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Abstract
This paper studies the problem of maximizing a monotone submodular function under an unknown
knapsack constraint. A solution to this problem is a policy that decides which item to pack next
based on the past packing history. The robustness factor of a policy is the worst case ratio of
the solution obtained by following the policy and an optimal solution that knows the knapsack
capacity. We develop an algorithm with a robustness factor that is decreasing in the curvature c

of the submodular function. For the extreme cases c = 0 corresponding to a modular objective, it
matches a previously known and best possible robustness factor of 1/2. For the other extreme case
of c = 1 it yields a robustness factor of ≈ 0.35 improving over the best previously known robustness
factor of ≈ 0.06.
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1 Introduction

This paper is concerned with the problem

maximize
{

f(S)

∣∣∣∣∣ S ⊆ N and
∑
i∈S

s(i) ≤ C

}
(1)

of maximizing a submodular, monotone, and normalized function f : 2N → R≥0 under a
knapsack constraint, where N is a finite set of items, s(i) ∈ R>0 is the size of item i ∈ N ,
and C ∈ R>0 is a knapsack capacity. This optimization problem is an important abstraction
of many problems that appear in various applications, such as facility location (Cornuéjols et
al. [4]), sensor placement (Krause and Guestrin [12], Krause et al. [13]), marketing in social
networks (Kempe et al. [10]), and maximum entropy sampling (Lee [14]).

For the special case of a cardinality constraint where s(i) = 1 for all i ∈ N , a straightfor-
ward greedy algorithm by Nemhauser et al. [17] computes a solution with an approximation
guarantee of 1 − 1/e and this ratio is best possible for any polynomial algorithm unless
P = NP (Feige [7]). For the case of a general knapsack constraint, combining the greedy
algorithm with a partial enumeration of all subsolutions with at most three items yields the
same approximation guarantee (Sviridenko [19]).
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While these results are tight, the algorithms often perform much better than their
theoretical guarantees. In order to explain and quantify this phenomenon, Conforti and
Cornuéjols [3] introduce the concept of the curvature of a submodular function. Recall that
a function f : 2N → R≥0 is submodular if the marginal increase f(A ∪ {u}) − f(A) of an
element u ∈ N \A is non-increasing as A increases. The curvature c ∈ [0, 1] measures how
much this marginal increase of an item u varies when varying A and is defined as

c = 1−min
j∈N

f(N)− f(N \ {j})
f({j}) ,

where we further used that f is normalized, i.e., f(∅) = 0. It is easy to see that c = 0 if and
only if the function is modular (i.e., linear). The other extreme case c = 1 is, e.g., attained
when f is the rank function of a matroid. Conforti and Cornuéjols [3] show that the greedy
algorithm for the cardinality constraint case has an improved approximation guarantee of
(1− e−c)/c. A more sophisticated algorithm for the same problem by Sviridenko et al. [20]
achieves an even better approximation guarantee of 1− c/e− ε for any ε > 0.

In all of the results above it is assumed that all data of the problem (1) is given completely.
In this paper, we consider a variant of the problem where the set of items N , their sizes
s(i) ∈ R>0, and the function f : 2N → R≥0 are known, but the knapsack capacity C ∈ R>0
is unknown. In this context, a solution to the problem is a policy that decides which item
to pack next, based on the previous packing history. More formally, a policy is a binary
decision tree where nodes correspond to items with the property that no item appears more
than once on a path from the root to a leaf. The item at the root of the tree is the item
that is attempted to be packed first. If it fits, it is irrevocably included in the solution, the
(unknown) capacity is reduced by the size of the item, and the solution proceeds with the
left subtree of the decision tree. If the item does not fit, it is discarded, the (unknown)
capacity stays the same, and the solution proceeds with the right subtree. This process
stops after a leaf is reached. The assumption that the policy can resume packing smaller
items after a larger item does not fit is suitable when the knapsack capacity is interpreted as
a monetary budget. Generally speaking, such packing policies are desirable when packing
problems of this kind have to be solved repeatedly for varying knapsack capacities. For
illustration, consider the marketing problem in social networks. By analyzing the social
network, a packing policy can be constructed that can then be used in order to run marketing
campaigns for all possible budgets, without the need to rerun any optimization. In a similar
vein, consider the problem of maximum entropy sampling. The Shannon entropy of a set of
(dependent) random variables is a submodular function of the (index set) of the variables.
Suppose that observing the realization of a random variable comes at a cost (for market
research, for evaluating the data, etc.). With our algorithm, one can compute a policy that
for all budgets allows to retrieve close to optimal information without any need to rerun the
optimization for different budgets.

In the examples above, we clearly want to obtain solutions that are good for any possible
capacity. We evaluate the quality of a policy in terms of its robustness factor. Fix an
instance of (1), and a corresponding policy Π. For a capacity C ∈ R>0, let Π(C) be the
set of items packed by the policy when the knapsack capacity is C, and let Opt(C) be
the items included in an optimal solution for capacity C. The robustness factor is defined
as α := infC f(Π(C))/f(Opt(C)). A policy with robustness factor of α ∈ [0, 1] is called
α-optimal.
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Figure 1 Robustness factors α as a function of the curvature c achieved by this and previous
work.

1.1 Our Results and Techniques
For the case that f is modular (corresponding to the case that c = 0), Disser et al. [5] show
that every instance admits a 1/2-optimal policy, and that the factor of 1/2 is best possible.
Kawase et al. [9] consider the fully submodular case corresponding to the case c = 1. They
provide a deterministic policy with robustness factor 2(1− 1/e)/21 ≈ 0.06 and a randomized
policy with robustness factor of (1− 1/e)/2 ≈ 0.32.

We provide a deterministic polynomial algorithm that constructs a deterministic policy
Π with a robustness factor of

α = 1− x

2− (2− c)x (2)

where x is the unique root in [0, 1] of the equation 1
c

(
1− e−cz

)
= 1−z

2−(2−c)z .
For the most general case of a submodular function with curvature c = 1, this yields a

robustness factor of ≈ 0.35 which improves over the factor of ≈ 0.06 by Kawase et al.; for
smaller values of c < 1 the robustness factor increases and retaines the optimal factor of
α = 1/2 in the modular case when c = 0. For an illustration; see Figure 1.

A central technique for solving submodular maximization problems with a known or
unknown knapsack capacity are greedy algorithms, and this work is no exception. Disser
et al. [5] compare the solution obtained by their policy with a greedy algorithm called
MGreedy that either takes the greedy sequence or the first item that does not fit the
knapsack anymore. As discussed by Kawase et al. [9] this approach seems difficult to apply
to submodular functions because the greedy sequence is different for different sizes of the
knapsack due to the substitute effects among the items for the objective. They instead single
out valuable items that provide a significant ratio of the optimum solution. This approach,
however, comes at the expense of a much lower robustness factor.

We circumvent this issue by analyzing a different kind of greedy algorithm that we call
AGreedy and that seems to be more compatible with robust policies. We first analyze this
algorithm for the case of a known knapsack capacity in Section 3 and show that it provides
an approximation guarantee as in (2). As a byproduct of our analysis, we further obtain that
the MGreedy algorithm also has the approximation guarantee as in (2). This generalizes
a result of Wolsey [22] who analyzed this algorithm only for the general submodular case
where c = 1. In Section 4, we then devise a robust policy that achieves a robustness ratio
that is at least as good as the approximation guarantee of AGreedy.

APPROX/RANDOM 2022
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1.2 Further Related Work

The problem of maximizing a submodular function under different constraints has a long his-
tory in the optimization literature. Nemhauser et al. [18] consider the problem of maximizing
a monotonic submodular function under a cardinality constraint and show that the greedy
algorithm that iteratively adds an item that maximizes the increase of the objective function
achieves an approximation guarantee of (1− 1/e) ≈ 0.63. Nemhauser and Wolsey [17] prove
that this ratio is best possible for algorithms that have only access to f via a value oracle
that can only be queried a polynomial number of times. For the special case that f is given
explicitly and corresponds to a maximum coverage function, there is no better approximation
possible in polynomial time, unless P = NP, as shown by Feige [7]. Wolsey [22] considers the
more general problem of maximizing a submodular function under a knapsack constraint
and achieves an approximation guarantee of 1− e−x ≈ 0.35 where x is the unique root of the
equation ex = 2− x. Sviridenko [19] shows that a combination of the greedy algorithm with
a partial enumeration scheme achieves an approximation guarantee of 1− 1/e. Another way
to generalize the cardinality constrained case is to allow for arbitrary matroid constraints.
For this case, the greedy algorithm yields an approximation guarantee of 1/2, as shown by
Fisher et al. [8]. Calinescu et al. [2] achieve a 1− 1/e approximation by solving a fractional
relaxation of the problem and combining it with a suitable rounding technique.

Conforti and Cornuéjols [3] introduce the curvature c as a measure for the non-linearity of
a (submodular) function and show that the greedy algorithm has an approximation guarantee
of (1− e−c)/c for the case of a cardinality constraint and 1/(c + 1) for the case of a matroid
constraint. Vondrák [21] shows that the continuous greedy algorithm yields an approximation
guarantee of (1 − e−c)/c for the case of a matroid constraint, and proves that no better
approximation is possible in the value oracle model with a polynomial number of queries.
Sviridenko et al. [20] give an algorithm with approximation guarantee of 1 − c/e − O(ε)
for the problem with a matroid constraint. Yoshida [23] obtains the same approximation
guarantee for the problem under a knapsack constraint. The algorithm relies on a continuous
version of the greedy algorithm which seems to be incompatible with an unknown knapsack
constraint since many items will be fractional during the course of the algorithm for smaller
knapsack constraints. Also the distinction between small and large items which is elementary
in the algorithm cannot be employed when the capacity is not known.

Packing problems with an unknown knapsack are studied by Megow and Mestre [15].
They consider the modular case and assume that the policy stops when an item does not fit
the knapsack. In this setting, no constant robustness factor is achievable on all instances
and Megow and Mestre provide a polynomial time approximation scheme (PTAS) for the
computation of an optimal policy. Navarra and Pinotti [16] show how to construct a policy
with robustness factor 1/2 for instances that have the property that every item fits into the
empty knapsack. Disser et al. [6] consider the optimization of a fractionally subadditive
objective with the additional property that every singleton set has a value of 1, and give a
policy with robustness factor of ≈ 0.30. For the case of an unknown cardinality constraint,
there is no difference between policies that continue or stop packing after an item does
not fit. Bernstein et al. [1] introduce a property on the objective function that they term
accountability and that is more general than submodularity. They show that the optimal
robustness factor for maximization of an accountable objective under an unknown cardinality
constraint is between 1/(1 + ϕ) ≈ 0.38 where ϕ is the golden ratio and 0.46.
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2 Preliminaries

2.1 Submodular Functions
Let N be a finite set. A function f : 2N → R≥0 is called monotone if f(A) ≤ f(B) for
every A, B ∈ 2N with A ⊆ B, is called normalized if f(∅) = 0, and is called submodular if
f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) for all A, B ∈ 2N . For our purposes, it is without loss
of generality to assume that f({j}) > 0 for all j ∈ N since an element j with f({j}) = f(∅),
by submodularity, has no influence on the value of f and, thus, can be removed from (1). It
is well-known that a function f is submodular if and only if one of the following statements
is satisfied:

f(A ∪ {u})− f(A) ≥ f(B ∪ {u})− f(B) for all A ⊆ B ⊆ N , u ∈ N \B,

f(A ∪ {u1}) + f(A ∪ {u2}) ≥ f(A ∪ {u1, u2}) + f(A)
for all A ⊂ N , u1, u2 ∈ N \A, u1 ̸= u2.

If is straightforward to verify that a submodular and monotone function satisfies the following
inequality, see, e.g., Nemhauser et al. [18] for a reference

f(B) ≤ f(A) +
∑

u∈B\A

f(A ∪ {u})− f(A) for all A ⊆ B ⊆ N. (3)

2.2 Curvature
The curvature of a normalized, monotone and submodular function f : 2N → R≥0 is defined
as

c = 1−min
j∈N

f(N)− f(N \ {j})
f({j}) .

The following lemma summarizes a couple of inequalities that are valid for submodular
functions with a given curvature that are easy to show yet useful for the remainder of the
paper. For a proof, see Appendix A.

▶ Lemma 1. For a normalized, monotonic, and submodular function f : 2N → R≥0 with
curvature c ∈ [0, 1], the following inequalities are satisfied:

(i) (1− c)f({j}) ≤ f(A ∪ {j})− f(A) for all A ⊂ N and all j ∈ N \A;
(ii) f(A ∪B) ≥ f(A) + (1− c)

∑
i∈B f({i}) for all A, B ⊂ N with A ∩B = ∅.

2.3 Submodular Maximization under a Knapsack Constraint
An instance of the submodular maximization problem under a known knapsack constraint is
given by a set of n items N = {i1, i2, . . . , in} where each item i ∈ N has a size s(i) ∈ R>0.
We further have given a monotone, normalized and submodular function f : 2N → R≥0 that
assigns a value f(A) to every subset A ⊆ N of items, and a capacity C ∈ R>0. For a subset
A ⊆ N , we write s(A) :=

∑
i∈A s(i). A solution to the problem is a set of items A ⊆ N . A

solution A is called feasible if s(A) ≤ C, and called optimal if f(A) ≥ f(B) for every feasible
solution B.

An instance of the submodular maximization problem under an unknown knapsack
constraint is as above except that we do not know the capacity C ∈ R>0, i.e., we are again
given a set of items N , their sizes s(i), i ∈ N and the submodular function f . A solution to
this problem is a policy Π that governs the order in which items are added to the solution.

APPROX/RANDOM 2022
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(a) Modified Greedy Algorithm MGreedy.

1: G0 ← ∅; j ← 1
2: U ← {i ∈ N | s(i) ≤ C}
3: while U ̸= ∅ do
4: ij ← arg maxi∈U

{
f(Gj−1∪{i})−f(Gj−1)

s(i)

}
5: if s(Gj−1 ∪ {ij}) ≤ C then
6: Gj ← Gj−1 ∪ {ij}
7: U ← U \ {ij}
8: j ← j + 1
9: else

10: break
11: k ← j − 1
12: if U = ∅ then
13: return Gk

14: else
15: if f(Gk) ≥ f({ik+1}) then
16: return Gk

17: else
18: return {ik+1}

(b) Alternative Greedy Algorithm AGreedy.

1: G0 ← ∅; j ← 1
2: U ← {i ∈ N | s(i) ≤ C}
3: while U ̸= ∅ do
4: ij ← arg maxi∈U

{
f(Gj−1∪{i})−f(Gj−1)

s(i)

}
5: if s(Gj−1 ∪ {ij}) ≤ C then
6: Gj ← Gj−1 ∪ {ij}
7: U ← U \ {ij}
8: j ← j + 1
9: else

10: break
11: k ← j − 1
12: if U = ∅ then
13: return Gk

14: else
15: if f(Gk) ≥ f(Gk∪{ik+1})−f(Gk) then
16: return Gk

17: else
18: return {ik+1}

Figure 2 Greedy algorithms for maximizing a submodular function f over a knapsack constraint.

3 Submodular Knapsack Problem with Known Capacity

In this section, we analyze the approximation guarantee for two natural greedy algorithms
that, for the sake, of a better distinction, we call modified greedy algorithm (MGreedy) and
alternative greedy algorithm (AGreedy). The modified greedy algorithm was proposed and
analyzed by Wolsey [22] where he shows that it has an approximation ratio of 1− e−x ≈ 0.35
where x is the unique root of the equation ex = 2− x. To the best of our knowledge, there is
no better analysis of this algorithm for submodular functions with bounded curvature. The
alternative greedy algorithm is a slight variation of this algorithm that we need in order to
derive policies for the optimization problem with unknown knapsack constraints in Section 4.

Both algorithms first discard all items i that do not fit into an empty knapsack, i.e.,
s(i) > C. Then, the algorithms start in iteration 0 with an empty solution G0 = ∅. In every
iteration j = 1, 2, . . . , both algorithms choose an item

ij ∈ arg max
{

f(Gj−1 ∪ {i})− f(Gj−1)
s(i)

∣∣∣∣ i ∈ N \Gj−1

}
that is not yet contained in the solution Gj−1 and maximizes the ratio of the increment
of the objective function and the size of the item. If item ij still fits the knapsack, i.e.,
s(Gj−1 ∪ {ij}) ≤ C, then the item is added to the solution. Otherwise, the algorithm stops.
Let k be the last index such that item ik still fits into the knapsack.

Then, algorithm MGreedy either returns the better of the solutions Gk and {ik+1}, i.e.,
it either returns the maximum prefix of the greedy sequence that still fits into the knapsack,
or the first item that did not fit into the knapsack anymore. The alternative greedy also
either returns Gk or {ik+1} but the rule when to return one of the solutions slightly differs.
The item {ik+1} is only returned if the increment f(Gk ∪ {ik+1})− f(Gk)} of adding it to
Gk is larger than f(Gk). In all other cases, Gk is returned.
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Since MGreedy always returns the better of the two solutions Gk and {ik+1} while
AGreedy may also return Gk even though f(Gk) < f({ik+1}), it is clear that the solution
returned by MGreedy is always at least as good as the one returned by AGreedy. Despite
this fact, we are still interested in analyzing AGreedy for two reasons. First, it turns out
that AGreedy is better suited in order to design robust packing policies for the problem
with an unknown knapsack capacity. Second, it will turn out, that in the worst case, the
approximation guarantees that we obtain for MGreedy and AGreedy are actually the
same.

In the following, we fix an instance of the submodular maximization problem under a
knapsack constraint with known capacity. Furthermore, we assume that the items are ordered
N = {i1, i2, . . . , in} in the order as they would be considered by the greedy algorithms. We
also set sj = s(ij) for all j ∈ {1, . . . , n}. We further let k be the maximal prefix of this
ordering that still fits into the knapsack, i.e., k = max{j ∈ {1, . . . , n} |

∑j
i=1 s(i) ≤ C}.

Note that we order the items in this order beyond the (k + 1)-st item when the algorithms
stop. We further set Gj =

⋃
l=1,...,j{il} and δj = f(Gj)− f(Gj−1) for all j ∈ {1, . . . , n}. We

let MG denote the set of items returned by MGreedy, and let AG denote the set of items
returned by AGreedy. Let Opt denote the set of items in an optimal solution. Additionally,
let χj be the indicator for ij ∈ Opt, i.e., χj = 1 if ij ∈ Opt, and χj = 0, otherwise. We
further set Sj = s(Opt ∩Gj).

Summarizing the above discussion, the following result is immediate.

▶ Proposition 2. For every instance, f(MG) ≥ f(AG).

We first provide a lemma that bounds the increase of the value of the greedy solution
from below in two different ways. The proofs use standard submodularity arguments as well
as the property of the greedy sequence; for the proof see Appendix B.

▶ Lemma 3. For all j ∈ {1, . . . , k + 1}, we have

(i) δj ≥
csj

C

(
f(Opt)−

j−1∑
m=1

δm

)
+ (1− c)sj

C − Sj−1

(
f(Opt)−

j−1∑
m=1

χmδm

)
,

(ii) δj ≥
sj

C − (1− c)s(Gj−1)

(
f(Opt)−

j−1∑
m=1

δm

)
.

The following theorem bounds the value of every prefix of the greedy sequence f(Gj) in
terms of f(Opt). For the proof, we use inductive arguments together with Lemma 3; see
Appendix C.

▶ Theorem 4. For all j ∈ {1, . . . , k + 1} we have f(Gj) ≥ 1
c

(
1− exp

(
−c

s(Gj)
C

))
f(Opt).

For j = k + 1 we can derive from Theorem 4 that

f(AG) ≥ 1
2f(Gk+1) ≥ 1

2c

(
1− e−c

)
f(Opt),

but we can improve the robustness factor with the ideas Wolsey [22] uses for MGreedy in
the general submodular case. Specifically, we obtain the following approximation guarantee.
The main ideas of the proof are similar to that in Wolsey [22]; see Appendix D for the proof.

▶ Theorem 5. Let c ∈ (0, 1]. For AGreedy we have

f(AG) ≥ 1− x

2− (2− c)xf(Opt),

where x is the unique root of 1
c

(
1− e−cz

)
= 1−z

2−(2−c)z for z ∈ [0, 1].

APPROX/RANDOM 2022
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The result of Theorem 5 coincides with the known robustness factors of MGreedy for
the cases c = 0 and c = 1. For the limit c→ 0 we have

lim
c→0

1
c

(
1− e−cz

)
= z,

and the equation simplifies to z = 1/2 which is the known robustness factor for the modular
case; see, e.g., the textbook by Korte and Vygen [11]. For the other extreme case of c = 1
the equation simplifies to 1− e−z = 1−z

2−z , which was shown by Wolsey [22].

4 Submodular Knapsack Problem with Unknown Capacity

In this section we introduce an algorithm that generates a policy which is always at least as
good as AGreedy even though it does not know the capacity of the knapsack. For that
purpose we introduce indispensable items in the first part of this section. They are defined
similar to swap items defined by Disser et al. [5], which they used to achieve their 1/2-optimal
policy for the linear case.

As discussed by Kawase et al. [9], one major challenge when going from the case of a
linear objective function to a submodular objective function is that the greedy order of items
depends on the capacity of the knapsack. When an item is packed into the knapsack then
other items that have a large overlap in terms of the objective with the packed item decrease
in density. On the other hand, for another capacity where the first item is not packed since
it does not fit they remain attractive. This issue makes it difficult to compare the outcome
of a packing policy that does not know the capacity with the outcome of the MGreedy
algorithm as it was done in Disser et al. [5].

Kawase et al. [9] overcome this issue by introducing the concept of the single-valuable
items i with the property f({i}) ≥ 2f(Opt(s(i)/2)), i.e., Kawase et al. do not compare
items with the greedy solution at all and instead compare the value of an item directly with
Opt. In their policy, the most valuable single-valuable item that fits in the knapsack is
inserted first. Afterwards, they try to insert the rest of the items in their greedy order. This
deterministic policy achieves a robustness factor of 2(1− 1/e)/21 ≈ 0.06.

We use another idea to overcome the capacity-dependency of the greedy order. We define
the concept of an indispensable item. These are items that the alternative greedy algorithm
AGreedy returns instead of the greedy solution. It turns out that the performance of this
algorithm can be also obtained by a policy that does not know the capacity.

4.1 Indispensable Items
▶ Definition 6. An item i ∈ N is called indispensable if there exists a capacity C ∈ R>0 for
which AGreedy returns {i} = {ik+1} instead of the greedy solution Gk.

We say that an item i ∈ N is indispensable for capacity C ∈ R≥s(i) if AGreedy returns
{i} = {ik+1} instead of the greedy solution Gk for capacity C.

For ease of exposition, we assume in the following that there are no ties when an algorithm
compares items by value, differences in value, or density. In practice this could be achieved
by small perturbations of the values, or by using a lexicographic order that breaks ties in a
systematic way. However, to avoid heavy notation, we assume that ties do not exist.

For a capacity C ∈ R>0, let GC = (i1, i2, . . . inC
) be the greedy order of all items in

NC = {i ∈ N | s(i) ≤ C} with nC = |NC |. The following lemma contains important
properties of indispensable items that are key to our definition of robust policies.
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▶ Lemma 7. Let item i ∈ N be an indispensable item for capacity C ∈ R≥s(i) and let GC =
(i1, i2, . . . inC

) be the greedy order for the given capacity with i = ik+1 for k ∈ {0, . . . , nC − 1}.
Then the following properties hold:

(i) k ≥ 1 and sk+1 >
∑k

j=1 sj.
(ii) i is and only is an indispensable item for capacities in the interval [C1, C2[, with

C1 = sk+1,

C2 = min
{

s({i1, . . . , ik+1}),

min
{

C̃ > C | the first k + 1 items in GC̃ are not

the first k + 1 items of the greedy-order GC1

}}
.

(iii) Let C̃ be the smallest capacity larger than sk+1, such that the first k + 1 items in GC̃

are not the first k + 1 items in Gsk+1 . Then the first item in GC̃ that is larger than
sk+1 is either the first item in GC̃ or an indispensable item for capacity C̃.

Proof. In the following we denote the indispensable item i by ik+1.
We start to show (i). Obviously, i1 cannot be an indispensable item for capacity C by

definition. Therefore, 1 ≤ k ≤ nC − 1. Since ik+1 is an indispensable item, we have for all
j ∈ {1, 2, . . . , k} that

f(Gk) < f(Gk ∪ {ik+1})− f(Gk) ≤ f(Gj ∪ {ik+1})− f(Gj). (4)

Additionally, we know for every greedy order that for all j ∈ {1, 2, . . . , k} it holds that

f(Gj−1 ∪ {ij})− f(Gj−1)
sj

≥ f(Gj−1 ∪ {ik+1})− f(Gj−1)
sk+1

. (5)

Furthermore, we have

f(Gk) =
k∑

j=1
f(Gj−1 ∪ {ij})− f(Gj−1) ≥

k∑
j=1

sj

sk+1
(f(Gj−1 ∪ {ik+1})− f(Gj−1))

where the first sum is telescopic and then we used inequality (5). We obtain

sk+1 ≥
k∑

j=1
sj

f(Gj−1 ∪ {ik+1})− f(Gj−1)
f(Gk) >

k∑
j=1

sj

by inequality (4).
We next show (ii). Let C be a capacity for which ik+1 is an indispensable item. Obviously,

C ≥ C1 = sk+1. By (i) we know that the size of every item ij , j ∈ {1, . . . , k} is smaller
than the size of ik+1. Therefore, we have that the first k items of the greedy order GC are
identical to the first k items of the greedy order GĈ for all capacities Ĉ ∈ [C1, C] and thus,
ik+1 is an indispensable item for all those capacities.

For all capacities Ĉ > C we have that ik+1 is an indispensable item until there is a
capacity for which the first k + 1 items of the greedy order change or ik+1 does no longer
exceed the capacity, which is the case for s(i1, . . . , ik+1), if the greedy order does not change.
Therefore, ik+1 is an indispensable item for all capacities Ĉ ∈ [C, C2[.

Assume that ik+1 is an indispensable item for a capacity higher or equal to C2 and
therefore, it is the first item in the greedy order that exceeds the capacity. Then we have
that the first k + 1 items of the greedy order have to have changed in comparison to GC .
But then, there is an item in front of ik+1 in the greedy order, which is larger than ik+1.
That contradicts property (i) for indispensable items.
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Algorithm 1 Determine indispensable items.

1: procedure isIndispensable(N, i⋆)
2: G0 ← ∅, j ← 1
3: U ← {i ∈ N | s(i) ≤ s(i⋆)}
4: while s(Gj−1) ≤ s(i⋆) do
5: ij ← arg maxi∈U

{
f(Gj−1∪{i})−f(Gj−1)

s(i)

}
6: if ij = i⋆ then
7: if j ≥ 2 and f(Gj−1 ∪ {ij})− f(Gj−1) > f(Gj−1) then
8: return (True, Gj−1)
9: else

10: return (False, ∅)
11: else
12: Gj ← Gj−1 ∪ {ij}
13: U ← U \ {ij}
14: j ← j + 1
15: return (False, ∅)

Finally, we show (iii). Let GC̃ be the greedy order for capacity C̃ and let G̃j denote the
first j items in GC̃ . Further let ı̃k̃+1 be the first item in GC̃ that has a larger size than ik+1.
It holds k̃ ≤ k, Gj = G̃j for all j ∈ {1, . . . , k̃} and s(̃ık̃+1) = C̃. We proceed to prove that
ı̃k̃+1 is an indispensable item for C̃, if k̃ ≥ 1. Since s(G̃k̃) = s(Gk̃) < sk+1 < s(̃ık̃+1) we have
that ı̃k̃ is the first item in the greedy order GC̃ that exceeds the capacity. Additionally, we
have

f(G̃k̃ ∪ {ı̃k̃+1})− f(G̃k̃) > f(G̃k̃ ∪ {ik+1})− f(G̃k̃)
≥ f(Gk ∪ {ik+1}) − f(Gk) > f(Gk) ≥ f(G̃k̃).

The first inequality holds, since ı̃k̃+1 is in front of ik+1 in the greedy order GC̃ and s(̃ık̃+1) >

s(ik+1). Second and last inequality follow from submodularity and the fact that G̃k̃ = Gk̃ ⊆
Gk. The third inequality holds, because ik+1 is an indispensable item. ◀

With Lemma 7 (ii) we can determine if an item i is an indispensable item by checking
if it is indispensable for the capacity s(i). Such a procedure is given in Algorithm 1.
The algorithm builds the greedy order Gs(i) until the first item exceeds the capacity or
item i is chosen. Only if i is the item that exceeds the capacity and fulfills the condition
f(Gj−1 ∪ {i})− f(Gj−1) > f(Gj−1), the algorithm returns True together with the greedy
items in front of i, which will be helpful later on.

4.2 Robust Policy
The general idea of the adaptive policy is to choose a reasonable start item based on
Lemma 7 (iii). We build a list of those items and then start to build our solution with the
biggest item of the list that fits in the knapsack. Note that AGreedy always returns the
greedy solution for all capacities smaller than the size of the smallest indispensable item,
thus we start the list with the smallest indispensable item and only add larger items to the
list. By Lemma 7 (iii) we have for an indispensable item ik+1, that it is part of the output of
AGreedy until there is a capacity for which there is a larger indispensable item or there is
a new first item in the greedy order for this capacity. Therefore, we add exactly those items
to the list.
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Algorithm 2 List of start items.

1: procedure StartItemList(N)
2: i1, . . . , i|N | ← < items sorted non-decreasingly by size >

3: F ← [ ], j ← 1
4: while j ≤ |N | do
5: U ← {i ∈ N | s(i) ≤ s(ij)}
6: i← arg max

{
f({i})

s(i) | i ∈ U
}

7: (isIndis, G)← isIndispensable(N, i)
8: if isIndis = True then
9: F ← [i] + F

10: else if i = i1 and F ̸= [ ] then
11: F ← [i] + F

12: j ← j + 1
13: return F

We create a list of start items as follows. It starts by ordering the items non-decreasingly
by size. For every item i it is checked if the item is indispensable or if it is the first item
in the greedy order for capacity s(i). Indispensable items are always added to the list and
items, which are first in the greedy order, are only added if there is already an item in the
list. Thus, the smallest indispensable item is the first item added to the list. Note that it
is not possible that two items of the same size are added to the list. Since the algorithm
always adds an item to the start of the list, the size of items in the list is strictly decreasing.
For a formal description; see Algorithm 2.

Finally, Algorithm 3 generates an adaptive policy for the submodular knapsack problem
with unknown capacity. The algorithm consists of three main steps.
Step 1. If possible, insert the largest item from the list of starting items F that fits in the

knapsack. Let this item be ik+1.
Step 2. If ik+1 is an indispensable item, try to insert the first k items of the greedy order

Gs(ik+1).
Step 3. Try to pack all other items in their greedy order.
If AGreedy returns an indispensable item, Step 1 guarantees that this indispensable item is
also in the solution returned by Algorithm 3. For the case, when an indispensable item ik+1
is added to the solution in Step 1, but the capacity is higher or equal to s({i1, . . . , ik+1}),
such that ik+1 is not an indispensable for this capacity, we want to add the items {i1, . . . , ik},
contained in Gk to our solution (Step 2). In Step 3 we complete the solution. We try to add
items to the knapsack in their greedy order. We will show in Theorem 8 that this policy
generated by Algorithm 3 is always as good as AGreedy.

▶ Theorem 8. For a capacity C ∈ R>0 let Π(C) be the policy generated from Algorithm 3
and let AG(C) be the output of AGreedy. Then, we have f(Π(C)) ≥ f(AG(C)) for every
capacity C ∈ R>0.

Proof. Let F be the list of starting items created by Algorithm 2. If there are no indispensable
items in N , then F and Gk are empty in Algorithm 3 and the algorithm tries in Step 3 to
insert all items in their greedy order. Furthermore, AGreedy always returns the greedy
solution in this case. Assume that Algorithm 3 tries to pack an item in the knapsack that is
not part of the greedy solution returned by AGreedy, before the algorithm has packed all
items of the greedy solution. Since this item was not considered by AGreedy, it has to be
larger than the knapsack capacity and thus, cannot be inserted by Algorithm 3. Therefore,
we obtain f(Π(C)) ≥ f(AG(C)) for all capacities C ∈ R>0 in this case.
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Algorithm 3 Robust policy.

1: S ← ∅, G← ∅
2: F ← StartItemList(N)
3: j ← 1
4: while S = ∅ and j ≤ len(F ) do
5: ik+1 ← F [j]
6: if ik+1 fits in the knapsack then
7: (∼, Gk)← isIndispensable(N, ik+1)
8: S = {ik+1}
9: else

10: N ← {i ∈ N | s(i) < s(ik+1)}
11: j ← j + 1
12: for i ∈ Gk do
13: if S ∪ {i} fits in the knapsack then
14: S ← S ∪ {i}
15: N ← N \ {i}
16: while N ̸= ∅ do
17: imax ← arg max{ f(S∪{i})−f(S)

s(i) | i ∈ N}
18: if S ∪ {imax} fits into the knapsack then
19: S ← S ∪ {imax}
20: N ← N \ {imax}
21: else
22: N ← {i ∈ N | s(i) < s(imax)}
23: return S

Now we assume there is at least one indispensable item, implying that F is not empty.
Let f1, . . . , f|F | be the items in F sorted increasingly by size. Consider the partition of
all capacities in the intervals [Ij , Ij+1) for j ∈ {0, . . . , |F |}, with I0 = min{s(i) | i ∈ N},
I|F |+1 = s(N) and Ij = s(fj) for j ∈ {1 . . . , |F |}.

First, we consider all capacities C ∈ [I0, I1). Since, the capacities are smaller than
any item in F , Algorithm 3 inserts no item from F and Gk remains empty. Therefore,
Algorithm 3 again tries to insert all items by their greedy order and AGreedy returns the
greedy solution for all those capacities, because all indispensable items have a larger size.
We have f(Π(C)) ≥ f(AG(C)) by the same argumentation as in the case where F is empty.

Second, we consider all capacities C ∈ [Ij , Ij+1) for an arbitrary j ∈ {1 . . . , |F |}. Note
that Algorithm 3 inserts the item fj from F for all those capacities as the first item. We
distinguish the cases where fj is an indispensable item and where fj is not an indispensable
item. In the following we denote item fj as ik+1.

Case 1: ik+1 is an indispensable item. By Lemma 7 (ii) we have that ik+1 is packed by
AGreedy instead of the greedy solution Gk for all capacities C ∈ [C1, C2). For all capacities
C ∈ [C1, C2) ∩ [Ij , Ij+1) we have f(Π(C)) ≥ f(AG(C)), since Algorithm 3 inserts the same
indispensable item in step 1. Since C1 = Ij , there are only two more cases to distinguish:
C ∈ [C2, Ij+1) if C2 < Ij+1 and C ∈ [Ij+1, C2) if C2 > Ij+1.
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Subcase 1.1: C ∈ [C2, Ij+1) if C2 < Ij+1 Note that we have C2 = s({i1, . . . , ik+1}),
because C2 < s(i1, . . . , ik+1) implies that an item with size C2 changed the greedy order of
the first k + 1 items. Such an item would have been added to F , since it is an indispensable
item or the first item in the greedy order by Lemma 7 (iii), but then C2 = Ij+1.

For all capacities C ∈ [C2, Ij+1) we know by Lemma 7 (iii) that the first k + 1 items in
the greedy order GC are still identical to the first k + 1 items of Gsk+1 . We also know that
there is no indispensable item for any capacity C ∈ [C2, Ij+1). Therefore, AGreedy returns
the greedy solution. After Algorithm 3 packed the indispensable item ik+1, the algorithm
continues in step 2 to insert the first k greedy items of the greedy order Gs(ik+1). We already
discussed that all these items fit in the knapsack, since C ≥ C2 = s({i1, . . . , ik+1}) and that
they are also the first k + 1 items packed by AGreedy.

After the first k + 1 items, AGreedy continues to pack more items greedily until the first
item exceeds the capacity. Algorithm 3 also continues in step 3 to pack more items greedily
and thus we have f(Π(C)) ≥ f(AG(C)) for all capacities C ∈ [C2, Ij+1).

Subcase 1.2: C ∈ [Ij+1, C2) if C2 > Ij+1 We will show that this case cannot occur.
Consider item fj+1 ∈ F with s(fj+1) = Ij+1. It is either an indispensable item for capacity
Ij+1 or the first item in the greedy order GIj+1 .

By Lemma 7 (ii) we know, that fj+1 is not allowed to change the first k + 1 items in the
greedy order Gsk+1 , since then we would have C2 = Ij+1. Thus, fj+1 cannot be the first item
in the greedy order GIj+1 and as an indispensable item for capacity Ij+1 it has to appear
behind the first k+1 items of Gsk+1 . But this also gives a contradiction, since

s(fj+1) >

k+1∑
j=1

sj ≥ C2 > Ij+1 = s(fj+1). (6)

The first inequality follows from Lemma 7 (i) and the second inequality from Lemma 7 (ii).

Case 2: ik+1 is not an indispensable item Then, ik+1 is the first item in the greedy order
Gs(ik+1) and it is the first item in the greedy order GC for every capacity C ∈ [Ij , Ij+1) too,
since a new first item would have been added to F . Additionally, we know that there is no
indispensable item for all capacities C ∈ [Ij , Ij+1), since it also would have been added to F .
Therefore, AGreedy returns the greedy solution for all capacities C ∈ [Ij , Ij+1) and the
first item packed by Algorithm 3 is always the first item of the greedy solution returned by
AGreedy. In step 2 of Algorithm 3 no items are added to the knapsack, because Gk is empty,
if ik+1 is not an indispensable item. Then, Algorithm 3 tries to insert items exactly by their
greedy order in step 3 and this yields f(Π(C)) ≥ f(AG(C)) for all capacities C ∈ [Ij , Ij+1).

Thus, the statement holds for all capacities in the intervals [Ij , Ij+1), j ∈ {0, . . . , |F |}.
For capacities smaller than I0 no item can be packed and for capacities greater than I|F |+1
every item can be packed in the knapsack. This completes the proof. ◀

From Theorem 5 and Theorem 8 we obtain the main result of this paper.

▶ Theorem 9. The policy Π generated by Algorithm 3 has a robustness factor of α = 1−x
2−(2−c)x

where x is the unique root in [0, 1] of the equation 1
c

(
1− e−cz

)
= 1−z

2−(2−c)z .
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A Proof of Lemma 1

Proof. We first show (i). Let A ⊂ N and j ∈ N \A be arbitrary. We calculate

1− c = min
i∈N

f(N)− f(N \ {i})
f({i}) ≤ f(N)− f(N \ {j})

f({j}) ≤ f(A ∪ {j})− f(A)
f({j})

where for the equation, we used the definition of curvature, and for the last equation, we
used submodularity.

To show (ii), we successively apply (i) on the elements in B. ◀

B Proof of Lemma 3

Proof. Using Lemma 1 (ii) with A = Opt and B = Gj−1 \Opt, we obtain

f(Opt) + (1− c)
∑

i∈Gj−1\Opt

f({i})− f(Gj−1) ≤ f(Opt ∪Gj−1)− f(Gj−1). (7)

We proceed to bound the term f(Opt ∪Gj−1)− f(Gj−1) that appears on the right hand
side of (7) via

f(Opt ∪Gj−1)− f(Gj−1) ≤
∑

i∈Opt\Gj−1

f(Gj−1 ∪ {i})− f(Gj−1)

=
∑

i∈Opt\Gj−1

s(i)f(Gj−1 ∪ {i})− f(Gj−1)
s(i)

≤

( ∑
i∈Opt\Gj−1

s(i)
)

f(Gj−1 ∪ {ij})− f(Gj−1)
sj

= s(Opt \Gj−1)f(Gj)− f(Gj−1)
sj

= s(Opt \Gj−1)δj

sj
,
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where we used (3) and the definition of the greedy sequence. To show (i), we bound the term
(1− c)

∑
i∈Gj−1\Opt f({i})− f(Gj−1) on the left hand side of (7) by

(1− c)
∑

i∈Gj−1\Opt

f({i})− f(Gj−1) ≥ (1− c)
j−1∑
m=1

(1− χm)δm − f(Gj−1)

= (1− c)
j−1∑
m=1

(1− χm)δm −
j−1∑
m=1

δm

= −(1− c)
j−1∑
m=1

χmδm − c

j−1∑
m=1

δm,

where we used submodularity for the inequality. Both bounds applied to inequality (7) yield

s(Opt \Gj−1)δj

sj
≥ f(Opt)− (1− c)

j−1∑
m=1

χmδm − c

j−1∑
m=1

δm

= c
(

f(Opt)−
j−1∑
m=1

δm

)
+ (1− c)

(
f(Opt)−

j−1∑
m=1

χmδm

)
.

Multiplication with sj

s(Opt\Gj−1) and applying s(Opt \Gj−1) ≤ C − Sj−1 ≤ C completes the
proof of (i).

To prove (ii), we bound
∑

i∈Gj−1\Opt f({i}) in a different way by

∑
i∈Gj−1\Opt

f({i}) ≥
j−1∑
m=1

(1− χm)δm

=
j−1∑
m=1

(1− χm)sm
δm

sm

≥
( j−1∑

m=1
(1− χm)sm

)δj

sj
= s(Gj−1 \Opt)δj

sj
,

where for the first inequality we used submodularity and for the second inequality we used
a property of the greedy sequence. Applied to inequality (7) together with the first bound
yields

f(Opt)− f(Gj−1) ≤ s(Opt \Gj−1)δj

sj
− (1− c)s(Gj−1 \Opt)δj

sj

=
(

s(Opt \Gj−1)− (1− c)s(Gj−1 \Opt)
)δj

sj

≤
(

s(Opt)− (1− c)s(Gj−1)
)δj

sj

≤
(

C − (1− c)s(Gj−1)
)δj

sj
,

as claimed. ◀
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C Proof of Theorem 4

Proof. Applying the bound of Lemma 3 (i) for all j, we obtain the following lower bound
on Gj .

▷ Claim 10. For all j ∈ {1, . . . , k + 1} and for all l ∈ {0, . . . , j} we have

f(Gj) ≥ f(Opt)−
(

j∏
m=l+1

(
1− csm

C

))(
f(Opt)−

l∑
m=1

δm

)

+ 1− c

c

C

C − Sl

(
1−

j∏
m=l+1

(
1− csm

C

))(
f(Opt)−

l∑
m=1

χmδm

)
. (8)

For a fixed j ∈ {1, . . . , k + 1} we proof the claim by induction over l starting with l = j and
going down by one in the induction step.

For l = j both products in (8) are equal to 1 and the right side simplifies to
∑j

m=1 δm =
f(Gj). For the induction step assume that the statement of the claim holds for l ∈ {1, . . . , j}
and consider the statement for l − 1. To shorten the notation we set

Pt :=
j∏

m=t

(
1− csm

C

)
,

for t = 1, . . . , j + 1. The induction hypothesis is

f(Gj) ≥ f(Opt)− Pl+1

(
f(Opt)−

l∑
m=1

δm

)
+ 1− c

c

C

C − Sl

(
1− Pl+1

)(
f(Opt)−

l∑
m=1

χmδm

)
.

To apply Lemma 3 (i) for j = l, we rearrange δl terms. Those terms read(
Pl+1 − χl

1− c

c

C

C − Sl

(
1− Pl+1

))
δl.

We can transform the factor of δl to see that it is greater or equal to zero. Note that the
factor 1/c vanishes in 1− Pl+1.

Pl+1 − χl
1− c

c

C

C − Sl

(
1− Pl+1

)
= (1− c) + c

(
1− 1

c

(
1− Pl+1

))
− χl(1− c) C

C − Sl

1
c

(
1− Pl+1

)
= c
(

1− 1
c

(
1− Pl+1

))
+ (1− c)

(
1− χl

C

C − Sl

1
c

(
1− Pl+1

))
≥ 0.

Applying

δl ≥
csl

C

(
f(Opt)−

l−1∑
m=1

δm

)
+ (1− c)sl

C − Sl−1

(
f(Opt)−

l−1∑
m=1

χmδm

)
,

yields

f(Gj) ≥ f(Opt)− α
(

f(Opt)−
l−1∑

m=1
δm

)
+ β

(
f(Opt)−

l−1∑
m=1

χmδm

)
,
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with

α = Pl+1 −
csl

C

(
Pl+1 − χl

1− c

c

C

C − Sl

(
1− Pl+1

))
=
(

1− csl

C

)
Pl+1 + χl(1− c) sl

C − Sl

(
1− Pl+1

))
= Pl + χl(1− c) sl

C − Sl

(
1− Pl+1

))
,

and

β = 1− c

c

C

C − Sl

(
1− Pl+1

)
+ (1− c)sl

C − Sl−1

(
Pl+1 − χl

1− c

c

C

C − Sl

(
1− Pl+1

))
= 1− c

c

C

C − Sl

(
1− χl

(1− c)sl

C − Sl−1

)(
1− Pl+1

)
+ (1− c)sl

C − Sl−1
Pl+1

= 1− c

c

C

C − Sl

(C − Sl−1 − χlsl

C − Sl−1
+ χl

csl

C − Sl−1

)(
1− Pl+1

)
+ (1− c)sl

C − Sl−1
Pl+1

= 1− c

c

C

C − Sl−1

(
1− Pl+1

)
+ χl

1− c

c

C

C − Sl

csl

C − Sl−1

(
1− Pl+1

)
+ (1− c)sl

C − Sl−1
Pl+1

= 1− c

c

C

C − Sl−1

(
1− (1− csl

C
)Pl+1

)
+ χl(1− c) C

C − Sl

sl

C − Sl−1

(
1− Pl+1

)
= 1− c

c

C

C − Sl−1

(
1− Pl

)
+ χl(1− c) C

C − Sl

sl

C − Sl−1

(
1− Pl+1

)
≥ 1− c

c

C

C − Sl−1

(
1− Pl

)
+ χl(1− c) sl

C − Sl

(
1− Pl+1

)
.

Thus, we have

f(Gj) ≥ f(Opt)− Pl

(
f(Opt)−

l−1∑
m=1

δm

)
+ 1− c

c

C

C − Sl−1

(
1− Pl

)(
f(Opt)−

l−1∑
m=1

χmδm

)
+ χl(1− c) sl

C − Sl

(
1− Pl+1

)( l−1∑
m=1

δm −
l−1∑

m=1
χmδm

)
≥ f(Opt)− Pl

(
f(Opt)−

l−1∑
m=1

δm

)
+ 1− c

c

C

C − Sl−1

(
1− Pl

)(
f(Opt)−

l−1∑
m=1

χmδm

)
,

as claimed.
For j ∈ {1, . . . , k + 1} and l = 0 the statement of the claim simplifies to

f(Gj) ≥ f(Opt)−
(

j∏
m=1

(
1− csm

C

))
f(Opt) + 1− c

c

(
1−

j∏
m=1

(
1− csm

C

))
f(Opt)

=
(

1 + 1− c

c

)(
1−

j∏
m=1

(
1− csm

C

))
f(Opt)

= 1
c

(
1−

j∏
m=1

(
1− csm

C

))
f(Opt).
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We derive the final statement of the theorem

f(Gj) ≥ 1
c

(
1−

j∏
m=1

(
1− csm

C

))
f(Opt)

≥ 1
c

(
1−

(
1
j

j∑
m=1

(
1− csm

C

))j)
f(Opt)

= 1
c

(
1−

(
1− c

jC

j∑
m=1

sm

)j)
f(Opt)

= 1
c

(
1−

(
1− cs(Gj)

jC

)j)
f(Opt)

≥ 1
c

(
1− exp

(
−c

s(Gj)
C

))
f(Opt),

where we used that the geometric mean is always smaller or equal to the arithmetic mean
for non-negative values and that (1 + x

j )j ≤ ex for all j ≥ 1 and x ∈ R. ◀

D Proof of Theorem 5

Proof. We define z := s(Gk)
C . By Theorem 4 we have for j = k that

f(Gk) ≥ 1
c

(
1− e−cz

)
f(Opt). (9)

Additionally, we have by Lemma 3 (ii) for j = k + 1 that

δk+1 ≥
sk+1

C − (1− c)s(Gk) (f(Opt)− f(Gk)).

Solving for f(Opt) and replacing s(Gk) by zC gives

f(Opt) ≤ f(Gk) + C(1− (1− c)z)
sk+1

δk+1.

With C < s(Gk) + sk+1 = zC + sk+1 we have C < sk+1
1−z and this yields

f(Opt) ≤ f(Gk) + 1− (1− c)z
1− z

δk+1

≤ f(AG) + 1− (1− c)z
1− z

f(AG) = 2− (2− c)z
1− z

f(AG),

where the last inequality holds in both cases of AGreedy. Together with (9) we get

f(AG) ≥ min
z∈[0,1]

max
{

1
c

(
1− e−cz

)
,

1− z

2− (2− c)z

}
f(Opt).

Note that 1
c

(
1− e−cz

)
is monotonically increasing and 1−z

2−(2−c)z is monotonically decreasing
for z ∈ [0, 1] and a fixed c ∈ (0, 1) and that they have a unique intersection for z ∈ [0, 1].
Therefore, the minimum is attained at this intersection. ◀
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