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—— Abstract

The p-biased Homogeneous 7-Lin problem (Hom-r-Lin,) is the following: given a homogeneous system
of r-variable equations over IF5, the goal is to find an assignment of relative weight p that satisfies
the maximum number of equations. In a celebrated work, Hastad (JACM 2001) showed that the
unconstrained variant of this i.e., Max-3-Lin, is hard to approximate beyond a factor of 1/2. This
is also tight due to the naive random guessing algorithm which sets every variable uniformly from
{0,1}. Subsequently, Holmerin and Khot (STOC 2004) showed that the same holds for the balanced
Hom-r-Lin problem as well. In this work, we explore the approximability of the Hom-r-Lin, problem
beyond the balanced setting (i.e., p # 1/2), and investigate whether the (p-biased) random guessing
algorithm is optimal for every p. Our results include the following:

The Hom-r-Lin, problem has no efficient % + %(1 — Qp)T_2 + e-approximation algorithm for every

p if r is even, and for p € (0,1/2] if r is odd, unless NP C U.~oDTIME(2"").

For any r and any p, there exists an efficient %(1 - 672)-appr0ximation algorithm for Hom-r-Lin,,.

We show that this is also tight for odd values of r (up to o,(1)-additive factors) assuming the

Unique Games Conjecture.
Our results imply that when r is even, then for large values of r, random guessing is near optimal for
every p. On the other hand, when r is odd, our results illustrate an interesting contrast between the
regimes p € (0,1/2) (where random guessing is near optimal) and p — 1 (where random guessing is
far from optimal). A key technical contribution of our work is a generalization of Hastad’s 3-query
dictatorship test to the p-biased setting.
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1 Introduction

The problem of finding solutions to systems of linear equations is one of fundamental import-
ance. While in theory, the exact running time complexity of even efficiently solvable instances
has profound implications in the theory of algorithms [26], the question of approximability
of infeasible systems is also fundamental and has been studied widely [19, 12, 24, 14, 8]. A
particularly useful instantiation of this is the Max-r-Lin problem! where given a (possibly
infeasible) system of r-variables equations over Fy, the objective is to find an assignment

! In the literature, the Max-r-Lin problem is typically referred to as Max-r-Ling, where the indexing by ¢
indicates that the equations are over F,. We drop the indexing by ¢ since the current work deals only
with the setting ¢ = 2.
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to the variables that satisfies the maximum fraction of equations. The Max-r-Lin problem
manifests as various computational problems in error correcting codes, combinatorial op-
timization, probabilistically checkable proofs among many others. In particular, its study
played a seminal role in the development Proabablistically Checkable Proofs based reduc-
tions [7, 19, 24], and techniques introduced for studying its hardness have now become staple
tools in hardness of approximation.

A standout result among these is the celebrated work of Hastad [19] who showed that for
r > 3, the Max-r-Lin problem is NP-hard to approximate beyond a factor of 1/2. This is clearly
tight since the naive algorithm which outputs a uniformly random assignment also satisfies
at least 1/2-fraction of constraints?. This property of the “random guessing algorithm being
optimal” also happens to hold for a much broader class of combinatorial optimization problems,
and is formally studied under the notion of “approximation resistance”. The ubiquity of this
notion has lead to several works which systematically study such problems [5, 4, 10], including
landmark results such as which give complete conditional and unconditional characterizations
of approximation resistant predicates [3, 25].

A key problem studied in this context is the Balanced Homogeneous Max-3-Lin problem,
where given a homogeneous system of linear equations, the goal is to find a balanced assignment
that satisfies the maximum fraction of constraints. Clearly, naive random guessing is still a
candidate algorithm for this setting as well, since it produces balanced® assignments that
satisfy at least half of the constraints. Naturally, this leads one to ask if random guessing is
still optimal in this setting as well? This was answered in the affirmative by Holmerin and
Khot [22] who ruled out efficiently approximability beyond 1/2 assuming SAT does not admit
sub-exponential time algorithms. Subsequently, Hastad and Manokaran [21] strengthened
the above hardness result to rule out quasi-polynomial time algorithms which give better
than 1/2 approximation assuming NP ¢ DTIME (exp(logn)°(™).

In this work, we study a natural generalization of the above and investigate the approx-
imability of the homogeneous Max-3-Lin problem beyond the balanced setting. Formally,
we study the p-biased version of the above problem, which we refer to as the Hom-r-Lin,,
problem. We define it formally below:

» Definition 1 (Hom-r-Lin,). Given p € (0,1), an instance ¢([n], E) of the p-biased Hom-r-
Lin problem is given by a set of homogeneous equations over IFo defined by a set of r-arity
hyperedges E := {e1,...,em} over variables {x1,...,x,}, where the i'" hyperedge e; implies
the constraint @jce,x; = 0. Here, the objective is to find a labeling of relative weight p which
satisfies the maximum fraction of hyperedges (constraints).

Clearly, for p = 1/2, the above recovers the balanced setting, for which the aforementioned
works show that the uniformly random guessing algorithm is optimal. On the other hand,
for any p € (0,1), one can naturally consider the following extension of random guessing: set
each variable to 1 independently with probability p — we refer to this as p-biased random
guessing. Clearly, with high probability, p-biased random guessing will return an assignment

In fact, a simpler deterministic 1/2-approximation algorithm is known for Max-r-Lin: given any
assignment to the set of the variables, that or its negation will always satisfy at least 1/2 of the
constraints — hence, outputting the best of any assignment and its negation is gives a trivial 1/2-
approximation. However, since negating the assignment can also change its relative weight, this
approach doesn’t yield an algorithm for the weight constrained setting considered in this paper.
Strictly speaking, it produces almost balanced assignments, which can be converted to exactly balanced
assignments by changing o, (1)-variables. This only affects the approximation factor in lower order o(1)
terms.
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with relative weight = p, i.e., it is again a feasible candidate algorithm. And keeping with
the above trend, one may ask if the p-biased random guessing algorithm is still optimal for
the Hom-r-Lin, problem, for every p. In other words, we ask the following:

Is the Hom-r-Lin, problem approximation resistant for every p € (0,1)?

The above is the main motivating question which we seek to address in the current work. At
a finer level, our goal is to understand the approximability of the Hom-r-Lin, problem as
a function of the parameter p and the arity r. This formulation of the problem brings in
several additional dimensions to the existing literature on approximation resistance which
typically deals with uniformly random guessing, as opposed to the more general p-biased
guessing studied in the current work.

1.1 Our Results

In this work, we study the bias dependent approximability of Hom-r-Lin,, and make sub-
stantial progress towards understanding the above question. In the interest of keeping the
presentation concise, we will first state our results for the setting when r is odd, since this
setting exhibits a more interesting dependence on the parameter p. We will then point out
how the results change when r is even.

The p < 1/2 setting. Our first result is the following theorem which shows that Hom-r-Lin,,
predicate is close to being approximation resistant for large values of r.

» Theorem 2. Fiz p,n € (0,1/2), and r > 3. Then assuming NP € U.~oDTIME(2"") the
following holds. Given an instance 1 of Hom-r-Lin, there is no polynomial time algorithm
that can distinguish between the following cases:
YES Case. There exists an assignment of relative hamming weight p, which satisfies at
least 1 —n fraction of constraints.
NO Case. No assignment of relative hamming weight p satisfies more than % + %(1 —
2p)"~2 +n fraction of constraints.

The above theorem implies that there are no efficient algorithms which give a better than
%(1 + (1 — 2p)"~2)-approximation. On the other hand, it is easy to verify that the p-biased
random guessing is a %(1 + (1 — 2p)")-approximation algorithm for Hom-r-Lin,. Hence, the
above theorem implies that for large r, biased random guessing is almost optimal.

The p > 1/2-setting. Our second result shows that the almost approximation resistant
behavior of the Hom-r-Lin, predicate breaks down in the p > 1/2 setting. This is implied
by the following theorem which gives an efficient randomized p-independent approximation
algorithm for Hom-7-Lin,,.

» Theorem 3. For every r > 3 and every p € (0,1), there exists an efficient randomized
Byr/2-approzimation algorithm for Hom-r-Lin,. Here 3, := 1 — (1 —1/r)*" is a decreasing
function of r satisfying lim, . B, = (1 —e™2).

The algorithm for the above theorem is based on a linear programming + rounding
approach inspired by algorithms for hitting set and is markedly different from random
guessing. The above theorem implies that even for r = 3, the random guessing algorithm is
strictly sub-optimal for all p > 1/2(1 4+ e~2/3). We also show that the above approximation
guarantee is tight (up to o,(1)-factors) assuming the Unique Games Conjecture [23].
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» Theorem 4. Assuming the Unique Games Conjecture, the following holds for every odd
r >3 andn € (0,1). Let p :=1— 1/r.Given a Hom-r-Lin instance v it is NP-hard to
distinguish between the following cases:
YES Case. There exists an assignment of relative weight p which satisfies at least
(1 —n)-fraction of constraints.

NO Case. No assignment of relative weight p satisfies more than (% + O(l/r)) -fraction

of constraints.

The even r-setting . It is easy to see that when r is even, the p > 1/2 and p < 1/2
regimes are symmetric. To see this, given a system of equations v ([n], E'), and an assignment
(x1,...,zy) of relative weight p, consider the negated assignment = = 1 ® x;. Since r is even
and the constraints are homogeneous, the negated assignment will satisfy a constraint if and
only if the original assignment satisfied the constraint. Furthermore, the negated assignment
will have a relative weight of 1 — p. This observation implies that the Hom-r-Lin, problem
behaves identically under the bias constraints p and 1 — p for every p. This observation along
with Theorem 2 results in the following corollary.

» Corollary 5. For every p,e € (0,1) and even r > 4, there is no polynomial time %(1 +(1-
2p)"~2) + e-approzimation algorithm for Hom-r-Lin, unless NP C DTIME(2"") for any & > 0.

Threshold Phenomena. The above results show that when p < 1/2, then the random
guessing algorithm is almost optimal, whereas this behavior breaks down for the p > 1/2
regime when r is odd. In particular, in the setting of large p’s the Hom-r-Lin predicate
exhibits a hitting set like behavior — our algorithm and hardness results (Theorem 4 and 3)
are based on this connection. In fact, we believe that when p < 1/2, the p-biased random
guessing algorithm is indeed optimal, and the current gap in the hardness result is due
to technical bottlenecks* that arise more generally in the context of hardness reductions
involving problems with global constraints.

Furthermore, our results hint at the possibility of the existence of a threshold p, beyond
which the approximation resistance of Hom-r-Lin breaks. In particular, the hard distribution
for Theorem 4 seems to indicate that this threshold is 1 — 1/r. Lastly, we point out that
the even and odd r settings contrast nicely against each other as while Hom-r-Lin, can
be approximation resistant only for a certain range of p when r is odd, it is possibly
approximation resistant for every p when r is even.

1.2 Related Works

The Max-r-Lin Problem. The Max-r-Lin problem has been studied extensively in the
literature. In particular, when r = 2, it expresses the affine UNIQUEGAMES problem which is
central to Khot’s Unique Games Conjecture (UGC) [23], and has been extensively studied
by several works [12, 11, 24]. In particular, the algorithmic results from [11] show that the

4 In particular, the gap of (1 — 2p)? in the second term is primarily due to the following reason. As is
standard in Label Cover based reductions, out of the r-queries made by out dictatorship test, 2 of its
queries are made to the large side table for the consistency check. However, the outer verifier (i.e.,
Mixing Label Cover) can only guarantee mixing w.r.t. vertices on the smaller side (due to which we are
able to recover the (1 — 2p)"~?)-factor, and doesn’t guarantee mixing on the larger side (due to which
we lose out by a factor (1 — 2p)? in the p-dependent term). The question of constructing hard outer
verifiers with mixing guarantees with respect all vertices is a fundamental technical challenge in itself in
this area.
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r = 2 setting is not approximation resistant. For r > 3, Hastad [19] showed that Max-r-Lin is
hard to approximate beyond a factor of 1/2 + ¢. In fact, Hastad’s result actually shows that
the Max-r-Lin problem is approximation resistant over any finite abelian group, which was
later strengthened to the setting of infeasible instances over non-abelian groups [14]. More
recently, Bhangale and Khot [8] give tight hardness results for satisfiable Hom-r-Lin instances
over non-abelian finite groups. Specifically, given a non-abelian group G, they showed that it
is hard to approximate the satisfiable Hom-r-Lin problem beyond a factor of 1/|[G,G]| + ¢,
where [G, G] is the commutator sub-group of G — this is matched by a folklore algorithm for
the same, we refer interested readers to [8] for more details on this.

Approximation Resistance. Starting with the work of Hastad [19], the question of under-
standing the conditions under which random guessing is optimal has generated great interest,
and has been studied by several works. In particular, the work of Héstad [20] showed that
2-arity CSPs can never be approximation resistant. For when the arity r is 3, it is known that
a CSP on a predicate can be approximation resistant if and only if the predicate is implied
by 3-XOR [19, 32]. The work of Hast [18], gives an almost complete characterization for
4-arity CSPs. On the other hand, stronger results are known assuming stronger hypotheses.
For e.g., assuming UGC, Hastad and Austrin [3] showed that a uniformly random predicate
is approximation resistant with high probability. Austrin and Khot [4] gave a complete
characterization of approximation resistance for k-partite CSPs, which was later strengthened
to the setting of all CSPs by Khot, Tulsiani and Worah [25].

Globally Constrained CSPs. The Hom-r-Lin, problem also falls within the framework of
Max-CSPs with global cardinality constraints i.e., CSPs where the objective is to find a
labeling that satisfies the maximum number of edge constraints while “strictly” respecting
global constraints. Such CSPs express extensively studied problems such as Max-Bisection [28,
2], Densest-k-Subgraph [15, 9], Small Set Expansion [29, 30]. There have been several works
which also systematically study such CSPs under a more general framework. For e.g., the
works of Guruswami and Sinop [17] and Bansal et al. [1] propose general purpose algorithmic
frameworks for solving globally constrained CSPs. A closely related work is that of Ghoshal
and Lee [16], who study the bias parameter dependent approximation curve for globally
constrained Boolean CSPs, and give upper and lower bounds which are matching up to
constant factors for constant arity, assuming the Small Set Expansion Hypothesis. In
particular, their results imply that there exists a (27")-approximation algorithm, which
again is p-independent but deteriorates with increasing r.

2 Warm-up : The p < 1/2 vs. p > 1/2 settings

In this section, we first provide some intuition on why the behavior of the approximation
curve of the Hom-r-Lin predicate in the p > 1/2 regime is different from that of p < 1/2 when
r is odd. Consider the random guessing algorithm for the Hom-r-Lin problem which sets every
variable to 1 with probability p. Then, elementary computation shows that this assignment
satisfies % + %(1 — 2p)"-fraction of constraints in expectation and w.h.p. the relative weight
of the assignment returned by the algorithm is ~ p. Clearly, the approximation guarantee of
this algorithm improves as p decreases and is trivially optimal in the limit p = 0, and hence
it might not be a stretch to posit that the random guessing algorithm is indeed optimal in
this regime.
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On the other hand, as p increases, the approximation guarantee of the random guessing
algorithm worsens, eventually reaching 0 as p — 1. However, while random guessing might
be almost optimal when p € (0,1/2), there is an inherent reason as to why it should be
sub-optimal in the almost all-ones regime. The key insight here is that the random guessing
can be wasteful in term of choosing the zeros when the budget of zeros is small (i.e, when
p — 1). For instance, consider a Hom-r-Lin, instance ¢ ([n], E) whose optimal assignment
satisfies nearly all constraints. Then one can show that there exists a small set of vertices in
V which intersects (hits) nearly all hyperedges in ) — this is witnessed by the zero set of the
optimal assignment. In contrast, the solutions output by the random guessing algorithm will
have the set of zeros spread uniformly throughout the constraint hypergraph, and hence such
assignments are likely to miss out on the potential exploits guaranteed by the combinatorial
structure of the instance, thus ending up satisfying far fewer than the optimal fraction of
constraints. On the other hand, the existence of such a hitting set opens up other possible
approach which can use this. For instance, the surrogate problem of finding a small size set
which hits the maximum number of hyperedges itself is known to admit efficient constant
factor approximation algorithms using simple greedy /linear programming based approaches.
The above observations indicate that one might be able to strictly better than random
guessing by exploiting the combinatorial structure of the instance.

3 Hardness for p < 1/2

Our result for p < 1/2 (Theorem 2) is based on a careful generalization of the standard
3-query dictatorship test of Hastad to the setting of biased long codes. In order to highlight
the challenges towards establishing the hardness result, it will be useful to go over the
reduction for the hardness of balanced setting (i.e., p = 1/2) from [22]. The reduction in [22]
for Hom-r-Lin consisted of two key components:

(i) The 3-query dictatorship test of Hastad for 3-Lin.

(ii) A variant of LABEL COVER® with one-sided mizing properties.
While the 3-query test from (i) was established much before the work of Holmerin and
Khot [22], the key contribution of [22] was a variant of LABEL COVER with the property
that the larger side of the LABEL COVER instance £ has good expansion — this is needed
to ensure that globally balanced assignments also translate to locally balanced assignments
in the reduction. As we shall see, while we can use the outer verifier from (ii) as is in our
reduction, most of the work will go into modifying and analyzing the inner verifier (i.e, the
dictatorship test). Now we shall first briefly describe how (i) and (ii) can be put together to
prove the hardness for the balanced setting, and then we will discuss the challenges and the
techniques used for going beyond the balanced case.

The 3-query test. In order to understand the challenges towards designing a r-query test
that works in our setting, it is instructive to recall the well known 3-query test of [19]. The
design of the 3-query test is based on the principle that linear functions with small number of
influential coordinates must be close to being dictators, which readily yields test in Figure 1.

® A Label Cover instance £L(U,V, E, [s], [I], {e }ceE) is a 2-CSP on the bipartite constraint graph with
left and right vertex sets U and V respectively, with the edge constraint set E. Every edge (u,v) € E is
identified with a projection constraint 7y, : [I] = [s]. The objective is to find a global labeling of U
and V using [s] and [I] respectively, that satisfies the maximum fraction of edge constraints in E.
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Input. Long code table f : {0,1}% — {41} satisfying E, 9,1+ [f(x)] = 0.
Test.

1. Sample z,y ~ {0, 1}]f/2 and p ~ {0, 1}57 Set z:=x®ydp.

2. Accept if and only if

f@)-fy) - f(z) =1,

Figure 1 3-query test.

The analysis of this test proceeds through the following well-traversed path. Firstly, it
is easy to see that the dictator assignment f = x; is balanced and passes the test with
probability (1 — 7). On the other hand, the soundness direction proceeds as follows: given a
balanced assignment f : {0,1}* — {41}, we can arithmetize the acceptance probability of
the test in term of f and express it as:

—_

Pr[ Test Accepts | = 3 + 2 Evy- /(@) f0) ()]

Furthermore, by standard Fourier analytic arguments, we can manipulate the RHS of the
above and further write the RHS in terms of the Fourier coefficients of f as

Pr [ Test Accepts | = = + % Z f(5)3(1 - 77)“3‘7 (1)

B#0y

DN =

where note that the summation term does not feature the term § = 0j since the Fourier
coefficient corresponding to the all zeros term vanishes due to the balancedness of the long
code table. Hence, if the test passes with probability strictly bounded away from 1/2, then
the summation term is strictly positive, which allows one to show that there exists 8 € {0, 1}*
such that fA(ﬁ) > Q(1) and |B] < O(1/n) i.e., f has non-trivial correlation with a low degree
term. In particular, note that since the summation omits the 8 = 0, term, the low degree
term is guaranteed to be non-trivial — this property is used crucially in the composition step

which we describe next.

Composing with Mixing Label Cover. Given the above dictatorship test, the next step is to
compose it with the outer verifier (i.e., Label Cover). This is a standard step in dictatorship
test based reductions, and roughly goes as follows. Informally, given a Label Cover instance
L(U,V,E,%, {n.}ecr), the reduction introduces a long code table f,, : {0, 1}%=| — {£1}
for every vertex w € U UV — the entries of the long code tables correspond to the variable
set of the reduction. The constraint set of the reduction corresponds to the distribution over
checks generated by the following process:

Sample a random edge (u,v) ~ L.

Run the 3-query test by querying the positions from the long code tables f,(z) f,(v) and

fo(me(2) Yy @ 2).
The above seeks to simultaneously test the following (i) the tables f,, and f, are correlated
with non-trivial low degree terms, and (ii) the sets corresponding to the low degree terms
have non-trivial intersection under the projection map 7. These checks are indeed useful
due to the following principle: if (i) and (ii) hold simultaneously for a non-negligible faction
of fraction of edges incident on a vertex v € V', then the assignment to the long code tables
can be used to decode a labeling that satisfies a non-trivial fraction of constraints incident
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on v in £. However, lifting the soundness guarantee of the test to ensure (i) and (ii) from
above requires the empty set Fourier coefficient term to vanish in expectation for a random
choice of u ~ N, (v) (recall that this is critical in ensuring that the low degree term in (i) is
non-trivial). This is precisely where the mixing property is useful — it ensures that if the
global set of U-tables are balanced, then for most choices of v € V', the long code tables in
the neighborhood N, (v) of v are also balanced (in expectation). In terms of the soundness
analysis of the full reduction, this translates to the guarantee that for most choices of v, empty
set Fourier coefficient term has negligible contribution. However, the mixing property of the
Label Cover instance comes at the cost of super-polynomial sized constructions, due to which
the inapproximability only holds under stronger assumptions such as NP ¢ U.~oDTIME(2"").

3.1 The Biased r-query test

Towards generalizing the above to the setting of any p < 1/2, a clear first obstacle is to design
a dictatorship test that has the right completeness and soundness guarantees as functions
of p and r. It turns out that this is the key issue that we need to address, as once we are
equipped with the right test, the composition step and its analysis follows almost as is using
the techniques from the balanced case. Formally, our goal is to design a r-query test with
the following property:

Completeness: If f : {0,1}* — {£1} is a dictator, then it passes the test with probability
1 — 7, and induces an assignment of relative weight p i.e., Ex~{0,1}’; [f(x)]=1-2p.

Soundness: If f is an assignment of relative weight p and passes the probability at least
1(1+(1—2p)""2) + Q(1), then f is correlated with a non-trivial Fourier character of
low-degree .

It is easy to see that the 3-query test from Figure 1 does not imply the above conditions,
and in particular, fails the completeness guarantee. This is due to the observation that
since the marginal distribution of the points queried by the test is uniform over {0, 1}*,
any dictator assignment will be balanced under the distribution. This leads us to consider
analogous p-“biased” dictatorship tests over the p-biased hypercube®.

Towards designing such a “biased” dictatorship test, a natural first approach (while
ignoring the noise component p) would be to consider the distribution over triples over
choices of (z,y, z) such that @ y @& z = 0j, such that z, y and z are marginally distributed
as {0, 1}]; — such a test was explored (for slices of the hypercube) in the context of direct sum
testing in [13] for the regime where the soundness of the test approaches 1. However, to the
best of our knowledge, the techniques used in [13] seem to rely on the soundness parameter
being close to 1, whereas our application would require us to establish guarantees in settings
where the soundness parameter is bounded away from 1. Furthermore, even in the regime
where the soundness approaches 1, it is not easy to see how the techniques of [13] generalize
to the setting of higher values of r. Finally, the techniques used in the analysis of the above
test (Figure 1) do not generalize well to this setting, since establishing (1) heavily relies on
the fact that the Fourier characters for the unbiased distribution are linear operators over
FXie., xa(z ®y) = Xa(z) @ xa(y), a property that does not hold for the general p-biased
Fourier characters (i.e., when p # 1/2).

6 The p-biased Boolean k-hypercube is the k-hypercube {0, 1}]C equipped with the following measure:
— plzl k—|ax|
w(@) :=p'*(1 —p)* 1L
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The above observations instead motivate us to consider a test with an asymmetric test
distribution, where the first (r — 2)-query positions are independent p-biased strings and the
remaining two strings are uniformly distributed but correlated. Formally, we consider the
distribution in the following figure.

Input. Long code table f: {0,1}* — {£1} satisfying Ea:N{o,l}'; [f(z)] =1-2p.
Test.

1. Sample x1,...,2,-9 ~ {0, 1}’;.

2. Sample y ~ {0, 1}’f/2 and p ~ {0, 1}’; Set z := (Bicr—2Ti) DY D p.

3. Accept if and only if

I1 r@)| fw-rz)=1

i€[r—2]

Figure 2 The p-biased r-query test.

The above distribution allows us to have the best of both worlds: the (r — 2) independent
p-biased strings ensure that the completeness and soundness parameters have the desired
dependence on the parameters p and r, where as the uniformity of y and z ensures that the
analysis can exploit the linearity of Fourier characters in the necessary steps and recover
the quadratic term required to show correlation with a low degree term. We conclude our

discussion by giving a brief sketch of the completeness and soundness analysis of the above test.

As in the 3-query test, it is straightforward to establish that a dictator function will again pass
the test with probability 1 — 7 and induce an assignment of weight 1 —2p. On the other hand,
analyzing the soundness direction is requires additional care. In particular, note that since
the marginal distributions of the first (r — 2)-distribution are p-biased, where as the remaining
two strings are uniformly distributed, we have to expand the arithmetization in a hybrid
bases counsisting of p-biased Fourier expansion for the first (r — 2)-strings and the unbiased
Fourier expansion for the others. This approach introduces additional complications since
the p-biased Fourier characters are non-linear operators over IFo and hence the arguments
from the p = 1/2 setting don’t apply as is. Nevertheless, using the properties of the Fourier
characters we can still establish the following analogue of (1).

Pr[ Test Accepts | < = +

| —
N —

1=2p)" 2427 3 N f(@)f(8)2(1 — )
B

#0p aCp

where {fp(a)}a and {f(ﬁ)}lg are the Fourier coefficients of f with respect to the p-biased
and unbiased Fourier expansion respectively. Establishing the above involves the most of the
work in the soundness analysis and requires a careful application of properties of the p-biased
Fourier characters. Note that the above immediately implies the soundness guarantee of
the test: if the test passes with probability bounded away from (1 + (1 — 2p)"~2), the
summation term of the above equation is strictly positive, which with some additional work
can be used to show that f has a low degree term of significant magnitude, thus implying
non-trivial correlation with a non-trivial low degree Fourier character.
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4 (1 — e ?)-approximation for all p

As observed earlier in Section 2, the key to doing better than the random guessing algorithm
lies in carefully identifying the zero set of the assignment — in particular, we use the fact
that the zero set of the optimal assignment must hit a large fraction of hyperedges. Formally
we observe the following. Let ¢([n], E) be a Hom-r-Lin, instance whose optimal value is
«. Then we claim that there exists a set of size (1 — p)n which hits at least a-fraction
of hyperedges (constraints) in ¢. This is due to the observation that since r is odd, the
all-ones string is not a satisfying assignment to the Hom-r-Lin, predicate, and hence if an
assignment satisfies a constraint e € E, then at least one of the variables in e must be set to
0. Furthermore, the problem of hitting the largest number of hyperedges with a cardinality
constraint is a coverage type problem, which readily admits a linear programming based
(1 — 1/e)-approximation algorithm.

The above observations immediately suggests the following approach which leads to a
constant factor but sub-optimal approximation guarantee. (i) Find the set S of size (1 — p)n
which is a (1 —1/e)-approximation to the coverage problem. (ii) Set all variables in V'\ S to 1
and all variables variables in S uniformly. This results in a (1 — (1 — p)/2)-weight assignment
which satisfies (1 —1/e) - Opt(t)-fraction of constraints”. Our actual algorithm uses a slight
modification of the above approach, and is based on the observation that simply using a
single hitting set of size (1 — p)n to round off the final assignment is wasteful, since that only
sets (1 — p)/2-fraction of variables to 0, where as the final solution allows for (1 — p)-fraction
of variables to be set to 0. Instead, our algorithm actually first independently rounds off two
hitting sets of size (1 — p)n (from the same fractional solution), and then uses the union of
these two sets to construct an assignment of weight p. We outline the steps of our algorithm
below.

Solve the following linear programming relaxation for finding a set which hits maximum
fraction of hyperedges in .

Maximize E Te

ecel
Subject to ZZZ >z, Vee FE
i€e
Z 2 <2(1—p)n
i€V
0< 2,2, <1 Vee E,1 € V.

Independently round off two sets Sy, S2 of size & (1 — p)n by independent rounding using
{Zi}iEV .

Set all variables in [n] \ (S1 U S2) to 1 and every variable in S; U Sz is set to {0,1}
uniformly.

We give a brief sketch of the correctness of the above algorithm. Firstly, using a slight
modification of the standard analysis of LP rounding for coverage type problems (for e.g.,
see Section 16.3 [31]), we can show that S; U Sy will hit at least (1 — e~2) - Opt(¢))-fraction
of hyperedges — the negative exponent of e in the approximation factor is 2 instead of 1 due
to the fact that we are using the union of two independently rounded sets to hit hyperedges.

7 Here Opt(t)) denotes the optimal number of constraints that can be satisfied in 3.
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Furthermore, we observe that any constraint hit by S; U .Sy is going to be satisfied with
probability 1/2 under the rounding, and hence the expected fraction of constraints satisfied
by the assignment returned is %(1 —e72) - Opt(z)). Finally, observe that using the constraint
> ;% = (1 —p)n, we have E[|S;|] = E[|S2]] = (1 — p)n and hence using Chernoff bound,
we can argue that w.h.p. we have |S; U S3| < 2(1 — p)n, and the weight of the assignment

returned by the algorithm will be at least p(1 — o(1))n with high probability..

1 — .
5 (1 — e ?)-hardness assuming UGC

As is standard, our UGC based matching hardness from Theorem 3 is again a dictatorship
test based reduction. However, unlike the reduction for Theorem 2, here our test isn’t a
generalization of Hastad’s 3-query test and instead uses the existence of pairwise independent
distributions with certain biases that are supported on the set of accepting strings of the
Hom-r-Lin predicate. Formally, we show the following.

» Lemma 6 (Informal). For every large odd r € N, there exists a pairwise independent
permutation invariant distribution supported on the set of accepting strings of Hom-r-Lin pre-
dictate, such that marginally each bit is (1 —1/(r — 1))-biased.

As in [5], the above distribution can be immediately used to construct a dictatorship test,
as described in Figure 3.

Input. Long code f : {0,1}* — {+£1} satisfying Ex~{0,1}g [f(z)] = 1 — 2p where
p:=1-—2/r.

Test Let y be the distribution from Lemma 6.

1. Sample row vectors z(V, ..., z(*) ~ p independently.

2. Sample (1 — n)-correlated copies o, i for every i € [r].

3. Accept if and only if

Il s =1

i€[r]

Figure 3 UGC Test.

We now briefly summarize the completeness and soundness guarantees of the test. For the
completeness direction, observe that if f = x, is a dictator function, then Ex~{0,1};§ [f(x)] =
1 —2pi.e., f is feasible for the test. Furthermore, with probability at least 1 — rn we have

IT 7 = [ xea) = [ @s0) = 1.

i€[r] i€[r] i€[r]

where in the last step we used the fact that z(©) = (74(€))iep is always an accepting string
for Hom-r-Lin due to our choice of p from Lemma 6. On the other hand, for the soundness
direction, suppose f : {0,1}* — {£1} is a long code satisfying the weight constraint having
no influential coordinates®. Then as a first step, we again proceed by arithmetizing the
probability of the test accepting as

8 In the context of this dictatorship test, we use a function having no influential coordinates as the
notion of being non-correlated with low-degree terms — this is quite standard in Unique Games based
reductions [24].
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1 1
Pr[ Test Accepts | = 3t iEwN,L@k H f(s)
1€[r]

Now note that the distribution of (z;);e[,] is pairwise independent and hence its covariance
structure matches that of the fully independent p-biased distribution {0, 1}§®T i.e, the
distribution where z1, ..., 2z, are independent p-biased k-length strings. This along with
the fact that f has no influential coordinates allows us to pass on from p to be the fully
independent p-biased distribution using the Invariance principle [27] i.e.,

1 1 1 1
3t §Ez~u®k H flaz) | =~ 3t §Ez~({o,1};)®k H f(x)
i€[r] i€[r]
Finally, using the fact that the expected average weight of f is 1 — 2p and using the
independence of z}’s in the new distribution we have

1 1 1

1 o1 2
5 T 5Ean(oypen ‘g[]f(a:;) =5ty (l-20-2/n)) = 5(1-e?),

which gives us the desired soundness. Our final reduction composes the above test with
UNIQUEGAMES as the outer verifier. While the completeness of the reduction follows as
is, additional care has to taken in establishing the soundness of the full reduction owing
to the following issue. In the setting of the full reduction from UNIQUEGAMES instance
G(Vg, Eg, k], {Tc}cecr), the set of variables is defined by a collection of long codes {f, }vev,
satisfying the global bias constraint E,E, f,(x) = 1 — 2p. Now, by combining standard
techniques for analyzing UNIQUEGAMES based reductions with the soundness analysis of the
test from above, we can show that for NO instances, the soundness of the reduction can be
expressed as:

% + %EUNV [(1 - 2pu)r}
where py = By ng (0)Ernqo,1)5 [fo(2)] is the local average weight of long codes around v. As
before, if we could show that p, ~ p for most choices of v € Vg, then we would be done.
However, unlike in the setting of Theorem 2, the outer UNIQUEGAMES instance cannot have
strong mixing properties?, and hence here we cannot hope to show that p, ~ v for most
choices of v. Instead, by combining the fact that r is odd with a careful argument we can
show that the mapping p, +— (1 — 2p,)" 2 is concave for most points of the distribution over
Dy, and hence using Jensen’s inequality, we can push the expectation operator inside to show
that

1

1
5+ 5Eomy [(1-2p.)] <

; 2By )+ 0r(1) = L(1 - ) + 0, (1),

1

2 2 2

where the o,(1)-additive factor is due to the fact that the function is concave in all but
or(1)-mass of the distribution.

9 In fact, even mildly expanding UNIQUEGAMES instances are known to admit polynomial time al-
gorithms [6]
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