Finally, we observe that WNR satisfies two closure properties, proved in Appendix A.1.

▶ Definition 14 (Projection). Let D be a distribution over 2U . Its projection onto U ′ ⊆ U is
the distribution which samples S ∼ D and returns S ∩ U ′.

▶ Definition 15 (Products). Let A and B be distributions over 2A and 2B for disjoint A, B.
Their product distribution independently samples S ∼ A and T ∼ B, then returns S ∪ T .

▶ Proposition 16. WNR is closed both under projection and under products.
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Joag-Dev and Proschan [26] showed that NA distributions are NCD, closed under projec-
tion, closed under products, and closed under taking monotone functions of disjoint subsets
of variables.6 Since WNR shares three of these properties with NA and requires a weaker
condition while also generalizing NR, it appears to be a useful notion of negative dependence.

3 Towards a Characterization of Submodular Dominance

3.1 WNR is a Sufficient Condition
▶ Theorem 3. WNR distributions satisfy Submodular Dominance.

Proof. We prove by induction on the number of elements. The base case of 1 element is
trivial because the marginals fully specify the distribution.

We will show that any WNR distribution D over 2[k] with marginals x satisfies Submodular
Dominance, assuming by induction that all WNR distributions over 2[k−1] satisfy Submodular
Dominance. We assume that xk ≠ 0, 1 because otherwise, we can interpret D as a distribution
over 2[k−1] and trivially be done.

Let D \ k and x \ k denote the projections of D and x onto [k − 1]. Let Dk denote the
distribution which samples S ∼ D \ k, then returns S ∪ k w.p. xk and returns S otherwise,
i.e., Dk is D but with element k sampled independently.

Let f : 2[k] → R be a submodular function. To prove Submodular Dominance, we will
show the following inequalities hold:

E
S∼D

[f(S)]
Claim 18
≥ E

S∼Dk

[f(S)]
Claim 17
≥ E

S∼x
[f(S)] . (2)

▷ Claim 17. The second inequality of (2) holds, i.e., ES∼Dk
[f(S)] ≥ ES∼x[f(S)].

Proof. Since k is independently sampled in both Dk and x, we can write

E
S∼Dk

[f(S)] = E
S∼D\k

[xk · f(S ∪ k) + (1− xk) · f(S)] and

E
S∼x

[f(S)] = E
S∼x\k

[xk · f(S ∪ k) + (1− xk) · f(S)] .

Convex combinations of submodular functions are submodular, D \ k is WNR by closure
under projection (Proposition 16), and the marginals of D \ k are equal to the marginals of
x \ k. Therefore, by the induction hypothesis,

E
S∼D\k

[xk · f(S ∪ k) + (1− xk) · f(S)] ≥ E
S∼x\k

[xk · f(S ∪ k) + (1− xk) · f(S)] ,

which implies ES∼Dk
[f(S)] ≥ ES∼x[f(S)]. ◁

▷ Claim 18. The first inequality of (2) holds, i.e., ES∼D[f(S)] ≥ ES∼Dk
[f(S)].

Proof. Expanding expectations for Dk (as in the proof of Claim 17) and moving it to LHS,

E
S∼D

[f(S)− xk · f(S ∪ k)− (1− xk) · f(S \ k)] ≥ 0 .

6 This last property is useful in the setting of continuous random variables studied in [26] because
properties closed under convolutions are extremely powerful. However, it is not so relevant in the
discrete settings we study.

APPROX/RANDOM 2022
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Conditioning on k yields

xk · E
S∼D

[f(S ∪ k)− xk · f(S ∪ k)− (1− xk) · f(S \ k) | k ∈ S]

+ (1− xk) · E
S∼D

[f(S \ k)− xk · f(S ∪ k)− (1− xk) · f(S \ k) | k ̸∈ S] ≥ 0 ,

which simplifies to

xk(1−xk)
(

E
S∼D

[f(S∪k)−f(S \k) | k ∈ S]+ E
S∼D

[f(S \k)−f(S∪k) | k ̸∈ S]
)
≥ 0 .

Dividing out xk(1− xk) and moving the second term to RHS gives

E
S∼D

[f(S ∪ k)− f(S \ k) | k ∈ S] ≥ E
S∼D

[f(S ∪ k)− f(S \ k) | k ̸∈ S] . (3)

Let fk(S) := f(S ∪ k)− f(S \ k). fk does not depend on k, and by the submodularity of f ,
−fk is a monotone function. Thus, (3) is directly implied by the WNR condition (1). ◁

Claims 17 and 18 complete the proof of Theorem 3. ◀

The following proposition, which we prove in Appendix A.2, shows that WNR is not a
necessary condition for Submodular Dominance.

▶ Proposition 19. The distribution D which samples uniformly from ∅, {1}, {2}, {1, 2}, {1, 3},
{2, 3} satisfies Submodular Dominance, but D violates WNR for f(S) := max(11∈S ,12∈S)
and i = 3.

3.2 NCD is a Necessary Condition
Since WNR is not equivalent to Submodular Dominance, we search for necessary conditions to
better understand the relationship between negative dependence and Submodular Dominance.

▶ Theorem 5. All distributions that satisfy Submodular Dominance are NCD.

Proof. Let D be a distribution over 2U with marginals x which satisfies Submodular Domin-
ance. For any T ⊆ U , consider the functions

fT (S) := 1− 1T ⊆Sc and gT (S) := |S ∩ T | − 1T ⊆S .

Equivalently, fT , gT are the rank functions of the uniform matroids of rank 1 and |T | − 1
over the ground set T . The only fact about matroid rank functions we use here is that all
matroid rank functions are submodular (though one can also easily check that fT , gT are
submodular via the definition of submodularity). Since subtracting a linear function from a
submodular function results in a submodular function, −1T ⊆S and −1T ⊆Sc are submodular
functions. Thus, by Submodular Dominance we have

− Pr
S∼D

[T ⊆ S] = E
S∼D

[−1T ⊆S ] ≥ E
S∼x

[−1T ⊆S ] = − Pr
S∼x

[T ⊆ S] and

− Pr
S∼D

[T ⊆ Sc] = E
S∼D

[−1T ⊆Sc ] ≥ E
S∼x

[−1T ⊆Sc ] = − Pr
S∼x

[T ⊆ Sc] .

Multiplying both sides by −1 yields the definition of NCD (Definition 4). ◀

The following two propositions, which we prove in Appendix A.2, show that NCD is not
a sufficient condition for Submodular Dominance.
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▶ Proposition 20. The distribution D over 2[4] which chooses uniformly at random i ∈ [4],
then returns w.p. 1/2 either i or [4] \ i, is NCD. However, D violates Submodular Dominance
for the submodular function f(S) := min(2, |S|).

▶ Proposition 21. The distribution D over 2[8] which chooses uniformly at random i ∈
A := {1, 2, 3, 4} and j ∈ B := {5, 6, 7, 8}, then returns w.p. 1/2 either i ∪ (B \ j) or
(A \ i)∪ j, is NCD. However, D violates Submodular Dominance for the submodular function
f(S) := min(2, |S ∩A|).

Thus, the class of distributions which satisfy Submodular Dominance is a strict subset of
NCD distributions and a strict superset of WNR distributions. It is unclear whether the
“right” answer will turn out to be a useful notion of negative dependence.

4 Applications to Submodular Prophet Inequalities

In SPI, we have items U , which are discrete random variables with disjoint images and
arbitrary probability mass functions. We denote realizations of items as elements. WLOG,
let the image of i ∈ U be {ij : j ∈ [m]}, and let the realization of i be ij w.p. pij . Let
E := [n]× [m] denote the set of elements. The distributions of each item are independent
and known to us in advance.

We are given a set system I ⊆ 2U and a submodular objective function f : 2E → R≥0.
Notice that while the items are independent, the elements do not follow a product distribution.
As we are optimizing over the element-space, this is a non-trivial complication.

Each item arrives one-by-one. When an item arrives, we learn its realization, and must
choose whether to accept or reject it. The set of accepted items must be in I, and the goal
is to maximize f on the realizations of the accepted items. The arrival order is chosen by an
almighty adversary, who knows in advance the outcomes of all randomness, such as the item
realizations, the decisions of our algorithm, etc.

If there exists an α-competitive algorithm compared to the prophet, we say there is an α

SPI. Rubinstein and Singla [35] proved Ω(1) SPIs over matroids, and Chekuri and Livanos [9]
refined their analysis to obtain better constants, as well as results for a broader range of set
systems. We further improve upon their approach using Submodular Dominance, obtaining
results such as the first tight SPI for large rank uniform matroids.

4.1 Core Approach: SPI for Bernoulli Items
Before tackling the full problem, it is helpful to first consider a simplified version, Bernoulli
SPI, where each item i is only a Bernoulli random variable, taking value 1 w.p. pi and taking
value 0 otherwise. Here, there is no notion of elements (or rather, elements are effectively
synonymous with items), so we consider a submodular objective function f : 2U → R≥0. As
in the full problem, we have a set system constraint I ⊆ 2U .

This is quite similar to the problem of submodular maximization from Section 5.1, but
with a stochastic component (each item being usable only w.p. pi) and an online component
(items are revealed one-by-one). Therefore, it makes sense to borrow the high level approach
of optimizing the multilinear extension F , then rounding the fractional solution. Since I is a
discrete constraint and F is a continuous function, the following relaxation is useful in offline
submodular maximization:

▶ Definition 22. For any downward-closed set system I ⊆ 2U , its polytope PI ⊆ [0, 1]n is
the convex hull of the indicator vectors representing the maximal sets of I.
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44:10 Submodular Dominance and Applications

For Bernoulli SPI, we consider a modified polytope P ′
I := {x ∈ [0, 1]n : x ∈ PI , xi ≤

pi ∀i ∈ U}. Since the fractional solution corresponds to a distribution over I, the additional
constraint xi ≤ pi ensures that no item is included more often than it takes value 1. It turns
out that we can efficiently optimize F over P ′

I under mild conditions.
As for rounding, we can use online contention resolution schemes (OCRS). OCRSs

function in the following setting: we have a set system I ⊆ 2U and a distribution D over 2U

with marginals x. Let items i ∈ S for some S ∼ D be called active. The items then arrive
one-by-one in adversarial order. When item i arrives, we learn whether it is active, and if so,
must decide to accept or reject it, subject to the set of accepted items being in I. An OCRS
πI,D is an algorithm that plays this game. The following notion is a way to measure the
performance of an OCRS.

▶ Definition 23 ((b, c)-selectable OCRS). For b, c ∈ [0, 1], a set system I ⊆ 2U , and a
distribution D over 2U with marginals x ∈ b · PI , an OCRS πI,D is (b, c)-selectable if the
probability of πI,D accepting i is at least c · xi for all i ∈ U . If b = 1, we say πI,D is
c-selectable.

Feldman, Svensson, and Zenklusen [19] obtained the following approximation result for
rounding via greedy OCRSs (we omit the definition as it is not relevant).

▶ Proposition 24 ([19]). For a set system I ⊆ 2U , a monotone submodular function
f : 2U → R≥0, and x ∈ b · PI , applying a (b, c)-selectable greedy OCRS to S ∼ x obtains
T ∈ I such that ES∼x[f(T )] ≥ c ·F (x). Further, the greedy OCRS can be efficiently modified
such that even for non-monotone f , the modified greedy OCRS obtains T ∈ I such that
ES∼x[f(T )] ≥ c/4 · F (x).

In Bernoulli SPI, there is no notion of elements and we optimize over items. Thus, the
distribution of active items is already a product distribution, and simply applying greedy
OCRSs already yields approximation results using Proposition 24.

4.2 Generalizing to Arbitrary Discrete Random Variables

We now return to the full version of SPI. Again, let U be the set of items, I ⊆ 2U be a
downward-closed set system with a solvable polytope, E := [n]× [m] be the set of elements,
p ∈ [0, 1]nm be the element realization probabilities, and f : 2E → R≥0 be a submodular
function. The first step is to compute a fractional solution. Chekuri and Livanos [9] define
the polytope

P ′′
I := {x ∈ [0, 1]nm : ∃z ∈ PI satisfying

∑
jxij = zi ∀i ∈ U, xij ≤ pij ∀ij ∈ E} .

Here, the summation constraint is a natural relaxation of P ′
I from the item-space to the

element-space. Chekuri and Livanos prove a series of results7 which culminates in the
following (note that we do not require monotonicity of f):

▶ Proposition 25 ([9]). Let OPT be the expectation obtained by the prophet, I ⊆ 2U be a
set system with a solvable polytope, and f : 2U → R≥0 be a submodular function. Then for
any fixed ϵ > 0, we can efficiently compute x ∈ b · P ′′

I such that F (x) ≥ (1− e−b − ϵ) ·OPT.

7 See Section 3 of [9] for details, in particular, Claim 3.4, Theorem 1.3, and Remark 3.7.
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It remains to round the fractional solution. While it is fairly straightforward to convert a
(b, c)-selectable greedy OCRS for the item-space to a (b, c)-selectable greedy OCRS for the
element-space (indeed, we do this in Algorithm 1), we cannot obtain approximation results
directly from Proposition 24 like in the Bernoulli case because the distribution of elements
is not a product distribution. Chekuri and Livanos handle this by incurring an additional
loss of e−b − ϵ to “mask” the elements under a product distribution. We save this factor by
re-analyzing a simpler algorithm.

4.3 Improved Analysis
Let x ∈ b · P ′′

I be the solution computed as per Proposition 25. Define xi :=
∑

j xij , and
define x⃗ := (xi : i ∈ U). By definition of P ′′

I and the fact that x ∈ b · P ′′
I , we have that

x⃗ ∈ b · PI , so let πI,x⃗ be an efficient (b, c)-selectable greedy OCRS.
We first consider monotone f . Our rounding algorithm is almost identical to [9, Al-

gorithm 1], removing some steps that our improved analysis demonstrates to be unnecessary.

Algorithm 1 Monotone Rounding (U, E, p, f, x, πI,x⃗).

TALG = ∅
for t← 1 to n do

Let i ∈ U be the item that arrives on day t

Let ij ∈ E be the realization of i

With probability xij/pij , reveal active i to πI,x⃗, otherwise reveal inactive i to πI,x⃗

if πI,x⃗ accepts i then
TALG ← TALG ∪ {ij}

end
end
Return TALG

Denote element ij as active when ij is the realization of i, and Algorithm 1 reveals
active i to πI,x⃗. Since the elements do not follow a product distribution, we cannot apply
Proposition 24 even though the algorithm acts like a greedy OCRS. However, we provide
a new analysis which states that a c-approximation for product distributions implies a
c-approximation for the following wider class of distributions.

▶ Definition 26. A product of singletons distribution over 2E with marginals x ∈ [0, 1]nm

such that
∑

j xij ≤ 1 for all i is a distribution which independently samples 0 or 1 elements
from each set {ij : j ∈ [m]} according to the marginals x.

It is not difficult to see that the active elements follow a product of singletons distribution
with marginals x. The following lemma, which we prove in Appendix A.3, draws a connection
between product of singletons distributions and product distributions.

▶ Lemma 27. Let D be a product of singletons distribution over 2E with marginals x ∈
[0, 1]nm. Let xi :=

∑
j xij , and let x⃗ := (xi : i ∈ U). For any u ∈ [m]n, let Eu := {iui : i ∈ U}

and let Du be a product distribution over 2Eu with marginals x⃗. Then for any g : 2E → R,

E
S∼D

[g(S)] =
∑

u∈[m]n

(
E

S∼Du
[g(S)] ·

∏
i∈U

xiui

xi

)
. (4)

In simpler terms, Du is the distribution which samples S ∼ D, then replaces each element
ij ∈ S with the element iui. Lemma 27 states that any product of singletons distribution
with marginals x can be written as a convex combination of product distributions with
marginals x⃗.
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▶ Lemma 28. For monotone f , Algorithm 1 returns TALG such that E[f(TALG)] ≥ c · F (x).

Proof. Let D be the distribution of active elements. While the adversary sees the item
realizations and which items Algorithm 1 will reveal as active to πI,x⃗, the adversary cannot
influence D because the decisions to reveal active i do not depend on the item ordering.

Therefore, it is valid for us to “partition” the outcomes of randomness contributing to
D. Since D is a product of singletons distribution with marginals x, Lemma 27 tells us
that there exists a partition such that each part is a product distribution Du over 2Eu with
marginals x⃗. We fix some u ∈ [m]n and analyze the performance of Algorithm 1 on the
subset of randomness corresponding to the distribution Du.

Since Du is a product distribution, x⃗ ∈ b · PI , and the algorithm copies the acceptances of
πI,x⃗, Algorithm 1 acts exactly like a (b, c)-selectable greedy OCRS over Du. Most importantly,
Du being product distribution means we can apply Proposition 24 to get

E
S∼Du

[f(TALG)] ≥ c · E
S∼Du

[f(S)] .

TALG is implicitly a randomized function of S, so we can rewrite LHS as

E
S∼Du

[
E[f(TALG) | S = S′]

]
≥ c · E

S∼Du
[f(S)] ,

where the inner expectation is taken over the possible randomization of the underlying greedy
OCRS πI,x⃗ and the adversarial ordering of the items. As this holds for any u, weighting the
inequality and summing over all u ∈ [m]n yields∑

u∈[m]n

(
E

S∼Du

[
E[f(TALG) | S = S′]

]
·
∏
i∈U

xiui

xi

)
≥

∑
u∈[m]n

(
c · E

S∼Du
[f(S)] ·

∏
i∈U

xiui

xi

)
.

Factoring out the c on RHS, then applying Lemma 27 to the functions E[f(TALG) | S = S′]
and f(S) simplifies to ES∼D[f(TALG)] ≥ c · ES∼D[f(S)].

A distribution which samples only sets of size 0 or 1 is WNR because conditioning on
inclusion of an element excludes all other elements. Further, products of WNR distributions
are WNR (Proposition 16). Thus, product of singletons distributions are WNR, and applying
Submodular Dominance (Theorem 3) on D gives the following and completes the proof:

E
S∼D

[f(TALG)] ≥ c · E
S∼D

[f(S)] ≥ c · F (x) . ◀

▶ Remark 29. For general f , we can replace the greedy OCRS πI,x⃗ by its efficient modification
mentioned in Proposition 24, then just repeat the proof of Lemma 28. We lose an additional
factor of 1/4 when we invoke Proposition 24 on the modified greedy OCRS, which gives us a
c/4-approximation algorithm when f is not monotone.

▶ Theorem 6 (Submodular Prophet Inequalities). For fixed ϵ > 0, if a set system I ⊆ 2U has
a solvable polytope and an efficient (b, c)-selectable greedy OCRS for product distributions:

There is an efficient c · (1− e−b− ϵ) SPI for monotone non-negative submodular functions.
There is an efficient c/4 · (1− e−b − ϵ) SPI for general non-negative submodular functions.

Combining with known greedy OCRSs, this implies efficient SPIs as given in Table 1.

Proof. Combining Proposition 25 and Lemma 28 gives us a c · (1−e−b− ϵ) SPI for monotone
non-negative submodular functions, and, as noted in Remark 29, a similar argument gives us
a c/4 · (1− e−b − ϵ) SPI for general non-negative submodular functions. From [19], we can
efficiently construct greedy OCRSs satisfying the following properties:



F. Qiu and S. Singla 44:13

(b, 1− b)-selectable over matroids, for b ∈ [0, 1].
(b, e−2b)-selectable over matchings, for b ∈ [0, 1].
(b, 1−2b

2−2b )-selectable over knapsacks, for b ∈ [0, 1/2].
(1− o(1))-selectable over uniform matroids of rank k →∞ [9].

To obtain the results in Table 1, we simply choose b which maximizes c · (1− e−b − ϵ). ◀

5 Applications to Rounding

A common problem setting is optimization constrained to some feasible set system I.

▶ Definition 30. For a downward-closed set system I ⊆ 2U , its polytope PI ⊆ [0, 1]n is the
convex hull of the indicator vectors representing the maximal sets of I.

Under mild conditions, we can efficiently optimize over the polytope, then round the
fractional solution x ∈ PI to an integral solution S ∈ I. It is natural to think of x as a
distribution over I with those marginals. If these distributions exhibit certain properties,
then sampling can be an effective rounding technique. We give results for set systems which
satisfy the following property:

▶ Definition 31. A set system I ⊆ 2U admits WNR distributions if for any x ∈ PI , there
exists a WNR distribution over I with marginals x. If we can efficiently sample from these
distributions, we say I efficiently admits WNR distributions.

5.1 Submodular Maximization
For a set system I ⊆ 2U and a monotone submodular function f : 2U → R≥0, a classical
optimization problem is to efficiently find T ∈ I such that f(T ) is a good approximation of
maxS∈I f(S). We start by optimizing over PI .

▶ Proposition 32 ([39]). For any set system I with a solvable polytope, we can efficiently
compute x ∈ PI such that F (x) ≥ (1− 1/e− o(1)) ·maxS∈I f(S).

Now, we want to round x to an integral solution with at least value F (x). Pipage [6] and
randomized swap rounding [10] achieve this for matroid polytopes, but it is unclear how to
extend it. Submodular Dominance gives new approaches for submodular maximization.

▶ Theorem 7 (Submodular Maximization). Let f : 2U → R≥0 be a monotone submodular
function. If a downward-closed set system I ⊆ 2U has a solvable polytope and efficiently
admits WNR distributions, there exists an efficient algorithm that returns T ∈ I such that
E[f(T )] ≥ (1− 1/e− o(1)) ·maxS∈I f(S).

Proof. We compute x ∈ PI as per Proposition 32, then sample from a WNR distribution
over I with marginals x. By Theorem 3, this returns T ∈ I such that E[f(T )] ≥ F (x) ≥
(1− 1/e− o(1)) ·maxS∈I f(S). ◀

5.2 Adaptivity Gaps for Stochastic Probing
Stochastic Probing is a generalization of submodular maximization with randomized inputs.
Elements are replaced by items, and we probe items to learn their realizations. The goal is to
maximize the expectation of a function over the realizations of probed items. We consider a
simple version of the problem where we have a monotone submodular function f : 2U → R≥0
and each item Xi contains element i independently w.p. pi and is empty otherwise.

As probing reveals information, we differentiate between adaptive algorithms, which behave
differently conditioned on the realizations of probed items, and non-adaptive algorithms.

APPROX/RANDOM 2022
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▶ Definition 33. The adaptivity gap is the ratio between the expectations obtained by the
optimal adaptive algorithm and optimal non-adaptive algorithm.

Asadpour and Nazerzadeh [2] give a tight result that the adaptivity gap for stochastic
probing subject to a matroid constraint is e

e−1 . The approach is to first define an auxiliary
function f ′, where f ′(S) is the expectation of f upon probing items {Xi : i ∈ S}. It turns
out that the multilinear extension F ′ of f ′ satisfies the property that maxx∈PI F ′(x) is a
(1− 1/e)-approximation of the expectation obtained by the optimal adaptive algorithm.8

With this approximation result, the idea is to use x to design a non-adaptive algorithm.
Simply probing each item w.p. xi may violate the matroid constraint, so Asadpour and
Nazerzadeh design non-adaptive algorithms using pipage rounding. We go beyond matroids
by designing non-adaptive algorithms using WNR distributions.

▶ Theorem 8 (Stochastic Probing). For a downward-closed set system I that admits WNR
distributions, the adaptivity gap for Stochastic Probing is upper-bounded by e

e−1 .

Proof. Our analysis follows that of [2] until we obtain argmaxx∈PI
F ′(x). As I admits WNR

distributions, there exists a WNR distribution D over I with marginals x. By Theorem 3,
we have ES∼D[f ′(S)] ≥ F ′(x). Therefore, the non-adaptive algorithm which samples S ∼ D
and probes {Xi : i ∈ S} obtains at least F ′(x) in expectation. No adaptive algorithm can
obtain expectation greater than e

e−1 · F
′(x), so e

e−1 upper-bounds the adaptivity gap. ◀

5.3 Contention Resolution Schemes
▶ Definition 34 (CRS). A contention resolution scheme (CRS) for a set system I ⊆ 2U and
a distribution D over 2U with marginals x is a (possibly randomized) mapping πI,D : 2U → I
such that for all S ⊆ U , we have πI,D(S) ⊆ S.

Contention resolution schemes have applications to submodular maximization as a round-
ing technique. The following is the simplest measure of performance for a CRS.

▶ Definition 35 (c-selectable CRS). For c ∈ [0, 1], a set system I ⊆ 2U , and a distribution D
over 2U with marginals x ∈ PI , a CRS πI,D is c-selectable if PrS∼D[i ∈ πI,D(S)] ≥ c · xi

for all i ∈ U .

In submodular maximization, rounding fractional solutions is closely related to the
multilinear extension, so study of CRSs is primarily centered around product distributions.
However, as Dughmi [14, 15] recently showed, CRSs over non-product distributions have
applications in settings such as the Matroid Secretary Problem. We use Submodular
Dominance to extend a selectability result to WNR distributions, which provides a direction
by which other CRS results may be generalized to correlated distributions.

▶ Theorem 9 (Contention Resolution Schemes). For a matroid M, there exists a (1− 1/e)-
selectable CRS for any WNR distribution with marginals x ∈ PM.

Proof. [12] demonstrated this result for product distributions via strong LP duality. Following
the same idea, Dughmi [14] reduced this result to proving Submodular Dominance:

8 We omit many of the finer details because our result does not alter this part of the analysis. Section 3
of [2] covers this in depth.
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▶ Proposition 36 ([14]). For a matroid M and a distribution D over 2U with marginals
x ∈ PM, there exists a (1 − 1/e)-selectable CRS if every submodular function f : 2U → R
satisfies ES∼D[f(S)] ≥ ES∼x[f(S)].

Theorem 9 follows directly from Proposition 36 and Theorem 3. ◀

6 Conclusion and Open Questions

In this paper, we explore Submodular Dominance and its applications. In the process, we
introduce a notion of negative dependence that we refer to as Weak Negative Regression
(WNR), which is a natural generalization of both Negative Association (NA) and Negative
Regression (NR) and may be of use in other applications. We prove that WNR distributions
satisfy Submodular Dominance, and that all distributions satisfying Submodular Dominance
also satisfy Negative Cylinder Dependence (NCD). Finally, we give a variety of applications
for Submodular Dominance, improving the best known submodular prophet inequalities,
developing new rounding techniques, and generalizing results for contention resolution schemes
to negatively dependent distributions.

Sampling for More General Set Systems. Although our results for negatively distributions
satisfying Submodular Dominance already have several applications, their usage could be
broadened further by finding new techniques to generate negatively dependent distributions.
An interesting future direction is to design algorithms to sample from negatively dependent
distributions for more general set systems. For example, can we efficiently sample from a
WNR/NA/NR distribution for any marginals in a given matroid polytope? We remark that
[33] claimed such a result for NA distributions, but later, a gap in their proof was found. Max-
entropy distributions over matroids are also not negatively dependent in general, as it is known
that there exist matroids for which the uniform distribution (which is entropy-maximizing
without constrained marginals) exhibits positive correlations [25].

Approximate Submodular Dominance. While we showed that NCD distributions do
not always satisfy Submodular Dominance, one question is whether these weaker no-
tions of negative dependence obtain constant-factor approximation variants of Submodular
Dominance; that is, for a non-negative submodular function f , what distributions satisfy
ES∼D[f(S)] ≥ O(1) · F (x)? What about for monotone f? Another direction is to generalize
Submodular Dominance to a larger class of functions. XOS functions are functions that can
be expressed as the maximum of a collection of linear functions, and are a strict superset
of submodular functions. While no non-product distribution satisfies “XOS Dominance”
(consider max(X1 + X2, 1) and max(X1, X2), which are both XOS; the former decreases in
expectation if X1 and X2 are negatively correlated, the latter if X1 and X2 are positively
correlated), we might similarly ask if approximate versions hold for XOS functions.

Concentration Inequalities. Another important direction is understanding concentration
inequalities for negatively dependent distributions. Submodular Dominance demonstrates
that the expectation of negatively dependent distributions behaves favorably compared to
product distributions, but we may also be interested in whether these distributions are
concentrated around their mean. We know dimension-dependent concentration inequalities
for arbitrary Lipschitz functions over NR distributions [21]. Proving dimension-independent
concentration inequalities for submodular functions is an interesting future direction.
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A Missing Proofs

A.1 Weak Negative Regression Proofs
▶ Proposition 13. NA and NR imply WNR, and WNR implies NCD, but the reverse
implications do not hold. In other words, the union of NA and NR distributions is a strict
subset of WNR distributions, which is a strict subset of NCD distributions.

Proof. We proved in Section 2 that the union of NA and NR distributions is a subset of
WNR, and that WNR distributions are a subset of NCD distributions. Appendix A.2 provides
example distributions demonstrating strict containment of WNR in NCD.

To show strict containment of NA and NR in WNR, we consider the following distribution
D, which was given by Joag-Dev and Proschan [26].9 We treat D as a distribution over
Bernoulli random variables X = (X1, X2, X3, X4) to simplify notation.

Table 2 A distribution which is WNR, but not NA or NR.

D (X1, X2)

(X3, X4)

(0, 0) (0, 1) (1, 0) (1, 1) Marginal

(0, 0) 0.0577 0.0623 0.0623 0.0577 0.24

(0, 1) 0.0623 0.0677 0.0677 0.0623 0.26

(1, 0) 0.0623 0.0677 0.0677 0.0623 0.26

(1, 1) 0.0577 0.0623 0.0623 0.0577 0.24

Marginal 0.24 0.26 0.26 0.24

D violates NA because CovX∼D[X1X2, X3X4] > 0, and D violates NR because the
conditional expectation EX∼D[X1X2 | X3 = 1, X4] is increasing in X4.

By observing that the value in column 2 is larger than in column 4 for any row of Table 2,
we see that for any x3, x4 ∈ {0, 1}, the condtional expectation EX∼D[X2 | X3 = x3, X4 =
x4, X1] is decreasing in X1. Therefore, we can convert the distribution D conditioned on
X1 = 0 into the distribution D conditioned on X1 = 1 by only transferring probability mass
“downwards,” which cannot increase the expectation of a monotone function f : {0, 1}4 → R.
Thus, for any such function which does not depend on X1,

9 They studied NA distributions over continuous random variables, and gave this distribution as an
example that Negative Orthant Dependence (this is equivalent to NCD for Bernoulli random variables)
does not imply NA.
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E
X∼D

[f(X) | X1 = 1] ≤ E
X∼D

[f(X) | X1 = 0] ,

which is the WNR condition. Since X1, X2 and (X1, X2), (X3, X4) are both exchangeable,
we can repeat this analysis for all Xi. Thus, D is WNR, but neither NA nor NR. ◀

▶ Proposition 16. WNR is closed both under projection and under products.

Proof. Closure under projection follows trivially because the WNR condition (1) is satisfied
for all monotone functions, and monotone functions restricted to a subset of elements are
still monotone.

For closure under products, let A and B be WNR distributions over 2A and 2B for disjoint
A, B, and let D be their product. WLOG, fix i ∈ A and a monotone function f : 2A∪B → R.
Since A and B are independent, ES∼D[f(S \ i) | S ∩B = T ] = ES∼A[f((S \ i) ∪ T )]. Since
A is WNR and f(S ∪ T ) is still a monotone function,

E
S∼D

[f(S \ i) | S ∩B = T, i ∈ S] ≤ E
S∼D

[f(S \ i) | S ∩B = T, i ̸∈ S] .

Taking expectations over S ∩ B gives ES∼D[f(S \ i) | i ∈ S] ≤ ES∼D[f(S \ i) | i ̸∈ S],
completing the proof. ◀

A.2 Submodular Dominance Example Distributions
▶ Proposition 19. The distribution D which samples uniformly from ∅, {1}, {2}, {1, 2}, {1, 3},
{2, 3} satisfies Submodular Dominance, but D violates WNR for f(S) := max(11∈S ,12∈S)
and i = 3.

Proof. Using the definition of Dk from the proof of Theorem 3, notice that D1 is a product
distribution. Therefore, we only need the analysis in Claim 18 to follow, which only requires
that the WNR condition (1) holds for i = 1. D conditioned on 1 ∈ S samples ∅, {2}, and
{3} w.p. 1/3, and D conditioned on 1 ̸∈ S samples ∅, {2}, and {2, 3} w.p. 1/3, which cannot
obtain lower expectation for a monotone function, so the WNR condition holds for i = 1 and
D satisfies Submodular Dominance.
D violates WNR for f and i = 3 because D conditioned on 3 ∈ S always samples either 1

or 2, whereas D conditioned on 3 ̸∈ S can sample ∅. Thus, there exist distributions which
satisfy Submodular Dominance but violate WNR. ◀

▶ Proposition 20. The distribution D over 2[4] which chooses uniformly at random i ∈ [4],
then returns w.p. 1/2 either i or [4] \ i, is NCD. However, D violates Submodular Dominance
for the submodular function f(S) := min(2, |S|).

Proof. Notice that D is identical under permutations of elements. Further, because i or
[4] \ i is returned with equal probability, we have the property that for any T ⊆ [4],

Pr
S∼D

[T ⊆ S] = Pr
S∼D

[T ⊆ Sc] .

Therefore, it is sufficient to show that PrS∼D[1, 2 ∈ S] ≤ 1/4, PrS∼D[1, 2, 3 ∈ S] ≤ 1/8, and
PrS∼D[1, 2, 3, 4 ∈ S] ≤ 1/16 to prove D is NCD.

For 1, 2 ∈ S, we need to choose i = 3, 4, then return [4] \ i. This occurs w.p. 1/2 · 1/2 = 1/4.
For 1, 2, 3 ∈ S, we need to choose i = 4, then return [4] \ i. This occurs w.p. 1/4 · 1/2 = 1/8.
There is no way for 1, 2, 3, 4 ∈ S.
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Thus, D is NCD. f is a matroid rank function, so it is submodular. Letting x be the marginals
of D, a simple expected value computation shows that ES∼D[f(S)] = 12/8 < 13/8 = F (x), so
D violates Submodular Dominance. ◀

▶ Proposition 21. The distribution D over 2[8] which chooses uniformly at random i ∈
A := {1, 2, 3, 4} and j ∈ B := {5, 6, 7, 8}, then returns w.p. 1/2 either i ∪ (B \ j) or
(A \ i)∪ j, is NCD. However, D violates Submodular Dominance for the submodular function
f(S) := min(2, |S ∩A|).

Proof. This example extends the previous example to a homogeneous distribution. Similar
to the previous example, D is closed under permutations of A, permutations of B, and swaps
of A with B. Since we already showed any T ⊆ A satisfies the NCD condition, it is sufficient
to show that PrS∼D[1, 5 ∈ S] ≤ 1/4, PrS∼D[1, 2, 5 ∈ S] ≤ 1/8, PrS∼D[1, 2, 5, 6 ∈ S] ≤ 1/16, and
PrS∼D[1, 2, 3, 5 ∈ S] ≤ 1/16 (since only sets of size 4 are drawn, if |T | > 4 it automatically
satisfies the NCD condition).

For 1, 5 ∈ S, we need to choose i = 1 and j = 6, 7, 8, then return i ∪ (B \ j), or choose
i = 2, 3, 4 and j = 5, then return (A \ i) ∪ j. This occurs w.p. 2 · 1/4 · 3/4 · 1/2 = 3/16 ≤ 1/4.
For 1, 2, 5 ∈ S, we need to choose i = 3, 4 and j = 5, then return (A \ i) ∪ j. This occurs
w.p. 1/2 · 1/4 · 1/2 = 1/16 ≤ 1/8.
There is no way for 1, 2, 5, 6 ∈ S.
For 1, 2, 3, 5 ∈ S, we need to choose i = 4 and j = 5, then return (A \ i) ∪ j. This occurs
w.p. 1/4 · 1/4 · 1/2 = 1/32 ≤ 1/16.

Thus, D is NCD, and we again have ES∼D[f(S)] = 12/8 < 13/8 = ES∼x[f(S)], so D violates
Submodular Dominance. ◀

A.3 Product of Singletons is a Convex Combination of Product
Distributions

▶ Lemma 27. Let D be a product of singletons distribution over 2E with marginals x ∈
[0, 1]nm. Let xi :=

∑
j xij , and let x⃗ := (xi : i ∈ U). For any u ∈ [m]n, let Eu := {iui : i ∈ U}

and let Du be a product distribution over 2Eu with marginals x⃗. Then for any g : 2E → R,

E
S∼D

[g(S)] =
∑

u∈[m]n

(
E

S∼Du
[g(S)] ·

∏
i∈U

xiui

xi

)
. (4)

Proof. For some weights pS , we can rewrite RHS of (4) as∑
S⊆E

g(S) · pS .

Our approach is to show that pT = PrS∼D[S = T ] for any T ⊆ E. Then the summation is
simply the expectation of g over D and we are finished.

Fix some set T ⊆ E. The distributions for which T is in the image of Du are those where
for all ij ∈ T , ui = j. Therefore,

pT =
∑

u∈[m]n

ui=j ∀ij∈T

(
Pr

S∼Du

[
S = T

]
·

∏
i∈U

xiui

xi

)
.

Let T ∗ ⊆ U be a set where i ∈ T ∗ if there exists some j for which ij ∈ T . Then,

pT =
∑

u∈[m]n

ui=j ∀ij∈T

( ∏
i∈T ∗

xi

∏
i ̸∈T ∗

(1− xi) ·
∏

i∈T ∗

xiui

xi

∏
i̸∈T ∗

xiui

xi

)
.



F. Qiu and S. Singla 44:21

We combine the products over i ∈ T ∗, and move the first product over i ̸∈ T ∗ outside the
summation as the inner term does not depend on u.

pT =
∏

i ̸∈T ∗

(1− xi) ·
∑

u∈[m]n

ui=j ∀ij∈T

( ∏
i∈T ∗

xiui

∏
i ̸∈T ∗

xiui

xi

)
.

Because the summation is restricted to u where ui = j for all ij ∈ T , the coordinates of u
for i ∈ T ∗ can only take one value. Thus, the product over i ∈ T ∗ is always the same, and
can be factored out of the summation.

pT =
∏

i ̸∈T ∗

(1− xi) ·
∏

ij∈T

xij ·
∑

u∈[m]n

ui=j ∀ij∈T

( ∏
i̸∈T ∗

xiui

xi

)
.

As we just observed, the summation only enforces a condition on i ∈ T ∗, so we sum up over
all possible ui ∈ [m] for i ̸∈ T ∗. We can rewrite this as

pT =
∏

i ̸∈T ∗

(1− xi) ·
∏

ij∈T

xij ·
∏

i ̸∈T ∗

( ∑
j∈[m]

xij

xi

)

=
∏

i ̸∈T ∗

(1− xi) ·
∏

ij∈T

xij ·
∏

i ̸∈T ∗

(
1
xi
·

∑
j∈[m]

xij

)

=
∏

i ̸∈T ∗

(1− xi) ·
∏

ij∈T

xij ·
∏

i ̸∈T ∗

(
1
xi
· xi

)
=

∏
i ̸∈T ∗

(1− xi) ·
∏

ij∈T

xij

= Pr
S∼D

[S = T ] .

Since these computations follow for any T ⊆ E, we have

E
S∼D

[g(S)] =
∑
S⊆E

g(S) · pS =
∑

u∈[m]n

(
E

S∼Du
[g(S)] ·

∏
i∈U

xiui

xi

)
,

which completes the proof. ◀
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