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Abstract
We consider the online bipartite stochastic matching problem with known i.d. (independently
distributed) online vertex arrivals. In this problem, when an online vertex arrives, its weighted
edges must be probed (queried) to determine if they exist, based on known edge probabilities. Our
algorithms operate in the probe-commit model, in that if a probed edge exists, it must be used
in the matching. Additionally, each online node has a downward-closed probing constraint on its
adjacent edges which indicates which sequences of edge probes are allowable. Our setting generalizes
the commonly studied patience (or time-out) constraint which limits the number of probes that can
be made to an online node’s adjacent edges. Most notably, this includes non-uniform edge probing
costs (specified by knapsack/budget constraint). We extend a recently introduced configuration
LP to the known i.d. setting, and also provide the first proof that it is a relaxation of an optimal
offline probing algorithm (the offline adaptive benchmark). Using this LP, we establish the following
competitive ratio results against the offline adaptive benchmark:
1. A tight 1

2 ratio when the arrival ordering π is chosen adversarially.
2. A 1 − 1/e ratio when the arrival ordering π is chosen u.a.r. (uniformly at random).
If π is generated adversarially, we generalize the prophet inequality matching problem. If π is u.a.r.,
we generalize the prophet secretary matching problem. Both results improve upon the previous best
competitive ratio of 0.46 in the more restricted known i.i.d. (independent and identically distributed)
arrival model against the standard offline adaptive benchmark due to Brubach et al. We are the
first to study the prophet secretary matching problem in the context of probing, and our 1 − 1/e

ratio matches the best known result without probing due to Ehsani et al. This result also applies to
the unconstrained bipartite matching probe-commit problem, where we match the best known result
due to Gamlath et al.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Stochastic probing, Online algorithms, Bipartite matching, Optimization
under uncertainty

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2022.46

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2102.04325 [9]

Acknowledgements We would like to thank Brendan Lucier and David Wajc for their constructive
comments on an early version of this paper.

1 Introduction

Stochastic probing problems are part of the larger area of decision making under uncertainty
and more specifically, stochastic optimization. Unlike more standard forms of stochastic
optimization, it is not just that there is some stochastic uncertainty in the set of inputs,
stochastic probing problems involve inputs that cannot be determined without probing (at
some cost and/or within some constraint). Applications of stochastic probing occur naturally
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46:2 Prophet Matching in the Probe-Commit Model

in many settings, such as in matching problems where compatibility cannot be determined
without some trial or investigation (for example, in online dating, online advertising, and
kidney exchange applications). There is by now an extensive literature for stochastic probing
problems.

Although we are only considering “one-sided online bipartite matching”, stochastic
matching was first considered in the context of a general graph by Chen et al. [18]. In this
problem, the algorithm is presented an adversarially generated stochastic graph G = (V,E)
as input, which has a probability pe associated with each edge e and a patience (or time-out)
parameter ℓv associated with each vertex v. An algorithm probes edges in E in some adaptive
order within the constraint that at most ℓv edges are probed incident to any particular vertex
v. The patience parameter can be viewed as a simple budgetary constraint, where each probe
has unit cost and the patience parameter is the budget. When an edge e is probed, it is
guaranteed to exist with probability exactly pe. If an edge (u, v) is found to exist, then the
algorithm must commit to the edge – that is, it must be added to the current matching. The
goal is to maximize the expected size of a matching constructed in this way.

In addition to generalizing the results of Chen et al. to edge weights, Bansal et al. [6]
introduced the online bipartite stochastic matching problem. In this problem, a single seller
wishes to match their offline (indivisible) items to (unit-demand) buyers which arrive online
one by one. The seller knows the possible type/profile of each online buyer, which is specified
by edge probabilities, edge weights and a patience parameter. Here an edge probability
models the likelihood a buyer type will purchase an item if the seller presents it to them, and
an edge weight represents the revenue the seller will gain from making such a sale successfully.
The patience of a buyer type indicates the maximum number of items they are willing to be
shown. The online buyers are drawn i.i.d. from a known distribution, where the type of each
online buyer is presented to the seller upon its arrival. The (potential) sale of an item to
an online buyer must be made before the next online buyer arrives, and the seller’s goal is
to maximize their expected revenue. As in the Chen et al. model, the seller must commit
to the first sale to which an online buyer agrees. Fata et al. observed that this problem is
closely related to the multi-customer assortment optimization problem, which has numerous
practical applications in revenue management (see [24] for details).

We study the online bipartite stochastic matching problem in the more general known i.d.
setting. Specifically, each online buyer is drawn from a (potentially) distinct distribution, and
the draws are done independently. When online buyers arrive adversarially, we generalize the
prophet inequality matching problem of Alaei et al. [4]. When online buyers arrive in random
order, we generalize the prophet secretary matching problem of Ehsani et al. [22]. We note
that prophet inequalities give rise to (and in some sense are equivalent to) order oblivious
posted price mechanisms, as first studied in Hajiaghayi et al. [31] and further developed
for multi-parameter settings in Chawla et al. [17] and recently in Correa et al. [19]. There
have been a number of very recent works studying prophet matching problems with limited
distributional sample access [16, 33]. In these works, a main emphasis has been towards
understanding whether a few samples is sufficient to obtain the best known competitive
ratios when one is instead given full access to the distributions. Our work is motivated by
analogous questions for competitive ratios in the probe-commit model, and we provide a
positive answer for adversarial arrivals as well as for random order arrivals.

The online bipartite stochastic matching problem models the altruistic kidney exchange
problem where the offline nodes correspond to donors and the online nodes correspond
to recipients (or vice versa). A trial (probe) must be performed to determine whether a
donor/recipient pair may exchange kidneys, and the edge probability corresponds to the
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likelihood of a permissible exchange. The online arrival setting models the restriction that
the algorithm must process the recipients (or donors) in an order of which it cannot control.
Our generalization of patience to downward-closed probing constraints is motivated by this
application. Specifically, our framework includes knapsack/budget constraints, which allows
us to model non-uniform trial costs. Another application is to online advertising, where an
advertiser presents ads to consumers, and the edge probabilities represent the likelihood
they will “click” on the presented ad. Basically, any matching problem in which there is
uncertainty in whether the matches will succeed is a relevant application.

2 Preliminaries and Our Results

An input to the online stochastic matching problem with known i.d. arrivals firstly
includes a type graph Htyp = (U,B, F ), which is a bipartite graph with edge weights
(wf )f∈F and edge probabilities (pf )f∈F where F := U × B. We refer to U as the offline
nodes of Htyp and B as its type nodes. An online probing algorithm is given access
to Htyp, and for each u ∈ U , and b ∈ B, pu,b indicates the probability that an active
edge between u and b exists, and wu,b ≥ 0 indicates the reward for matching u to b.
Given an arbitrary set S, let S(∗) denote the set of all tuples (strings) formed from S,
whose entries (characters) are all distinct. Note that we use tuple/string notation and
terminology interchangeably. Each b ∈ B has its own (online) probing constraint
Cb ⊆ ∂(b)(∗), where ∂(b) := U × {b}. This probing constraint indicates whether the edges of
e = (e1, . . . , ek) ∈ ∂(b)(∗) may be probed by the algorithm in the order of its indices. Here a
probe of an edge informs the algorithm whether or not the edge is active. We make the
minimal assumption that Cb is downward-closed; that is, if e ∈ Cb, then any substring or
permutation of e is also in Cb. This includes matroid constraints, as well when b ∈ B has
a budget Lb ≥ 0, and (edge) probing costs (cu,b)u∈U , such that e = (e1, . . . , ek) ∈ Cb
provided

∑k
i cei ≤ Lb. Observe that if b has uniform probing costs, then this corresponds to

the previously discussed case of an integer patience parameter ℓb ≥ 1.
The input additionally consists of a sequence of distributions (Di)ni=1 supported on B,

where n ≥ 1 indicates the number of online vertices to be presented to the algorithm.
Specifically, for i = 1, . . . , n, vertex vi is drawn independently from Di, and we define V to be
the multiset including v1, . . . , vn. The online probing algorithm executes on the stochastic
graph G = (U, V,E) where E := U × V , and we denote G ∼ (Htyp, (Di)ni=1) to indicate
G is drawn from (Htyp, (Di)ni=1). We assume that each e ∈ E is active independently with
probability pe, where the edge state st(e) ∼ Ber(pe) indicates this event.

Initially, the online algorithm is only given access to (Htyp, (Di)ni=1), yet its goal is to
build a matching of active edges of G of largest possible expected weight. In the adversarial
order arrival model (AOM), a permutation π is generated by an oblivious adversary,
in which case π is a function of Htyp and (Di)ni=1. In the random order arrival model
(ROM), π is generated u.a.r., independent of all other randomization. In either setting, π is
unknown to the algorithm. For each t = 1, . . . , n, vertex vπ(t) is presented to the algorithm,
along with its edge weights, probabilities, and online probing constraint. Note that the
algorithm is also presented the value π(t), and thus learns from which distribution vπ(t) was
drawn. However, the edge states (st(e))e∈∂(vπ(t)) initially remain hidden to the algorithm.
Instead, using all past available information regarding vπ(1), . . . , vπ(t−1), the algorithm must
probe the edges of ∂(vπ(t)) to reveal their states, while adhering to Cvπ(t) . The algorithm
operates in the probe-commit model, in which there is a commitment requirement
upon probing an edge. Specifically, if an edge e = (u, v) is probed and turns out to be
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46:4 Prophet Matching in the Probe-Commit Model

active, then the online probing algorithm must make an irrevocable decision as to whether
or not to include e in its matching, prior to probing any subsequent edges. This definition of
commitment is the one considered by Gupta et al. [30], and is slightly different but equivalent
to the Chen et al. [18] model in which an active edge must be immediately accepted into the
matching. The algorithm always has the option to pass on vπ(t), yet its (potential) match
must be made before the next online vertex arrives.

In general, it is easy to see that that even when the edges are unweighted and the
algorithms initially knows the stochastic graph we cannot hope to obtain a non-trivial
competitive ratio against the expected size of an optimal matching of the stochastic graph.
Consider a stochastic graph with a single online vertex with patience 1, and k ≥ 1 offline
(unweighted) vertices where each edge e has probability 1

k of being active. The expectation
of an online probing algorithm will be at most 1

k while the expected size of an optimal
matching will be 1− (1− 1

k )k → 1− 1
e as k →∞. The standard approach in the literature

is to instead consider the offline stochastic matching problem and benchmark against
an optimal offline probing algorithm [6, 2, 14, 15]. An offline probing algorithm knows
G = (U, V,E), but initially the edge states (st(e))e∈E are hidden. Its goal is to construct
a matching of active edges of G with weight as large as possible in expectation. It can
adaptively probe the edges of E in any order, but must satisfy the probing constraints
(Cv)v∈V at each step of its execution. That is, edges e ∈ E(∗) may be probed in order,
provided ev ∈ Cv for each v ∈ V , where ev is the substring of e restricted to edges of ∂(v).
It must also operate in the same probe-commit model as an online probing algorithm. We
define the (offline) adaptive benchmark as an optimal offline probing algorithm, and
denote OPT(G) as the expected weight of its matching when executing on G. An alternative
weaker benchmark used by Brubach et al. [11, 12] is the online adaptive benchmark.
This is defined as an optimal offline probing algorithm which executes on G and whose edge
probes respect some adaptively chosen vertex ordering on V . Equivalently, the edge probes
involving each v ∈ V occur contiguously: if e′ = (u, v′) ∈ E is probed after e = (u, v) for
v′ ̸= v, then no edge of ∂(v) is probed following e′. We benchmark against E[OPT(G)],
where the expectation is over the randomness in G ∼ (Htyp, (Di)ni=1). For clarity, we denote
E[OPT(G)] by OPT(Htyp, (Di)ni=1).

Observe that if pe ∈ {0, 1} for each e ∈ F of Htyp = (U,B, F ), then probing is unnecessary,
and the offline adaptive benchmark and the online adaptive benchmark both correspond to
the expected weight of the maximum matching of G. In this special case, the online algorithm
also does not need to probe edges, and so no matter which benchmark is chosen, the problem
generalizes either the prophet inequality matching problem or the prophet secretary
matching problem, depending on whether π is adversarial or u.a.r., respectively.

▶ Theorem 1. If M(π) is the matching returned by Algorithm 8 when presented the online
vertices of G ∼ (Htyp, (Di)ni=1) in an adversarial order π : [n] → [n], then E[w(M(π))] ≥
1
2 OPT(Htyp, (Di)ni=1).

▶ Remark 2. We say that Algorithm 8 attains a 1/2 competitive ratio or is 1/2-competitive
(against adversarial arrivals). This is a tight bound since the problem generalizes the classic
single item prophet inequality for which 1

2 is an optimal competitive ratio. Recently, Brubach
et al. [11, 12] independently proved the same competitive ratio against the online adaptive
benchmark when G has patience values and the arrival order is adversarial yet known to
the algorithm. Our results are incomparable, as their results can be applied to an unknown
patience framework (at a loss in competitive ratio), whereas our results apply to known
downward-closed online probing constraints, and hold against a stronger benchmark.
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▶ Theorem 3. If M is the matching returned by Algorithm 9 when presented the online ver-
tices of G ∼ (Htyp, (Di)ni=1) in random order, then E[w(M)] ≥

(
1− 1

e

)
OPT(Htyp, (Di)ni=1).

▶ Remark 4. In part due to its applications to multi-customer assortment optimization, the
special case of identical distributions with one-sided patience values has been studied in
multiple works [6, 2, 14, 15], beginning with the 0.12 competitive ratio of Bansal et al. [6].
The previously best known competitive ratio of 0.46 for arbitrary patiences is due to Brubach
et al. [15]. Fata et al. [24] improved this competitive ratio to 0.51 for the special case
of unbounded patience. In an early 2020 arXiv version of this paper [8], we proved a
competitive ratio of 1−1/e for arbitrary patience values. All these previous competitive ratios
(including ours) are proven against the offline adaptive benchmark. Theorem 3 generalizes
this result, as it is the first to apply to non-identical distributions, as well as to more general
probing constraints. Brubach et al. [11, 12] independently achieved a 1− 1/e competitive
ratio for arbitrary patience values in the known i.i.d. setting, however their ratio is against
the weaker online adaptive benchmark, and so is incomparable with previous results in the
literature. Interestingly, 1− 1/e remains the best known competitive ratio in the prophet
secretary matching problem due to Ehsani et al. [22], despite significant progress in the case
of a single offline node (see [5, 20]). Huang et al. [32] very recently proved a 0.703 hardness
result for multiple offline nodes and known i.i.d. arrivals.

In order to discuss the efficiency of our algorithms in the generality of our probing
constraints, we work in the membership oracle model. An online probing algorithm may
make a membership query to any string e ∈ ∂(b)(∗) for b ∈ B, thus determining in a
single operation whether or not e ∈ ∂(b)(∗) is in Cb. All our algorithms are implementable in
polynomial time, as we prove in the full version of the paper (hereby denoted [9]).

A well studied special case of the online stochastic matching problem with known i.d.
online arrivals is the case of a known stochastic graph (see [18, 1, 6, 2, 7, 27, 13, 35]).
In this setting, the input Htyp = (V,B, F ) satisfies n = |B|, and the distributions (Di)ni=1
are all point-mass on distinct vertices of B. Thus, the online vertices of G are not randomly
drawn, and G is instead equal to Htyp. The online probing algorithm thus knows the
stochastic graph G in advance, but remains unaware of the edge states (st(e))e∈E , and so
it still must sequentially probe the edges to reveal their states. Again, it must operate in
the probe-commit model, and respect the probing constraints (Cv)v∈V as well as the arrival
order π on V .

▶ Corollary 5 (of Theorem 3). If M is the matching returned by Algorithm 6 when presented
the online vertices of G in random order, then E[w(M)] ≥

(
1− 1

e

)
OPT(G).

▶ Remark 6. When Algorithm 9 executes in the known graph setting, it is non-adaptive in
that its probes are a (randomized) function of G. In [9], we complement Corollary 5 with a
1− 1/e hardness result which applies to all non-adaptive probing algorithms (even probing
algorithms which execute offline, and thus do not respect the arrival order π of V ).

▶ Remark 7. Gamlath et al. [27] consider an online probing algorithm when G is uncon-
strained – i.e., Cv = ∂(v)(∗) for all v ∈ V – and known to the algorithm. Both our algorithm
and theirs attain a performance guarantee of 1− 1/e against very different non-standard LPs
– LP-config and LP-QC, respectively. Note that LP-QC has exponentially many constraints
and polynomially many variables, whereas LP-config has polynomially many constraints
and exponentially many variables (see Appendix B for a statement of LP-QC). To the best
of our knowledge, LP-QC does not seem to have an extension even to arbitrary patience
values, as it is unclear how to generalize its constraints while maintaining polynomial time
solvability. Despite having such different forms, in the unconstrained setting the LPs take
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46:6 Prophet Matching in the Probe-Commit Model

on the same value, as we prove in Proposition 28 of Appendix B. Thus, Theorem 3 can
be viewed as a generalization of their work to downward-closed online probing constraints
and known i.d. random order arrivals. Very recently, Pollner et al. [35] proved a 0.426
competitive ratio against the offline adaptive benchmark in the special case of a bipartite
graph with (one-sided) patience values. Our results are incomparable, as their algorithm
works for random order edge arrivals, whereas ours requires one-sided random order vertex
arrivals, yet has a better competitive ratio and works for more general probing constraints.

2.1 An Overview of Our Techniques
For simplicity, we first describe our techniques in the known stochastic graph setting.
Afterwards, we explain how our techniques extend to the known i.d. setting. Let us suppose
that we are presented a stochastic graph G = (U, V,E). For the case of patience values
(ℓv)v∈V , a natural solution is to solve an LP introduced by Bansal et al. [6] to obtain
fractional values for the edges of G, say (xe)e∈E , such that xe upper bounds the probability
e is probed by the offline adaptive benchmark. Clearly,

∑
e∈∂(v) xe ≤ ℓv is a constraint

for each v ∈ V , and so by applying a dependent rounding algorithm (such as the GKSP
algorithm of Gandhi et al. [28]), one can round the values (xe)e∈∂(v) to determine ℓv edges
of ∂(v) to probe. By probing these edges in a carefully chosen order, and matching v to
the first edge revealed to be active, one can guarantee that each e ∈ ∂(v) is matched with
probability reasonably close to pexe. This is the high-level approach used in many stochastic
matching algorithms (for example [6, 2, 7, 15, 13, 35]). However, even for a single online node,
this LP overestimates the value of the offline adaptive benchmark, and so any algorithm
designed in this way will match certain edges with probability strictly less than pexe. This is
problematic, for the value of the match made to v is ultimately compared to

∑
e∈∂(v) pewexe,

the contribution of the variables (xe)e∈∂(v) to the LP solution. In fact, Fata et al. [24]
showed that the ratio between OPT(G) and an optimum solution to this LP can be as small
as 0.51, so the 1− 1/e competitive ratio of Theorem 3 cannot be achieved via a comparison
to this LP, even for the special case of patience values.

Defining LP-config. Our approach is to work with a configuration LP (LP-config) which we
initially called LP-new in our 2020 arXiv paper [8] and used in our companion paper [10] to
attain an (optimal) 1/e competitive ratio for the edge-weighted secretary matching problem
in the probe-commit model. This LP has exponentially many variables which accounts for
the many probing strategies available to an arriving vertex v with probing constraint Cv.
For each e ∈ E(∗), define q(e) =

∏
f∈e(1− pf ), to be the probability that all the edges of e

are inactive, where q(λ) := 1 for the empty string/character λ. For f ∈ e, we denote e<f
to be the substring of e from its first edge up to, but not including, f . Observe then that
val(e) :=

∑
f∈e wf · pf · q(e<f ) corresponds to the expected weight of the first active edge

revealed if e is probed in order of its entries. For each v ∈ V , we introduce a decision variable
xv(e) and write the following LP:

maximize
∑
v∈V

∑
e∈Cv

val(e) · xv(e) (LP-config)

subject to
∑
v∈V

∑
e∈Cv:

(u,v)∈e

pu,v · q(e<(u,v)) · xv(e) ≤ 1 ∀u ∈ U (1)

∑
e∈Cv

xv(e) = 1 ∀v ∈ V, (2)

xv(e) ≥ 0 ∀v ∈ V, e ∈ Cv (3)



A. Borodin, C. MacRury, and A. Rakheja 46:7

In this work, we provide the first proof that LP-config is a relaxation of the offline adaptive
benchmark. This result is stated but not proven in our companion paper, instead crediting
the full arXiv version [9] of this paper. Unlike previous LPs used in the literature, we are not
aware of an easy proof of this fact, and so we consider our proof to be a technical contribution.

▶ Theorem 8. OPT(G) ≤ LPOPT(G).

▶ Remark 9. For the case of patience values, a closely related LP was independently introduced
by Brubach et al. [11, 12] to design probing algorithms for known i.i.d. arrivals and known
i.d. adversarial arrivals. Their competitive ratios are proven against an optimal solution to
this LP, which they argue relaxes the online adaptive benchmark.
When each Cv is downward-closed, LP-config can be solved efficiently by using a deterministic
separation oracle for the dual of LP-config, in conjunction with the ellipsoid algorithm [36, 29].
In [10], we introduce a greedy probing algorithm for offline vertex weights which attains 1/2
and 1− 1/e competitive ratios for adversarial and random order arrivals, respectively. These
ratios are proven by applying the primal-dual method to a non-standard LP (distinct from
LP-config). We also showed that this greedy probing algorithm can be used as a separation
oracle for the dual of LP-config, as this ensures our 1/e-competitive edge weights algorithm
is efficient. For completeness, we provide the details for extending to the known i.d. case
in [9], as well as a buyer/seller interpretation of the separation oracle problem.

Proving Theorem 8. In order to prove Theorem 8, the natural approach is to view xv(e)
as the probability that the offline adaptive benchmark probes the edges of e in order, where
v ∈ V and e ∈ Cv. Let us suppose that hypothetically we could make the following restrictive
assumptions regarding the offline adaptive benchmark:
P1 If e = (u, v) is probed and st(e) = 1, then e is included in the matching, provided v is

currently unmatched.
P2 For each v ∈ V , the edge probes involving ∂(v) are made independently of the edge states

(st(e))e∈∂(v).

Observe then that P1 and P2 would imply that the expected weight of the edge assigned
to v is

∑
e∈Cv

val(e) · xv(e). Moreover, the left-hand side of (1) would correspond to the
probability u ∈ U is matched, so (xv(e))v∈V,e∈Cv would be a feasible solution to LP-config,
and so we could upper bound OPT(G) by LPOPT(G). Now, if we were working with the
online adaptive benchmark, then it is clear that we could assume P1 and P2 simultaneously1

w.l.o.g. On the other hand, if a probing algorithm does not respect an adaptive vertex
ordering on V (i.e„ does not probe edges in ∂(v) consecutively), then the probes involving
v ∈ V will in general depend on (st(e))e∈∂(v). For instance, if e ∈ ∂(v) is probed and inactive,
then perhaps the offline adaptive benchmark next probes e′ = (u, v′) ∈ ∂(v′) for some v′ ≠ v.
If e′ is active and thus added to the matching by P1, then the offline adaptive benchmark can
never subsequently probe (u, v) without violating P1, as u is now unavailable to be matched
to v. Thus, the natural interpretation of the decision variables of LP-config does not seem to
easily lend itself to a proof of Theorem 8.

Our solution is to consider a combinatorial relaxation of the offline stochastic matching
problem, which we define to be a new stochastic probing problem on G whose optimal
value OPTrel(G) satisfies OPT(G) ≤ OPTrel(G). We refer to this problem as the relaxed

1 It is clear that we may assume the offline adaptive benchmark satisfies P1 w.l.o.g., but not P2.
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46:8 Prophet Matching in the Probe-Commit Model

stochastic matching problem, a solution to which is a relaxed probing algorithm.
Roughly speaking, a relaxed probing algorithm operates in the same framework as an
offline probing algorithm, yet it returns a one-sided matching of the online vertices which
matches each offline node at most once in expectation. We provide a precise definition
in Section 3. Crucially, there exists an optimal relaxed probing algorithm which is non-
adaptive – that is, a (randomized) function of G – and which satisfies P1. Non-adaptivity
is a much stronger property than P2, and so by the above discussion we are able to conclude
that OPTrel(G) ≤ LPOPT(G). Since OPT(G) ≤ OPTrel(G) by construction, this implies
Theorem 8. Proving the existence of an optimal relaxed probing algorithm which is non-
adaptive is one of the most technically challenging parts of the paper, and is the main
content of Lemma 14 of Section 3. Note that there may be a simpler proof of Theorem
8, however our relaxed stochastic matching problem exactly characterizes LP-config (i.e.,
OPTrel(G) = LPOPT(G)), and so it helps us understand LP-config. For instance, in
Appendix B, we show that in the unconstrained patience setting, LP-QC of [27] is also
characterized by our relaxed matching problem. This implies that the LPs take on the same
value, despite having very different formulations in this special setting.

Defining the probing algorithms: After proving that LP-config is a relaxation of the
offline adaptive benchmark, we use it to design online probing algorithms. Suppose that we
are presented a feasible solution, say (xv(e))v∈V,e∈Cv

, to LP-config for G. For each e ∈ E,
define

x̃e :=
∑

e′∈Cv:
e∈e′

q(e′
<e) · xv(e′). (4)

We refer to the values (x̃e)e∈E as the edge variables of the solution (xv(e))v∈V,e∈Cv
. If

we now fix s ∈ V , then we can easily leverage constraint (2) to design a simple fixed vertex
probing algorithm which matches each edge of e ∈ ∂(s) with probability exactly equal to
pex̃e. Specifically, draw e′ ∈ Cs with probability xs(e′). If e′ = λ, then return the empty set.
Otherwise, set e′ = (e′

1, . . . , e
′
k) for k := |e′| ≥ 1, and probe the edges of e′ in order. Return

the first edge which is revealed to be active, if such an edge exists. Otherwise, return the
empty set. We refer to this algorithm as VertexProbe, and denote its output on the input
(s, ∂(s), (xs(e))e∈Cs

) by VertexProbe(s, ∂(s), (xs(e))e∈Cs
).

▶ Lemma 10. For each e ∈ ∂(s), P[VertexProbe(s, ∂(s), (xs(e))e∈Cs) = e] = pex̃e.

▶ Remark 11. We can view Lemma 10 as an exact rounding guarantee. The fact that
such a guarantee exists, no matter the choice of Cs, is one of the main benefits of working with
LP-config, opposed to LP-std or LP-QC. As discussed, a solution to LP-std provably cannot
be rounded exactly in this way. There does exist an exact rounding guarantee for LP-QC,
however it only applies to the unconstrained setting of Cv = ∂(s)(∗), and the procedure is
much more complicated than ours (see Theorem 29 of Appendix B for details).

▶ Definition 12. We say that VertexProbe commits to the edge e = (u, s) ∈ ∂(s), or
equivalently the vertex u ∈ N(s), provided the algorithm outputs e when executing on the
fixed node s ∈ V . When it is clear that VertexProbe is being executed on s, we say that s
commits to e (equivalently the vertex u).

Consider now the following online probing algorithm, where π is either u.a.r. or adversarial.
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Algorithm 1 Known Stochastic Graph.

Require: a stochastic graph G = (U, V,E).
Ensure: a matching M of active edges of G.

1: M← ∅.
2: Compute an optimal solution of LP-config for G, say (xv(e))v∈V,e∈Cv

3: for s ∈ V in order based on π do
4: Set e← VertexProbe(s, ∂(s), (xs(e))e∈Cs

).
5: if e = (u, s) for some u ∈ U , and u is unmatched then ▷ this line ensures e ̸= ∅
6: Add e to M.
7: end if
8: end for
9: return M.

▶ Remark 13. Technically, line (6) should occur within the VertexProbe subroutine to adhere
to the probe-commit model, however we express our algorithms in this way for conciseness.

Improvement via online contention resolution. Algorithm 1 does not attain a constant
competitive ratio for adverarial arrivals, and its competitive ratio is only 1/2 in the random
order arrivals. Thus, we must modify the algorithm to prove Theorems 1 and 3, even in
the known stochastic graph setting. Our modification involves concurrently applying an
appropriate rank one matroid contention resolution scheme (CRS) to each offline vertex
of G, a concept formalized much more generally in the seminal paper by Chekuri, Vondrak,
and Zenklusen [38]. Contention resolution has become a fundamental tool for stochastic
optimization problems, and we illustrate its versatility by applying it to a non-standard LP.

Fix u ∈ U , and observe that constraint (1) ensures that
∑
e∈∂(u) pex̃e ≤ 1. Moreover, if we

set ze := pex̃e, then observe that as VertexProbe executes on v, each edge e = (u, v) ∈ ∂(u)
is committed to u independently with probability ze. On the other hand, there may be
many edges which commit to u so we must resolve which one to take. In Algorithm 1, u
is matched greedily to the first online vertex which commits to it, regardless of how π is
generated. We apply existing online and random order contention resolution schemes to
ensure that e is matched to u with probability 1/2 · ze when π is generated by an adversary,
and (1− 1/e) · ze when π is generated u.a.r. These lower bounds on the edge variables allow
us to conclude the desired competitive ratios, as

∑
e∈E wepex̃e upper bounds OPT(G) by

Theorem 8. We provide the specific schemes used for adversarial arrivals and random orders
arrivals in Section 4. In the latter setting, the CRS based approach simplifies the pricing
based approach Gamlath et al. [27] used to attain a competitive ratio of 1 − 1/e in the
special unconstrained setting (see Remark 7). This simplified approach was also observed
by Fu et al. [26] in the context of the Gamlath et al. LP (LP-QC). They focus on the
unconstrained probe-commit model, and design a 8/15-competitive algorithm for general
graph random order vertex arrivals. It remains open whether their results can be extended
to general patience values and random order edge arrivals. For context, 0.395 is the best
known competitive ratio when allowing for arbitrary patience values and random order edge
arrivals [35]. We focus on the bipartite graphs with one-sided arrivals, as the main goal of
this paper was to fully resolve the complications posed by one-sided probing constraints in
this arrival model.

Extending to known i.d. arrivals. In Appendix A, we prove Theorems 1 and 3 in their full
generality when G is unknown and drawn from (Htyp, (Di)ni=1). We do so by first generalizing
LP-config to a new LP called LP-config-id. This LP departs from previous ones used in the
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46:10 Prophet Matching in the Probe-Commit Model

probing literature, as it depends both on the type graph as well as the distributions. For
each i ∈ [n], we introduce a collection of variables (xi(e || b))e∈Cb,b∈B associated with the
distribution Di. We again apply known contention resolution schemes, however the additional
variables associated with the possible types of vi ∼ Di introduce correlated events which
must be treated delicately in the context of CRS selectibility. Crucially, the schemes we
employ do not make use of the type of vertex vi, and so we are able to argue that analogous
edge variable lower bounds hold as in the known stochastic graph setting.

3 Relaxing the Offline Adaptive Benchmark via LP-config

Given a stochastic graph G = (U, V,E), we define the relaxed stochastic matching
problem. A solution to this problem is a relaxed probing algorithm A, which operates
in the previously described framework of an (offline) probing algorithm. That is, A is
firstly given access to a stochastic graph G = (U, V,E). Initially, the edge states (st(e))e∈E
are unknown to A, and A must adaptivity probe these edges to reveal their states, while
respecting the downward-closed probing constraints (Cv)v∈V . As in the offline problem, A
returns a subset M of its active edge probes, and its goal is to maximize E[w(M)], where
w(M) :=

∑
e∈M we. However, unlike before where M was required to be a matching of G,

we relax the required properties of M:
1. Each v ∈ V appears in at most one edge of M.
2. If Nu counts the number of edges of ∂(u) which are included in M, then E[Nu] ≤ 1 for

each u ∈ U .
We refer toM as a one-sided matching of the online nodes, and abuse terminology slightly
and say that e ∈ E is matched by A if e ∈ M. In constructing M, A must operate in
the previously described probe-commit model. We define the relaxed benchmark as an
optimal relaxed probing algorithm, and denote its expected value when executing on G by
OPTrel(G). Observe that since any offline probing algorithm is a relaxed probing algorithm,
we have that

OPT(G) ≤ OPTrel(G). (5)

We say that A is non-adaptive, provided the probes are a (randomized) function of
G. Equivalently, A is non-adaptive if the probes of A are statistically independent from
(st(e))e∈E . Unlike for the offline stochastic matching problem, there exists a relaxed probing
algorithm which is both optimal and non-adaptive:

▶ Lemma 14. For any stochastic graph G = (U, V,E) with downward-closed probing con-
straints (Cv)v∈V , there exists an optimum relaxed probing algorithm B which satisfies the
following properties:
Q1 If e = (u, v) is probed, st(e) = 1, and v was previously unmatched, then B matches e.
Q2 B is non-adaptive on G.
▶ Remark 15. Note that Q2 implies the hypothetical property P2, yet is much stronger.
Let us assume that Lemma 14 holds for now.

Proof of Theorem 8. Consider B of Lemma 14, and define xv(e) to be the probability that
B probes the edges of e in order for v ∈ V and e ∈ Cv. Since B is a relaxed probing algorithm,
we can apply properties Q1 and Q2 to show that (xv(e))v∈V,e∈Cv is a feasible solution to
LP-config. Moreover, if N is returned when B executes on G, then

E[w(N )] =
∑
v∈V

∑
e∈Cv

val(e) · xv(e).

Thus, the optimality of B implies that OPTrel(G) ≤ LPOPT(G), and so together with (5),
Theorem 8 follows. ◀
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▶ Remark 16. As mentioned, LP-config is an exact LP formulation of the relaxed stochastic
matching problem, as we prove in Theorem 27 of Appendix B.

3.1 Proving Lemma 14
Let us suppose that G = (U, V,E) is a stochastic graph with downward-closed probing
constraints (Cv)v∈V . In order to prove Lemma 14, we must show that there exists an optimal
relaxed probing algorithm which is non-adaptive and satisfies Q1. Our high level approach
is to consider an optimal relaxed probing algorithm A which satisfies Q1, and then to
construct a new non-adaptive algorithm B by stealing the strategy of A, without any loss
in performance. More specifically, we construct B by writing down for each v ∈ V and
e ∈ Cv the probability that A probes the edges of e in order. These probabilities necessarily
satisfy certain inequalities which we make use of in designing B. In order to do so, we need a
technical randomized rounding procedure whose precise relevance will become clear in the
proof of Lemma 14.

Suppose that e ∈ E(∗), and recall that λ is the empty string/character. Let us now
assume that (yv(e))e∈Cv

is a collection of non-negative values which satisfy yv(λ) = 1, and∑
e∈∂(v):

(e′,e)∈Cv

yv(e′, e) ≤ yv(e′), (6)

for each e′ ∈ Cv. For space considerations, we defer the proof of the below proposition to [9].

▶ Proposition 17. Given a collection of values (yv(e))e∈Cv
which satisfy yv(λ) = 1 and

(6), there exists a distribution Dv supported on Cv, such that if Y ∼ Dv, then for each
e = (e1, . . . , ek) ∈ Cv with k := |e| ≥ 1, it holds that

P[(Y1, . . . ,Yk) = (e1, . . . , ek)] = yv(e), (7)

where Y1, . . . ,Yk are the first k characters of Y (where Yi := λ if Y has no ith character).

Proof of Lemma 14. Suppose that A is an optimal relaxed probing algorithm which returns
the one-sided matching M after executing on the stochastic graph G = (U, V,E). In a slight
abuse of terminology, we say that e is matched by A, provided e is included in M. We shall
also make the simplifying assumption that pe < 1 for each e ∈ E, as the proof can be clearly
adapted to handle the case when certain edges have pe = 1 by restricting which strings of
each Cv are considered.

Observe that since A is optimal, it is clear that we may assume the following properties
hold w.l.o.g. for each e ∈ E:
1. e is probed only if e can be added to the currently constructed one-sided matching.
2. If e is probed and st(e) = 1, then e is included in M.
Thus, in order to prove the lemma, we must find an alternative algorithm B which is non-
adaptive, yet continues to be optimal. To this end, we shall first express E[w(M(v))] in a
convenient form for each v ∈ V , where w(M(v)) is the weight of the edge matched to v

(which is 0 if no match occurs).
Given v ∈ V and 1 ≤ i ≤ |U |, we define Xv

i to be the ith edge adjacent to v that is probed
by A. This is set equal to λ by convention, provided no such edge exists. We may then
define Xv := (Xv

1 , . . . , X
v
|U |), and Xv

≤k := (Xv
1 , . . . , X

v
k ) for each 1 ≤ k ≤ |U |. Moreover,

given e = (e1, . . . , ek) ∈ E(∗) with k ≥ 1, define S(e) to be the event in which ek is the only
active edge amongst e1, . . . , ek. Observe then that
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E[w(M(v))] =
∑

e=(e1,...,ek)∈Cv:
k≥1

wek
P[S(e) ∩ {Xv

≤k = e}],

as (1) and (2) ensure v is matched to the first probed edge which is revealed to be active.
Moreover, if e = (e1, . . . , ek) ∈ Cv for k ≥ 2, then

P[S(e) ∩ {Xv
≤k = e}] = P[{st(ek) = 1} ∩ {Xv

≤k = e}], (8)

as (1) and (2) ensure Xv
≤k = e only if e1, . . . , ek−1 are inactive. Thus,

E[w(M(v))] =
∑

e=(e1,...,ek)∈Cv:
k≥1

wek
P[S(e) ∩ {Xv

≤k = e}]

=
∑

e=(e1,...,ek)∈Cv :
k≥1

wek
P[{st(ek) = 1} ∩ {Xv

≤k = e}]

=
∑

e=(e1,...,ek)∈Cv :
k≥1

wek
pek

P[Xv
≤k = e],

where the final equality holds since A must decide on whether to probe ek prior to revealing
st(ek). As a result, after summing over v ∈ V ,

E[w(M)] =
∑
v∈V

∑
e=(e1,...,ek)∈Cv :

k≥1

wek
pek

P[Xv
≤k = e]. (9)

Our goal is to find a non-adaptive relaxed probing algorithm which matches the value of
(9). Thus, for each v ∈ V and e = (e1, . . . , ek) ∈ Cv with k ≥ 1, define xv(e) := P[Xv

≤k = e],
where xv(λ) := 1. Observe now that for each e′ = (e′

1, . . . , e
′
k) ∈ Cv,∑

e∈∂(v):
(e′,e)∈Cv

P[Xv
≤k+1 = (e′, e) |Xv

≤k = e′] ≤ 1− pe′
k
. (10)

To see (10), observe that the the left-hand side corresponds to the probability A probes some
edge e ∈ ∂(v), given it already probed e′ in order. On the other hand, if a subsequent edge is
probed, then (1) and (2) imply that e′

k must have been inactive, which occurs independently
of the event Xv

≤k = e′. This explains the right-hand side of (10). Using (10), the values
(xv(e))e∈Cv

satisfy∑
e∈∂(v):

(e′,e)∈Cv

xv(e′, e) ≤ (1− pe′
k
) · xv(e′), (11)

for each e′ = (e′
1, . . . , e

′
k) ∈ Cv with k ≥ 1. Moreover, clearly

∑
e∈∂(v) xv(e) ≤ 1.

Given e = (e1, . . . , ek) ∈ Cv for k ≥ 1, recall that e<k := (e1, . . . , ek−1) where e<1 := λ if
k = 1. Moreover, q(e<k) :=

∏k−1
i=1 (1− pei

), where q(λ) := 1. Using this notation, define for
each e ∈ Cv

yv(e) :=
{
xv(e)/q(e<|e|) if |e| ≥ 1,
1 otherwise.

(12)
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Observe that (11) ensures that for each e′ ∈ Cv,∑
e∈∂(v):

(e′,e)∈Cv

yv(e′, e) ≤ yv(e′), (13)

and yv(λ) := 1. As a result, Proposition 17 implies that for each v ∈ V , there exists a
distribution Dv such that if Y v ∼ Dv, then for each e ∈ Cv with |e| = k ≥ 1,

P[Y v
≤k = e] = yv(e). (14)

Moreover, Y v is drawn independently from the edge states, (st(e))e∈E . Consider now the
following algorithm B, which satisfies the desired properties Q1 and Q2 of Lemma 14:

Algorithm 2 Algorithm B.

Require: a stochastic graph G = (U, V,E).
Ensure: a one-sided matching N of G of active edges.

1: Set N ← ∅.
2: Draw (Y v)v∈V according to the product distribution

∏
v∈V Dv.

3: for v ∈ V do
4: for i = 1, . . . , |Y v| do
5: Set e← Y v

i . ▷ Y v
i is the ith edge of Y v

6: Probe the edge e, revealing st(e).
7: if st(e) = 1 and v is unmatched by N then
8: Add e to N .
9: end if

10: end for
11: end for
12: return N .

Using (14) and the non-adaptivity of B, it is clear that for each v ∈ V ,

E[w(N (v))] =
∑

e=(e1,...,ek)∈Cv :
k≥1

wek
P[S(e)] · P[Y v

≤k = e]

=
∑

e=(e1,...,ek)∈Cv :
k≥1

wek
pek

q(e<k)yv(e)

=
∑

e=(e1,...,ek)∈Cv:
k≥1

wek
pek

xv(e) = E[w(M(v))].

Thus, after summing over v ∈ V , it holds that E[w(N )] = E[w(M)] = OPTrel(G), and so in
addition to satisfying Q1 and Q2, B is optimal. Finally, it is easy to show that each u ∈ U is
matched by N at most once in expectation since M has this property. Thus, B is a relaxed
probing algorithm which is optimal and satisfies the required properties of Lemma 14. ◀

4 Proving Theorems 1 and 3 for a Known Stochastic Graph

Given k ≥ 1, consider the ground set [k] := {1, . . . , k}, and P := {z ∈ [0, 1]k :
∑k
i=1 zi ≤ 1}.

Fix z ∈ P, and let R(z) ⊆ [k] denote the random set where each i ∈ [k] is included in
R(z) independently with probability zi. Feldman et al. [25] considered a restricted class of
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contention resolution schemes called online contention resolution schemes (OCRS). The
elements of [k] are presented to the OCRS ψ in adversarial order, where in each step, an
arriving i ∈ [k] reveals if it is in R(z), at which point ψ must make an irrevocable decision as
to whether it wishes to return i as its output. We refer the reader to [9] for a brief overview
of CRS terminology.

Suppose the elements of [k] arrive according to some permutation σ : [k] → [k] (i.e.,
σ(1), . . . , σ(k)), and z ∈ [0, 1]k satisfies

∑k
i=1 zi ≤ 1. Upon the arrival of element σ(t) ∈ [k],

compute qt :=
(

2−
∑t−1
i=1 zσ(i)

)−1
. Observe that 1/2 ≤ qt ≤ 1, as 0 ≤

∑k
i=1 zi ≤ 1, and so

the following OCRS is well-defined:

Algorithm 3 OCRS – Ezra et al. [23].

Require: z = (z1, . . . , zk) ∈ P.
Ensure: at most one element of [k].

1: for t = 1, . . . , k do
2: if σ(t) ∈ R(z) then
3: Compute qt based on the arrivals σ(1), . . . , σ(t− 1).
4: return σ(t) independently with probability qt.
5: end if
6: end for
7: return ∅. ▷ pass on returning an element of [k]

▶ Theorem 18 (Ezra et al. [34]). Algorithm 3 is an OCRS which is 1/2-selectable.

Both Lee and Singla [34], as well as Adamczyk and Wlodarczyk [3], defined a special
type of CRS called a random order contention resolution scheme (RCRS). Such a
CRS is defined in the same way as an OCRS, except that the elements of [k] arrive u.a.r.
Suppose Yi ∼ [0, 1] u.a.r. and independently for i = 1, . . . , k.

Algorithm 4 RCRS – Lee and Singla [34].

Require: z = (z1, . . . , zk) ∈ P.
Ensure: at most one element of [k].

1: for i ∈ [k] in increasing order of Yi do
2: if i ∈ R(z) then
3: return i independently with probability exp(−Yi · zi)
4: end if
5: end for
6: return ∅. ▷ pass on returning an element of [k].

▶ Theorem 19 (Lee and Singla [34]). Algorithm 4 is a 1− 1/e-selectable RCRS.

Suppose now G = (U, V,E) is a known stochastic graph, whose online vertices v1, . . . , vn
are presented according to the below algorithm via an adversarially chosen permutation
π : [n] → [n] (i.e., vπ(1), . . . , vπ(n)). Let (xv(e))v∈V,e∈Cv be an optimum solution to LP-
config for G with edge variables (x̃e)e∈E . For each t ∈ [n] and u ∈ U , define qu,t :=(

2−
∑t−1
i=1 zu,vπ(i)

)−1
, where ze := pex̃e for e ∈ E, and qu,1 := 1/2. Clearly,

∑
v∈V zu,v ≤ 1,

by constraint (1) of LP-config, and so 1/2 ≤ qu,t ≤ 1:
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Algorithm 5 Known Stochastic Graph – AOM – Modified.

Require: a stochastic graph G = (U, V,E).
Ensure: a matching M of G of active edges.

1: M← ∅.
2: Compute an optimum solution of LP-config for G, say (xv(e))v∈V,e∈Cv

.
3: for t = 1, . . . , n do
4: Based on the previous arrivals vπ(1), . . . , vπ(t−1) before vπ(t), compute values (qu,t)u∈U .
5: Set e← VertexProbe

(
vπ(t), ∂(vπ(t)), (xvπ(t)(e))e∈Cvπ(t)

)
.

6: if e = (u, vπ(t)) for some u ∈ U , and u is unmatched then
7: Add e to M independently with probability qu,t. ▷ OCRS is used here
8: end if
9: end for

10: return M.

▶ Proposition 20. Algorithm 5 is 1/2-competitive against adversarial arrivals.

Proof. Given u ∈ U , let M(u) denote the edge matched to u by M, where M(u) := ∅ if no
such edge exists. Observe now that if C(e) corresponds to the event in which VertexProbe
commits to e ∈ ∂(u), then P[C(e)] = pex̃e by Lemma 10. Moreover, the events (C(e))e∈∂(u)
are independent, and satisfy∑

e∈∂(u)

P[C(e)] =
∑
e∈∂(u)

pex̃e ≤ 1, (15)

by constraint (1) of LP-config. As such, denote z := (ze)e∈∂(u) where ze = pex̃e, and observe
that (15) ensures that z ∈ P, where P is the convex relaxation of the rank one matroid on
∂(u). Let us denote R(z) as those those e ∈ ∂(u) for which C(e) occurs.

If ψ is the OCRS defined in Algorithm 3, then we may pass z to ψ, and process the edges
of ∂(u) in the order induced by π. Denote the resulting output by ψz(R(z)). By coupling
the random draws of lines (4) and (7) of Algorithms 3 and 5, respectively, we get that

w(M(u)) =
∑
e∈∂(u)

we · 1[e∈R(z)] · 1[e∈ψz(R(z))]

Thus, after taking expectations,

E[w(M(u))] =
∑
e∈∂(u)

we · P[e ∈ ψz(R(z)) | e ∈ R(z)] · P[e ∈ R(z)].

Now, Theorem 18 ensures that for each e ∈ ∂(u), P[e ∈ ψz(R(z)) | e ∈ R(z)] ≥ 1/2. It
follows that E[w(M(u))] ≥ 1

2
∑
e∈∂(u) wepex̃e, for each u ∈ U . Thus,

E[w(M)] =
∑
u∈U

E[w(M(u))] ≥ 1
2

∑
e∈E

wepex̃e = LPOPT(G)
2 ,

where the equality follows since (xv(e))v∈V,e∈Cv
is an optimum solution to LP-config. On

the other hand, LPOPT(G) ≥ OPT(G) by Theorem 8, and so the proof is complete. ◀

For each v ∈ V , draw Ỹv ∈ [0, 1] independently and u.a.r. We assume that the vertices of
V are presented to the below online probing algorithm in non-decreasing order according to
the values (Ỹv)v∈V . Note that this is equivalent to presenting V to the algorithm in random
order.
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Algorithm 6 Known Stochastic Graph – ROM– Modified.

Require: a stochastic graph G = (U, V,E).
Ensure: a matching M of G of active edges.

1: M← ∅.
2: Compute an optimum solution of LP-config for G, say (xv(e))v∈V,e∈Cv

.
3: for s ∈ V in increasing order of Ỹs do
4: Set e← VertexProbe(s, ∂(s), (xs(e))e∈Cs

).
5: if e = (u, s) for some u ∈ U , and u is unmatched then
6: Add e to M independently with probability exp(−Ỹs · pu,s · x̃u,s).
7: end if
8: end for
9: return M.

▶ Proposition 21 (Restatement of Corollary 5 and Remark 6). Algorithm 6 is non-adaptive
and 1− 1/e-competitive against random order arrivals.

Algorithm 6 is clearly non-adaptive, and the proof that it is 1 − 1/e-competitive follows
similarly to the proof of Proposition 20 (see [9] for the details).

5 Open problems

There are some basic questions that are unresolved. Perhaps the most basic question which
is also unresolved in the classical setting without probing is to bridge the gap between the
positive 1−1/e competitive ratio and in-approximations in the context of known i.d. random
order arrivals. In terms of the single item prophet secretary problem (without probing),
Correa et al. [20] obtain a 0.669 competitive ratio following Azar et al. [5] who were the first
to surpass the 1− 1/e “barrier”. Correa et al. [20] also establish a 0.732 in-approximation
for the i.d. setting, and Huang et al. [32] recently established a 0.703 in-approximation
for i.i.d. arrivals in the multi-item case. Can we surpass 1 − 1/e in the probing setting
for i.d. input arrivals or for the special case of i.i.d. input arrivals? Is there a provable
difference between stochastic bipartite matching (with probing constraints) and the classical
online settings? Can we obtain the same competitive results against an optimal offline
non-committal benchmark which respects the probing constraints but doesn’t operate in the
probe-commit model? The 0.51 in-approximation result of Fata et al. [24] suggests that 0.51
may be the optimal competitive ratio against this stronger benchmark.

One interesting extension of the probing model is to allow non-Bernoulli edge random
variables to describe edge uncertainty. Even for a single online vertex in the unconstrained
setting, this problem is interesting as it corresponds to computing an optimal policy for the
free-order prophets problem, which was recently studied by Segev and Singla in [37].
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A Extending to Known I.D. Arrivals

Suppose that (Htyp, (Di)ni=1) is a known i.d. input, where Htyp = (U,B, F ) has downward-
closed online probing constraints (Cb)b∈B. If G ∼ (Htyp, (Di)ni=1), where G = (U, V,E) has
vertices V = {v1, . . . , vn}, then define ri(b) := P[vi = b] for each i ∈ [n] and b ∈ B, where
we hereby assume that ri(b) > 0. We generalize LP-config to account for the distributions
(Di)ni=1. For each i ∈ [n], b ∈ B and e ∈ Cb, we introduce a decision variable xi(e || b) to
encode the probability that vi has type b and e is the sequence of edges of ∂(vi) probed by
the relaxed benchmark.
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maximize
∑

i∈[n],b∈B,e∈Cb

val(e) · xi(e || b) (LP-config-id)

subject to
∑

i∈[n],b∈B

∑
e∈Cb:

(u,b)∈e

pu,b · q(e<(u,b)) · xi(e || b) ≤ 1 ∀u ∈ U (16)

∑
e∈Cb

xi(e || b) = ri(b) ∀b ∈ B, i ∈ [n] (17)

xi(e || b) ≥ 0 ∀b ∈ B, e ∈ Cb, i ∈ [n] (18)

Let us denote LPOPT(Htyp, (Di)ni=1) as the value of an optimum solution to LP-config-id.

▶ Theorem 22. OPT(Htyp, (Di)ni=1) ≤ LPOPT(Htyp, (Di)ni=1).

One way to prove Theorem 22 is to use the properties of the relaxed benchmark on G

guaranteed by Lemma 14, and the above interpretation of the decision variables to argue
that E[OPTrel(G)] ≤ LPOPT(Htyp, (Di)ni=1), where OPTrel(G) is the value of the relaxed
benchmark on G. Specifically, we can interpret (16) as saying that the relaxed benchmark
matches each offline vertex at most once in expectation. Moreover, (17) holds by observing
that if vi is of type b, then the relaxed benchmark selects some e ∈ Cb to probe (note e

could be the empty-string). We provide a morally equivalent proof of Theorem 22 in [9].
Specifically, we consider an optimum solution of LP-config with respect to G, and apply a
conditioning argument in conjunction with Theorem 8.

Given a feasible solution to LP-config-id, say (xi(e || b))i∈[n],b∈B,e∈Cb
, for each u ∈ U, i ∈

[n] and b ∈ B define

x̃u,i(b) :=
∑

e∈Cb:
(u,b)∈e

q(e<(u,b)) · xi(e || b). (19)

We refer to x̃u,i(b) as an edge variable, thus extending the definition from the known
stochastic graph setting. Suppose now that we fix i ∈ [n] and b ∈ B, and consider the variables,

(xi(e || b))e∈Cb
. Observe that (17) ensures that

∑
e∈Cb

xi(e || b)
ri(b) = 1. Hence, regardless of which

type node vi is drawn as,
∑

e∈Cvi

xi(e || vi)

ri(vi) = 1. We can therefore generalize VertexProbe as
follows. Given vertex vi, draw e′ ∈ Cvi with probability xi(e′ || vi)/ri(vi). If e′ = λ, then
return the empty-set. Otherwise, set e′ = (e′

1, . . . , e
′
k) for k := |e′| ≥ 1, and probe the

edges of e′ in order. Return the first edge which is revealed to be active, if such an edge
exists. Otherwise, return the empty-set. We denote the output of VertexProbe on the input
(vi, ∂(vi), (xi(e || vi)/ri(vi))e∈Cvi

) by VertexProbe(vi, ∂(vi), (xi(e || vi)/ri(vi))e∈Cvi
). Define

C(u, vi) as the event in which VertexProbe outputs the edge (u, vi), and observe the following
extension of Lemma 10:

▶ Lemma 23. If VertexProbe is passed
(
vi, ∂(vi), (xi(e || vi)/ri(vi))e∈Cvi

)
, then for any

b ∈ B and u ∈ U , P[C(u, vi) | vi = b] = pu,b·x̃u,i(b)
ri(b) .

▶ Remark 24. As in Definition 12, if C(u, vi) occurs, then u commits to (u, vi) (or vi).

We now generalize Algorithm 1 where π is generated either u.a.r. or adversarially.
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Algorithm 7 Known I.D.

Require: a known i.d. input (Htyp, (Di)ni=1).
Ensure: a matching M of active edges of G ∼ (Htyp, (Di)ni=1).

1: M← ∅.
2: Compute an optimum solution of LP-config-id for (Htyp, (Di)ni=1), say

(xi(e || b))i∈[n],b∈B,e∈Cb
.

3: for t = 1, . . . , n do
4: Let a ∈ B be the type of the current arrival vπ(t). ▷ to simplify notation

5: Set e← VertexProbe
(
vπ(t), ∂(vπ(t)),

(
xπ(t)(e || a) · r−1

π(t)(a)
)

e∈Ca

)
.

6: if e = (u, vπ(t)) for some u ∈ U , and u is unmatched then
7: Add e to M.
8: end if
9: end for

10: return M.

Similarly, to Algorithm 1, one can show that Algorithm 7 attains a competitive ratio of
1/2 for random order arrivals. Interestingly, if the distributions (Di)ni=1 are identical – that
is, we work with known i.i.d. arrivals – then it is relatively easy to show that this algorithm
becomes 1− 1/e-competitive.

▶ Proposition 25. If Algorithm 7 is presented a known i.i.d. input, say the type graph Htyp
together with the distribution D, then E[w(M)] ≥ (1− 1/e) OPT(Htyp,D).

▶ Remark 26. Proposition 25 is proven explicitly in an earlier 2020 arXiv version of this
paper for the case of patience values.
Returning to the case of non-identical distributions, observe that in the execution of Algorithm
7 the probability that vi commits to the edge (u, vi) for u ∈ U is precisely

zu,i :=
∑
b∈B

pu,b · x̃u,i(b) =
∑
b∈B

∑
e∈Cb:

(u,b)∈e

pu,b · q(e<(u,b)) · xi(e || b). (20)

Moreover, the events (C(u, vi))ni=1 are independent, so this suggests applying the same
contention resolutions schemes as in the known stochastic graph setting. We first focus on
the adversarial arrival model, where we assume the vertices v1, . . . , vn are presented in some
unknown order π : [n] → [n]. We make use of the OCRS from before (Algorithm 3). For
each t ∈ [n] and u ∈ U , define

qu,t := 1
2−

∑t−1
i=1 zu,π(i)

, (21)

where qu,1 := 1/2. Note that 1/2 ≤ qu,t ≤ 1 as
∑
j∈[n] zu,j ≤ 1 by constraint (16) of

LP-config-id. We define Algorithm 8 by modifying Algorithm 7 using the OCRS to ensure
that each i ∈ [n] is matched to u ∈ U with probability zu,i/2. However, to achieve a
competitive ratio of 1/2, we require the stronger claim that for each type node a ∈ B,
the probability (u, vi) is added to the matching and vi is of type a is lower bounded by
pu,ax̃u,i(a)/2. Crucially, if we condition on u ∈ U being unmatched when vi is processed, vi
having type a, and C(u, vi), then the probability the OCRS matches u to vi does not depend
on a. This implies the desired lower bound of pu,ax̃u,i(a)/2, and so Algorithm 8 attains a
competitive ratio of 1/2 by (19) and Theorem 22 (we provide the details in the proof below).
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Algorithm 8 Known I.D. – AOM – Modified.

Require: a known i.d. input (Htyp, (Di)ni=1).
Ensure: a matching M of active edges of G ∼ (Htyp, (Dt)nt=1).

1: M← ∅.
2: Compute an optimum solution of LP-config-id for (Htyp, (Di)ni=1), say

(xi(e || b))i∈[n],b∈B,e∈Cb
.

3: for t = 1, . . . , n do
4: Let a ∈ B be the type of the current arrival vπ(t).
5: Based on the previous arrivals vπ(1), . . . , vπ(t−1) before vπ(t), compute values (qu,t)u∈U .

6: Set e← VertexProbe
(
vπ(t), ∂(vπ(t)),

(
xπ(t)(e || a) · r−1

π(t)(a)
)

e∈Ca

)
.

7: if e = (u, vt) for some u ∈ U , and u is unmatched then
8: Add e to M independently with probability qu,t.
9: end if

10: end for
11: return M.

Proof of Theorem 1. For notational simplicity, let us assume that π(t) = t for each
t ∈ [n], so that the online vertices arrive in order v1, . . . , vn. Now, the edge variables
(x̃u,t(b))u∈U,t∈[n],b∈B satisfy LPOPT(Htyp, (Di)ni=1) =

∑
u∈U,t∈[n],b∈B pu,bwu,bx̃u,t(b). Thus,

to complete the proof it suffices to show that

P[(u, vt) ∈M and vt = b] ≥ x̃u,t(b)
2 (22)

for each u ∈ U, t ∈ [n] and b ∈ B, where we hereby assume w.l.o.g. that x̃u,t(b) > 0. In
order to prove this, we first observe that by the same coupling argument used in the proof of
Proposition 20,

P[(u, vt) ∈M] ≥ zu,t
2 = 1

2
∑
b∈B

pu,bx̃u,t(b) (23)

as a result of the 1/2-selectability of Algorithm 3. Let us now define Rt as the unmatched
vertices of U when vt arrives. Observe then that

P[(u, vt) ∈M| vt = b, C(u, vt) and u ∈ Rt] = qu,t. (24)

Now, P[vt = b, C(u, vt) and u ∈ Rt] = pu,b · x̃u,t(b) · P[u ∈ Rt], by Lemma 23 and the
independence of the events {vt = b} ∩ {C(u, vt)} and {u ∈ Rt}. Thus, by the law of
total probability,∑

b∈B

pu,bx̃u,tqu,t · P[u ∈ Rt] = P[(u, vt) ∈M] ≥ zu,t
2 = 1

2
∑
b∈B

pu,bx̃u,t(b)

where the second inequality follows from (23). Thus, qu,t · P[u ∈ Rt] ≥ 1/2, and so combined
with (24), (22) follows, thus completing the proof. ◀

Suppose now that each vertex vt has an arrival time, say Ỹt ∈ [0, 1], drawn u.a.r. and
independently for t ∈ [n]. The values (Ỹt)nt=1 indicate the increasing order in which the
vertices v1, . . . , vn arrive.
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Algorithm 9 Known I.D. – ROM – Modified.

Require: a known i.d. input (Htyp, (Dt)nt=1).
Ensure: a matching M of active edges of G ∼ (Htyp, (Dt)nt=1).

1: M← ∅.
2: Compute an optimum solution of LP-config-id for (Htyp, (Dt)nt=1), say

(xt(e || b))t∈[n],b∈B,e∈Cb
.

3: for t ∈ [n] in increasing order of Ỹt do
4: Set e← VertexProbe

(
vt, ∂(vt), (xt(e || vt)/rt(vt))e∈Cvt

)
.

5: if e = (u, vt) for some u ∈ U , and u is unmatched then
6: Add e to M independently with probability exp(−Ỹt · zu,t).
7: end if
8: end for
9: return M.

Proof of Theorem 3. The competitive ratio of 1−1/e follows by the same coupling argument
as in Proposition 21, together with the same observations used in the proof of Theorem 1,
and so we omit the argument. ◀

B LP Relations

Suppose that we are given an arbitrary stochastic graph G = (U, V,E). In this section, we
first prove the equivalence between the relaxed stochastic matching problem and LP-config.
We then state LP-std, the standard LP in the stochastic matching literature, as introduced
by Bansal et al. [6], as well as LP-QC, the LP introduced by Gamlath et al. [27]. We then
show that LP-QC and LP-config have the same optimum value when G is unconstrained.

▶ Theorem 27. OPT(G) = LPOPTconf(G)

Proof. Clearly, Theorem 8 accounts for one side of the inequality, so it suffices to show that
LPOPT(G) ≤ OPTrel(G). Suppose we are presented a feasible solution (xv(e))v∈V,e∈Cv to
LP-config. Consider then the following algorithm:
1. M← ∅.
2. For each v ∈ V , set e← VertexProbe(v, ∂(v), (xv(e))e∈Cv

). If e ̸= ∅, then add e to M.
3. Return M.
Using Lemma 10, it is clear that E[w(M)] =

∑
v∈V

∑
e∈Cv

val(e) · xv(e). Moreover, each
vertex u ∈ U is matched by M at most once in expectation, as a consequence of constraint
(1) of LP-config, and so the algorithm satisfies the required properties of a relaxed probing
algorithm. The proof is therefore complete. ◀

Consider LP-std, which is defined only when G has patience values (ℓv)v∈V . Here each
e ∈ E has a variable xe corresponding to the probability that the offline adaptive benchmark
probes e.

maximize
∑
e∈E

we · pe · xe (LP-std)

subject to
∑
e∂(u)

pe · xe ≤ 1 ∀u ∈ U (25)

∑
e∈∂(v)

pe · xe ≤ 1 ∀v ∈ V (26)
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∑
e∈∂(v)

xe ≤ ℓv ∀v ∈ V (27)

0 ≤ xe ≤ 1 ∀e ∈ E. (28)

Gamlath et al. modified LP-std in the unconstrained setting by adding in exponentially
many extra constraints. Specifically, for each v ∈ V and S ⊆ ∂(v), they ensure that∑

e∈S
pe · xe ≤ 1−

∏
e∈S

(1− pe), (29)

In the same variable interpretation as LP-std, the left-hand side of (29) corresponds to the
probability the adaptive benchmark matches an edge of S ⊆ ∂(v), and the right-hand side
corresponds to the probability an edge of S is active2.

maximize
∑
e∈E

we · pe · xe (LP-QC)

subject to
∑
e∈S

pe · xe ≤ 1−
∏
e∈S

(1− pe) ∀v ∈ V, S ⊆ ∂(v) (30)∑
e∈∂(u)

pe · xe ≤ 1 ∀u ∈ U (31)

xe ≥ 0 ∀e ∈ E. (32)

Let us denote LPOPTQC(G) as the optimum value of LP-QC.

▶ Proposition 28. If G is unconstrained, then LPOPTQC(G) = LPOPT(G).

In order to prove Proposition 28, we make use of a result of Gamlath et al. We mention that
an almost identical result is also proven by Costello et al. [21] using different techniques.

▶ Theorem 29 ([27]). Suppose that G = (U, V,E) is an unconstrained stochastic graph, and
(xe)e∈E is a solution to LP-QC. For each v ∈ V , there exists an online probing algorithm Bv
whose input is (v, ∂(v), (xe)e∈∂(v)), and which satisfies P[Bv matches v to e] = pexe for each
e ∈ ∂(v).

Proof of Proposition 28. Observe that by Theorem 27, in order to prove the claim it suffices
to show that LPOPTQC(G) = OPTrel(G). Clearly, OPTrel(G) ≤ LPOPTQC(G), as can be
seen by defining xe as the probability that the relaxed benchmark probes the edge e ∈ E.
Thus, we focus on showing that LPOPTQC(G) ≤ OPTrel(G). Suppose that (xe)e∈E is an
optimum solution to LPOPTQC(G). We design the following algorithm, which we denote
by B:
1. M← ∅.
2. For each v ∈ V , execute Bv on (v, ∂(v), (xe)e∈∂(v)), where Bv is the online probing

algorithm of Theorem 29. If Bv matches v, then let e′ be this edge, and add e′ to M
3. Return M.
Using Theorem 29, it is clear that E[w(M)] =

∑
e∈E wepexe. Moreover, each vertex u ∈ U is

matched by M at most once in expectation, as a consequence of constraint (32). As a result,
B is a relaxed probing algorithm. Thus, LPOPTQC(G) =

∑
e∈E wepexe ≤ OPTrel(G), and

so the proof is complete. ◀

2 The LP considered by Gamlath et al. in [27] also places the analogous constraints of (29) on the vertices
of U . That being said, these additional constraints are not used anywhere in the work of Gamlath et
al., so we omit them.
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