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Abstract
Introduced by Korman, Kutten, and Peleg (PODC 2005), a proof labeling scheme (PLS) is a
distributed verification system dedicated to evaluating if a given configured graph satisfies a certain
property. It involves a centralized prover, whose role is to provide proof that a given configured
graph is a yes-instance by means of assigning labels to the nodes, and a distributed verifier, whose
role is to verify the validity of the given proof via local access to the assigned labels. In this paper, we
introduce the notion of a locally restricted PLS in which the prover’s power is restricted to that of a
LOCAL algorithm with a polylogarithmic number of rounds. To circumvent inherent impossibilities
of PLSs in the locally restricted setting, we turn to models that relax the correctness requirements
by allowing the verifier to accept some no-instances as long as they are not “too far” from satisfying
the property in question. To this end, we evaluate (1) distributed graph optimization problems
(OptDGPs) based on the notion of an approximate proof labeling scheme (APLS) (analogous to the
type of relaxation used in sequential approximation algorithms); and (2) configured graph families
(CGFs) based on the notion of a testing proof labeling schemes (TPLS) (analogous to the type of
relaxation used in property testing algorithms). The main contribution of the paper comes in the
form of two generic compilers, one for OptDGPs and one for CGFs: given a black-box access to
an APLS (resp., PLS) for a large class of OptDGPs (resp., CGFs), the compiler produces a locally
restricted APLS (resp., TPLS) for the same problem, while losing at most a (1 + ϵ) factor in the
scheme’s relaxation guarantee. An appealing feature of the two compilers is that they only require a
logarithmic additive label size overhead.
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1 Introduction

A proof system is a tool designed to verify the correctness of a certain claim. It is composed
of two entities: a prover, whose role is to provide proof for the claim in question; and a
computationally bounded verifier that seeks to verify the validity of the given proof. The
crux of a proof system is that the proof given by the prover cannot be blindly trusted. That
is, for a proof system to be correct, the verifier must be able to distinguish between an honest
prover, providing a correct proof, and a malicious prover who tries to convince the verifier of
a false claim.
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20:2 Locally Restricted Proof Labeling Schemes

In the realm of distributed computing, the study of proof systems, also known as distributed
proof systems, has attracted considerable attention. The goal of a distributed proof system is
to decide if a given configured graph satisfies a certain property. This is typically done by means
of a centralized prover, that has a global view of the entire configured graph, and a distributed
verifier, that operates at all nodes concurrently and is subject to locality restrictions. Various
models for distributed proof systems have been introduced in the literature, including proof
labeling schemes (PLSs) [19], locally checkable proofs [16], nondeterministic local decisions [12],
and distributed interactive proofs [17].

The current paper focuses on the PLS model, introduced by Korman, Kutten, and
Peleg [19] (see Sec. 2.1 for the formal definition). In a PLS, the prover generates its proof by
means of assigning a label to each node. The verification process performed by the verifier at
each node v has access to v’s label and to the labels of v’s neighbors, but it cannot access the
labels assigned to nodes outside its local neighborhood. The correctness requirements state
that if the given configured graph is a yes-instance, then all nodes must accept; and if the
given configured graph is a no-instance, then at least one node must reject. The standard
performance measure of a PLS is its proof size, defined to be the size of the largest label
assigned by the honest prover.

Recently, there is a growing interest from (sequential) computational complexity research-
ers in doubly efficient proof systems [15, 26]. These proof systems are characterized by
restricting the (honest) prover to “efficient computations” – i.e., polynomial time algorithms
– on top of the restrictions imposed on the computational power of the (still weaker) verifier.
For example, Goldwasser et al. [15] consider polynomial time provers vs. logarithmic space
verifiers, whereas Reingold et al. [26] consider polynomial time provers vs. linear time and
near-linear time verifiers.

Motivated by the success story of doubly efficient proof systems in sequential computa-
tional complexity, in this paper, we initiate the study of such proof systems in the distributed
computing realm. To do so, we adjust the notion of “efficient computations” from sequential
algorithms running in polynomial time to LOCAL algorithms running in a polylogarithmic
number of rounds [25]. This introduces a new type of PLSs, called locally restricted PLSs,
where the label assigned to a node v is computed by the (honest) prover based on the
subgraph induced by the nodes within polylogarithmic distance from v, rather than the
whole graph (refer to Sec. 2.2 for a formal definition).

Beyond the theoretical interest that lies in this new type of distributed proof systems, we
advocate for their investigation also from a more practical point of view: A natural application
of PLSs is local checking for self-stabilizing algorithms [2] which involves a detection module
and a correction module. In this mechanism, the verifier’s role is played by the detection
module and the prover’s role is played by a dedicated sub-module of the correction module
responsible for the label assignment to the nodes [19] (the correction module typically includes
another sub-module, responsible for constructing the actual solution, which is abstracted
away by the PLS). Since both modules operate as distributed algorithms, any attempt to
implement them in practice should take efficiency considerations into account. While classic
PLSs consider this efficiency requirement (only) from the verifier’s point of view, in locally
restricted PLSs, we impose efficiency demands on both the verifier and the prover.

It turns out that locally restricted PLSs are impossible for many interesting properties,
regardless of proof size (as shown in the simple observation presented in Appendix B). This
leads us to slightly relax the correctness requirements of a PLS so that the verifier may also
accept no-instances as long as they are not “too far” from satisfying the property in question.
Specifically, we consider locally restricted schemes in the context of two relaxed models called
approximate proof labeling schemes (APLS) [6, 7] and testing proof labeling schemes (TPLS).
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Table 1 Locally restricted APLS (left) and TPLS (right) results, where ℓ stands for the proof
size and α stands for the approximation ratio.

OptDGP graph family α ℓ

min. weight vertex
cover

any 2(1 + ϵ) O(log n)

min. vertex cover odd-girth = ω(log n) 1 + ϵ O(log n)
max. ind. set any ∆(1 + ϵ) O(log n)

odd-girth = ω(log n) 1 + ϵ O(log n)
min. weight dom. set any O(log n) O(log n)
any canonical
OptDGP

any 1 + ϵ O(n2)

CGF ℓ

planarity O(log n)
bounded
arboricity

O(log n)

k-
colorability

O(log n)

forest O(log n)
DAG O(log n)

The APLS model was introduced by Censor-Hillel et al. [6] and studied further by Emek
and Gil [7]. For an approximation parameter α ≥ 1, the goal of an α-APLS for a distributed
graph optimization problem (OptDGP) is to distinguish between optimal instances and
instances that are α-far from being optimal (refer to Sec. 2 for the definitions). Interestingly,
for some classic edge-based covering/packing OptDGPs (e.g., maximum matching and
minimum edge cover), locally restricted APLSs are already established in previous works
[16, 6, 7]. In contrast, the existing APLSs for node-based covering/packing OptDGPs require
that the prover has a global view of the given configured graph (see, e.g., the APLS for
minimum weight vertex cover presented in [7]). In Sec. 4, we develop a generic compiler
that gets a (not necessarily locally restricted) α-APLS for an OptDGP Ψ, belonging to
a large class of node-based covering/packing OptDGPs, and generates a locally restricted
((1 + ϵ)α)-APLS for Ψ, where ϵ is a constant performance parameter. The proof size of the
locally restricted ((1 + ϵ)α)-APLS generated by our compiler is ℓΨ,α + O(log n), where ℓΨ,α

is the proof size of the α-APLS provided to the compiler. Refer to Section 4.3 for a high-level
overview of this construction.

The TPLS model is developed in the current paper based on the notion of property testing
[14, 1]. For a parameter δ > 0, the goal of a δ-TPLS for a configured graph family (CGF) Φ is
to distinguish between configured graphs belonging to Φ and configured graphs that are δ-far
from belonging to Φ, where the distance here is measured in terms of the graph topology. In
Sec. 5, we develop a generic compiler that gets a (not necessarily locally restricted) PLS for
a CGF Φ, that is closed under node-induced subgraphs and disjoint union, and generates a
locally restricted δ-TPLS for Φ. The proof size of the locally restricted δ-TPLS generated by
our compiler is ℓΦ + O(log n), where ℓΦ is the proof size of the PLS provided to the compiler.
Refer to Section 5.2 for a high-level overview of this construction.

The applicability of our compilers is demonstrated in Appendix A, where we show how
the two compilers can be used to obtain APLSs and TPLSs for various well-known OptDGPs
and CGFs, respectively; refer to Table 1 for a summary of these results. We conclude with
additional related work presented in Appendix C.

1.1 Paper’s Organization

In Section 2, we present the model. Preliminaries are presented in Section 3. Following that,
in Sections 4 and 5, we present our compiler for OptDGPs and CGFs, respectively. Within
these sections, a high-level overview of the compilers appears in Subsections 4.3 and 5.2.

DISC 2022
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2 Model

We consider distributed verification systems in which evaluated instances are called configured
graphs. A configured graph Gs = ⟨G, s⟩ is a pair consisting of an undirected graph G = (V, E)
and a configuration function s : V → {0, 1}∗ that assigns a bit string s(v), referred to as v’s
local configuration, to each node v ∈ V . Throughout this paper, we use the notation n = |V |
and m = |E|.

For a node v ∈ V , we stick to the convention that NG(v) = {u | (u, v) ∈ E} denotes the
set of v’s neighbors in G and that degG(v) = |NG(v)| denotes v’s degree in G. When G is
clear from the context, we may omit it from our notations and use N(v) and deg(v) instead
of NG(v) and degG(v), respectively.

We assume that all configured graphs considered in the context of this paper are identified,
i.e., the configuration function s : V → {0, 1}∗ assigns a unique id of size O(log n), denoted
by id(v), to each node v ∈ V . Moreover, we assume that the local configuration s(v)
distinguishes between node v’s incident edges by means of a set A(v) of abstract port names,
and a bijection ρs

v : N(v) → A(v), referred to as the internal port name assignment of v, that
assigns a (locally unique) port name ρs

v(u) to each node u ∈ N(v). More concretely, assume
that the local configuration s(v) includes a designated field for each neighbor u ∈ N(v) and
that this field is indexed by ρs

v(u). Unless stated otherwise, when we refer to an ordered
list u1, . . . , udeg(v) of v’s neighbors, it is assumed that the list is ordered by v’s internal port
name assignment.

Given a configured graph Gs consisting of graph G = (V, E) and configuration function
s, we say that a configured graph G′

s′ consisting of graph G′ = (V ′, E′) and configuration
function s′, is a configured subgraph of Gs if (1) G′ is a subgraph of G, i.e., V ′ ⊆ V and
E′ ⊆ E; and (2) the configuration function s′ is the projection of s on G′, where for each
node v ∈ V ′, the fields corresponding to nodes u ∈ NG(v) \ NG′(v) are omitted from the local
configuration s′(v) and the internal port name assignment ρs′

v associated with s′ is defined
so that ρs′

v (u) = ρs
v(u) for each u ∈ NG′(v). For a node subset U ⊆ V , let G(U) denote the

subgraph induced on G by U and let Gs(U) be the configured subgraph of Gs defined over
the subgraph G(U).

We define a configured graph family (CGF) as a collection of configured graphs. A CGF
type that plays a central role in this paper is that of a distributed graph problem (DGP)
Π, where for each configured graph Gs ∈ Π, the configuration function s is composed of an
input assignment i : V → {0, 1}∗ and an output assignment o : V → {0, 1}∗. We refer to such
a configured graph as an input-output (IO) graph and often denote it by Gi,o. The input
assignment i assigns to each node v ∈ V , a bit string i(v), referred to as v’s local input, that
encodes attributes associated with v and its incident edges (e.g., node ids, edge orientations,
edge weights, and node weights); whereas the output assignment o assigns a local output o(v)
to each node v ∈ V . For an input assignment i, we refer to the configured graph Gi = ⟨G, i⟩
as an input graph.

Consider a DGP Π. An input graph Gi is said to be legal (and the graph G and input
assignment i are said to be co-legal) if there exists an output assignment o such that Gi,o ∈ Π,
in which case we say that o is a feasible solution for Gi (or simply for G and i). For a DGP
Π, we denote the set of legal input graphs by LEG(Π) = {Gi | ∃o : Gi,o ∈ Π}.

A distributed graph minimization problem (MinDGP) (resp., distributed graph maximiza-
tion problem (MaxDGP)) Ψ is a pair ⟨Π, f⟩, where Π is a DGP and f : Π → Z is a function,
referred to as the objective function of Ψ, that maps each IO graph Gi,o ∈ Π to an integer
value f(Gi,o).1 Given a co-legal graph G and input assignment i, define

1 We assume for simplicity that the images of the objective functions used in the context of this paper are
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OPTΨ(G, i) = inf
o:Gi,o∈Π

{f(Gi,o)}

if Ψ is a MinDGP; and

OPTΨ(G, i) = sup
o:Gi,o∈Π

{f(Gi,o}

if Ψ is a MaxDGP. We often use the general term distributed graph optimization problem
(OptDGP) to refer to MinDGPs as well as MaxDGPs. Given an OptDGP Ψ = ⟨Π, f⟩ and co-
legal graph G and input assignment i, the output assignment o is said to be an optimal solution
for Gi (or simply for G and i) if o is a feasible solution for Gi and f(Gi,o) = OPTΨ(G, i).

2.1 Proof Labeling Schemes
In this section we present the notion of proof labeling schemes as well as its approximation
variants. To that end, we first present the notion of gap proof labeling schemes, as defined
in [7].

Fix some universe U of configured graphs. A gap proof labeling scheme (GPLS) is a
mechanism designed to distinguish the configured graphs in a yes-family FY ⊂ U from the
configured graphs in a no-family FN ⊂ U , where FY ∩ FN = ∅. This is done by means
of a (centralized) prover and a (distributed) verifier that play the following roles: Given
a configured graph Gs ∈ U , if Gs ∈ FY , then the prover assigns a bit string L(v), called
the label of v, to each node v ∈ V . Let LN (v) = ⟨L(u1), . . . , L(udeg(v))⟩ be the vector of
labels assigned to v’s neighbors. The verifier at node v ∈ V is provided with the 3-tuple
⟨s(v), L(v), LN (v)⟩ and returns a Boolean value φ(v).

We say that the verifier accepts Gs if φ(v) = True for all nodes v ∈ V ; and that the
verifier rejects Gs if φ(v) = False for at least one node v ∈ V . The GPLS is said to be
correct if the following requirements hold for every configured graph Gs ∈ U :

▶ R1. If Gs ∈ FY , then the prover produces a label assignment L : V → {0, 1}∗ such that
the verifier accepts Gs.

▶ R2. If Gs ∈ FN , then for any label assignment L : V → {0, 1}∗, the verifier rejects Gs.

We emphasize that no requirements are made for configured graphs Gs ∈ U \ (FY ∪ FN ); in
particular, the verifier may either accept or reject these configured graphs (the same holds
for configured graphs that do not belong to the universe U). The performance of a GPLS
is measured by means of its proof size defined to be the maximum length of a label L(v)
assigned by the prover to the nodes v ∈ V assuming that Gs ∈ FY .

Proof Labeling Schemes for CGFs. Consider some CGF Φ and let U be the universe of
all configured graphs. A proof labeling scheme (PLS) for Φ is the GPLS over U defined by
setting the yes-family to be FY = Φ; and the no-family to be FN = U \ FY . In other words,
a PLS for Φ determines whether a given configured graph Gs belongs to Φ.

integral. Lifting this assumption and allowing for real numerical values would complicate some of the
arguments, but it does not affect the validity of our results.

DISC 2022



20:6 Locally Restricted Proof Labeling Schemes

In this paper, we also define a relaxed model of PLSs for a CGF Φ in which we allow the
verifier to accept configured graphs that are not “too far” from belonging to Φ. To that end,
we use the following distance measure which is widely used in the realm of property testing
(see e.g., [1]).

let Gs and G′
s′ be two configured graphs. Given a parameter δ > 0, we say that Gs and

G′
s′ are δ-close if G′

s′ is a configured subgraph of Gs and G′ can be obtained from G by
removing at most δm edges (or vice versa).

Consider a CGF Φ. We say that a configured graph Gs is δ-far from belonging to Φ if
G′

s′ /∈ Φ for any configured graph G′
s′ which is δ-close to Gs. We define a δ-testing proof

labeling scheme (δ-TPLS) in the same way as a PLS for Φ with the sole difference that the
no-family is defined by setting FN = {Gs | Gs is δ-far from belonging to Φ}.

Proof Labeling Schemes for OptDGPs. Consider some OptDGP Ψ = ⟨Π, f⟩ and let
U = {Gi,o | Gi ∈ LEG(Π)}. A proof labeling scheme (PLS) for Ψ is defined as a GPLS over
U by setting the yes-family to be

FY = {Gi,o ∈ Π | f(Gi,o) = OPTΨ(G, i)}

and the no-family to be FN = U \ FY . In other words, a PLS for Ψ determines for a given
IO graph Gi,o ∈ U whether the output assignment o : V → {0, 1}∗ is an optimal solution
(which means in particular that it is a feasible solution) for the co-legal graph G = (V, E)
and input assignment i : V → {0, 1}∗.

In the realm of OptDGPs, a relaxed model called approximate proof labeling scheme has
been considered in [6, 7]. In this model, the correctness requirement of a PLS are relaxed so
that it may also accept feasible solutions that only approximate the optimal ones. Specifically,
given an approximation parameter α ≥ 1, an α-approximate proof labeling scheme (α-APLS)
for an OptDGP Ψ = ⟨Π, f⟩ is defined in the same way as a PLS for Ψ with the sole difference
that the no-family is defined by setting

FN =
{

U \ {Gi,o ∈ Π | f(Gi,o) ≤ α · OPTΨ(G, i)} , if Ψ is a MinDGP
U \ {Gi,o ∈ Π | f(Gi,o) ≥ OPTΨ(G, i)/α} , if Ψ is a MaxDGP

.

2.2 Locally Restricted Proof Labeling Schemes
In this paper, we focus on provers whose power is limited as follows. We say that a
GPLS is locally restricted if there exists a constant c such that for every configured graph
Gs = ⟨G = (V, E), s⟩ ∈ FY and for every node v ∈ V , the label L(v) is computed by the
prover as a function of Gs(Br(v)), where r = logc n and Br(v) denotes the set of nodes at
(hop) distance at most r from v in G. Equivalently, the prover is restricted to a distributed
algorithm operating under the LOCAL model [22, 25] with polylogarithmic rounds. We
emphasize that if Gs ∈ FN , then the verifier is required to reject Gs for any label assignment,
including label assignments that were not produced in a locally restricted fashion.

3 Preliminaries

Sequentially Local Algorithms. In the sequentially local (SLOCAL) model, introduced
in [13], each node v ∈ V maintains two (initially empty) bit strings denoted by info(v)
and decision(v). Nodes are processed sequentially in an arbitrary order p = v1, . . . , vn (i.e.,
irrespective of node ids). We refer to the time that node vi is processed as the i-th iteration
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of the algorithm. In the i-th iteration, vi has a read/write access to info(u) for all nodes
u ∈ Br(vi), where r ∈ Z≥0 is a parameter referred to as the locality of the algorithm.
Following that, vi writes an irrevocable value into decision(vi) based strictly on Gs(Br(vi))
and the bit strings info(u) of all u ∈ Br(vi).

A consequence of the seminal work of Ghafari et al. [13, 27] is that any SLOCAL
algorithm with logO(1) n locality can be simulated by a LOCAL algorithm with logO(1) n

rounds. Therefore, in the context of a locally restricted GPLS, by allowing the prover to
compute the label L(v) of each node v ∈ V using an SLOCAL algorithm with locality
r = logO(1) n (rather than a LOCAL algorithm with logO(1) n rounds), we do not increase
the scheme’s power.

Comparison Schemes. Let U be a universe of configured graphs Gsa,b
, such that G = (V, E)

is a connected undirected graph and the configuration function sa,b : V → {0, 1}∗ assigns
two values a(v), b(v) ∈ R to each node v ∈ V . A comparison scheme is a mechanism
whose goal is to decide if

∑
v∈V a(v) ≥

∑
v∈V b(v) for a given configured graph Gsa,b

∈ U .
Formally, a comparison scheme is defined as a GPLS over U by setting the yes-family to be
FY = {Gsa,b

∈ U |
∑

v∈V a(v) ≥
∑

v∈V b(v)}; and the no family to be FN = U \ FY .
In [19, Lemma 4.4], Korman et al. present a generic design for comparison schemes as

follows. Consider a configured graph Gsa,b
∈ U . The label assignment L : V → {0, 1}∗

constructed by the prover encodes a spanning tree of G rooted at some (arbitrary) node
r ∈ V (see [19, Lemma 2.2] for details on spanning tree construction). In addition, the prover
encodes the sum of a(·) and b(·) values in the sub-tree rooted at node v for each v ∈ V . This
allows the verifier to check that the sums assigned at each node v ∈ V are correct (using
the sums assigned to v’s children); and the verifier at the root r can evaluate if Gsa,b

∈ FY .
The proof size of this scheme is O(log n + Ma,b), where Ma,b is the maximum length (in bits)
of values

∑
v∈U a(v) and

∑
v∈U b(v) over all node-subsets U ⊆ V . This comparison scheme

construction is used as an auxiliary tool in the compilers presented in Sec. 4 and 5.

4 Compiler for OptDGPs

In this section, we present our generic compiler for OptDGPs. It is divided into five subsections
as follows. First, in Sec. 4.1 we characterize the OptDGPs that are suited for our compiler,
referred to as canonical OptDGPs, based on the notions of locally checkable labelings and
covering/packing OptDGPs (these terms are formally defined in Sec. 4.1). In Sec. 4.2, we
establish an important property of optimal solutions for covering/packing OptDGPs that
serve the compiler construction. Sec. 4.4 and 4.5 are dedicated to the compiler construction.
More formally, these sections constructively prove the following theorem.

▶ Theorem 4.1. Let Ψ be a canonical OptDGP that admits an α-APLS with a proof size of
ℓΨ,α. For any constant ϵ > 0, there exists a locally restricted (α(1 + ϵ))-APLS for Ψ with a
proof size of ℓΨ,α + O(log n).

For convenience, the compiler construction is divided between Sec. 4.4 and 4.5 as follows.
In Sec. 4.4, we present an SLOCAL algorithm with logarithmic locality that partitions the
nodes into disjoint clusters, such that the subgraph induced by each cluster is of logarithmic
diameter. The goal of this partition is to enable the prover to construct the label of a node
as a function of the subgraph induced by its cluster (and possibly some nodes adjacent to its
cluster) without information on nodes that are farther away. This partition facilitates the
label assignment and verification process described in Sec. 4.5. In Sec. 4.3, we provide a
high-level overview of the SLOCAL algorithm and how it is used in the label assignment and
verification process.

DISC 2022



20:8 Locally Restricted Proof Labeling Schemes

4.1 Canonical OptDGPs

Locally Checkable Labelings. A DGP Π is said to be a locally checkable labeling
(LCL) (cf. [23]) if there exists a Boolean predicate family LΠ = {pΠ

d,ℓ : ({0, 1}∗)d+1 →
{True, False}}d∈Z≥0,ℓ∈{0,1}∗ such that for every legal input graph Gi ∈ LEG(Π), an
output assignment o : V → {0, 1}∗ is a feasible solution for G and i if and only
if pΠ

deg(v),i(v)(o(v), o(u1), . . . , o(udeg(v))) = True for every node v ∈ V with neighbors
u1, . . . , udeg(v).

For convenience, we assume that the local input i(v) of a node v ∈ V is partitioned into
two fields, denoted by prd(i(v)) and data(i(v)), where the former (fully) determines the
predicate pΠ

deg(v),i(v) associated with deg(v) and i(v) and the latter encodes all other pieces of
information included in i(v). This allows us to slightly abuse the notation and write pΠ

prd(i(v))
instead of pΠ

deg(v),i(v). We further assume that the Boolean predicate family LΠ includes
the trivial tautology predicate tautd : ({0, 1}∗)d+1 → {True, False}, d ∈ Z≥0, that satisfies
tautd(x) = True for every x ∈ ({0, 1}∗)d+1 and that this predicate is encoded by writing the
designated bit string tautd in the prd(·) field of the local input.

We say that an LCL Π is self-induced if the following two conditions are satisfied for
every legal input graph Gi ∈ LEG(Π) and node subset U ⊆ V : (1) Gi(U) ∈ LEG(Π); and (2)
if i′ : V → {0, 1}∗ is the input assignment derived from i by setting data(i′(v)) = data(i(v))
and prd(i′(v)) = tautdeg(v) for every v ∈ U , then Gi′ ∈ LEG(Π).

Let Π be an LCL and let Gi ∈ LEG(Π). For a subset U ⊆ V of nodes, we denote by
inner(U) = {u ∈ U | NG(u) ⊆ U} the set of nodes in U for which every neighbor is in U

and define inner2(U) = inner(inner(U)) and rim(U) = U \ inner2(U). We say that a
function g : U → {0, 1}∗ respects Π if pΠ

prd(i(v))(g(v), g(u1), . . . , g(udeg(v))) = True for each
v ∈ inner(U) with neighbors u1, . . . , udeg(v).

Canonical OptDGPs. A MinDGP (resp., MaxDGP) Ψ = ⟨Π, f⟩ is said to be a covering
(resp., packing) OptDGP if the following conditions hold: (1) Π is an LCL; (2) for each n-node
IO graph Gi,o ∈ Π, there exists a positive integer k = k(Π, n) = nO(1) such that the output
assignment o assigns a nonnegative integer o(v) ∈ {0, . . . , k}, referred to as v’s multiplicity,
to each node v ∈ V ; (3) for each predicate pΠ

d,ℓ ∈ LΠ, if pΠ
d,ℓ(x0, x1, . . . , xd) = True for

nonnegative integers x0, x1, . . . , xd ∈ {0, . . . , k}, then pΠ
d,ℓ(x′

0, x′
1, . . . , x′

d) = True for any
nonnegative integers x′

0, x′
1, . . . , x′

d ∈ {0, . . . , k} that satisfy x′
j ≥ xj (resp., x′

j ≤ xj) for all
0 ≤ j ≤ d; (4) for every legal input graph Gi ∈ LEG(Π), there exists a node-weight function
w : V → {1, . . . nO(1)} such that the weight w(v) of node v is encoded in v’s local input field
data(i(v)); and (5) f(Gi,o) =

∑
v∈V w(v) · o(v) for every Gi,o ∈ Π. The OptDGP Ψ = ⟨Π, f⟩

is said to be canonical if it is covering/packing and Π is self-induced.
Consider a covering/packing OptDGP Ψ = ⟨Π, f⟩. Let Gi ∈ LEG(Π) be a legal input

graph with the underlying node-weight function w : V → {1, . . . , nO(1)} and let U ⊆ V .
Given a function g : U → {0, . . . , k(Π, n)} that assigns a multiplicity value g(u) to each node
u ∈ U , we define w(U, g) =

∑
u∈U w(u) · g(u).

For a covering MinDGP Ψ, let wmin(U) denote the minimum possible value of w(U, g)
obtained by a function g : U → {0, . . . , k(Π, n)} that respects Π. Let N2(U) be the set of
nodes in V \ U at distance at most 2 from a node in U . For a packing MaxDGP, let wmax(U)
denote the maximum possible value of w(U, g) obtained by a function g : U ∪ N2(U) →
{0, . . . , k(Π, n)} that satisfies (1) g(v) = 0 for each node v ∈ N2(U); and (2) g respects Π.
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4.2 Properties of Optimal Solutions for Covering/Packing OptDGPs
In the following lemmas, we establish important properties regarding optimal solutions of
covering and packing OptDGPs. Consider a covering (resp., packing) OptDGP Ψ = ⟨Π, f⟩.
Let Gi,o ∈ Π be an IO graph such that o : V → {0, . . . , k(Π, n)} is an optimal solution for G

and i.

▶ Lemma 4.2. If Ψ is a covering MinDGP, then w(inner2(U), o) ≤ wmin(U) for any U ⊆ V .

Proof. Assume by contradiction that w(inner2(U), o) > wmin(U) for some U ⊆ V . This
means that there exists an assignment o′ : U → {0, . . . , k(Π, n)} that respects Π, such that
w(inner2(U), o) > w(U, o′). Let õ be the output assignment defined as follows: õ(v) = o(v)
for all v ∈ V \ U ; õ(v) = o′(v) for all v ∈ inner2(U); and õ(v) = max{o(v), o′(v)} for
all v ∈ rim(U). Recall that o is a feasible solution for G and i and that o′ respects Π.
Since Ψ is a covering OptDGP, we get that pΠ

prd(i(v))(õ(v), õ(u1), . . . , õ(udegG(v))) = True for
each node v ∈ V (where u1, . . . , udegG(v) denote v’s neighbors in G). It follows that õ is a
feasible solution with objective value f(Gi,õ) = w(V, õ) ≤ w(V \ U, o) + w(inner2(U), o′) +
w(rim(U), o) + w(rim(U), o′) = w(V, o) − w(inner2(U), o) + w(U, o′) < w(V, o) = f(Gi,o)
which contradicts the optimality of o. ◀

▶ Lemma 4.3. If Ψ is a packing MaxDGP, then w(U, o) ≥ wmax(inner2(U)) for any U ⊆ V .

The proof of Lemma 4.3 is similar to the proof for Lemma 4.2. We defer it to the full version
of this paper [8].

4.3 Overview
In Sec. 4.4, we present an SLOCAL algorithm called Part_OPT that partitions the nodes
of a given IO graph Gi,o into clusters. Before formally describing the algorithm in Sec. 4.4,
let us provide some intuition by presenting the high-level idea of the partition and how
it is used in the label and verification process (as described in Sec. 4.5) for the case of a
canonical MinDGP Ψ (the high-level idea for MaxDGPs is similar and the differences are
mostly technical).

Given an IO graph Gi,o, where o is an optimal solution, we use a ball growing argument
to obtain a partition of the nodes into clusters such that: (1) the subgraph induced by each
cluster is of logarithmic diameter; and (2) the total weight of nodes in the rim of clusters (i.e.,
nodes with distance at most 2 from a different cluster) is an ϵ-fraction of the total weight of
inner nodes of clusters (i.e., nodes with distance at least 3 from a different cluster).

The goal of the partition obtained by Part_OPT is to allow the prover to compute the
label assigned to each node based on its cluster. Essentially, the prover seeks to provide
the verifier with a proof that the partition satisfies 2 main properties: (1) for each cluster
Vj , the weight of the given solution induced on the inner nodes is at most the weight of an
approximately optimal (global) solution induced on the cluster; and (2) the total weight of
nodes in the rim of clusters is at most an ϵ-fraction of the total weight of inner nodes.

While providing proof for the first property is rather straightforward using the labels
of an α-APLS for Ψ in a black box manner, providing proof for the second property is
somewhat more challenging. The reason is that the property as presented above is rather
global – not every cluster is guaranteed to have at most an ϵ-fraction of its weight assigned
to the rim nodes. Constructing a label that sums the total weights of rim and inner nodes of
all clusters is a global task and can not be accomplished in a locally restricted fashion. To
that end, during Part_OPT, we may assign some nodes with a secondary affiliation to an
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adjacent cluster. The idea is that for each cluster Vj , the sum between weights of nodes with
secondary affiliation to Vj and nodes in rim(Vj) that do not have a secondary affiliation to
any cluster is bounded by an ϵ-fraction of Vj ’s inner nodes weight.

Throughout Part_OPT, each node v maintains a color whose role is to keep track of the
changeability status of v’s secondary affiliation. The color white indicates that the secondary
affiliation may still change; whereas black indicates that the secondary affiliation is final.

4.4 Partition Algorithm

Algorithm’s Description. We now provide a formal description of the Part_OPT algorithm.
Consider a canonical OptDGP Ψ = ⟨Π, f⟩. Let Gi,o ∈ Π be an IO graph such that o is
an optimal solution for G and i. The algorithm partitions the nodes of G into (possibly
empty) clusters V = V1∪̇ . . . ∪̇Vn. As usual in the SLOCAL model, the nodes are processed
sequentially in n iterations based on an arbitrary order v1, . . . , vn on the nodes, where node
vj is processed in the j-th iteration.

Throughout the execution of Part_OPT, each node v ∈ V maintains three fields referred
to as cluster(v), sec(v), and color(v). The field cluster(v) is initially empty and its role
is to identify v’s cluster, where each cluster Vj is identified by the id of node vj which is
processed in the j-th iteration, i.e., Vj = {v | cluster(v) = id(vj)}. The field sec(v) is initially
empty and its role is to identify v’s secondary affiliation to a cluster if such affiliation exists
(otherwise it remains empty throughout the algorithm). The field color(v) ∈ {black, white},
initially set to white, maintains v’s color.

We describe the j-th iteration of Part_OPT as follows. Let Gj be the subgraph induced
on G by V \ (V1 ∪ · · · ∪ Vj−1). If vj ∈ V1 ∪ · · · ∪ Vj−1, then we define Vj = ∅ and finish the
iteration; so, assume that vj is a node in Gj . For an integer r ∈ Z≥0, let Dr

j be the set of
nodes at distance exactly r from vj in Gj and let Br

j =
⋃r

r′=0 Dr′

j . Let whitej be the set of
nodes in Gj that are colored white in the beginning of the j-th iteration.

Suppose that Ψ is a MinDGP. We define r(j) to be the smallest integer that satisfies
w(inner2(Br(j)+6

j ), o) ≤ (1 + ϵ) · w(inner2(Br(j)+2
j ), o). Notice that inner2(·) is taken with

respect to nodes in G (and not Gj), i.e., inner2(Br(j)+6
j ) (resp., inner2(Br(j)+2

j )) is the set
of nodes in B

r(j)+6
j (resp., B

r(j)+2
j ) for which every node within distance 2 in G is in B

r(j)+6
j

(resp., B
r(j)+2
j ). In the case that Ψ is a MaxDGP, define r(j) to be the smallest integer that

satisfies w(Br(j)+6
j , o) ≤ (1 + ϵ) · w(Br(j)+2

j , o).
Following the computation of r(j), we define the cluster Vj and modify the color and

secondary affiliation of some nodes as follows (this process is the same for MinDGPs and
MaxDGPs). Let Xj be the set of white nodes in inner2(Br(j)+6

j ) at distance exactly
r(j) + 3 from vj , and let Yj be the set of white nodes in inner2(Br(j)+6

j ) at distance exactly
r(j) + 4 from vj that have a neighbor in Xj . We complete the j-th iteration by setting
cluster(v) = id(vj) for each node v ∈ B

r(j)+2
j (i.e., setting Vj = B

r(j)+2
j ); sec(v) = id(vj) for

each node v ∈ Xj ∪ Yj ; and color(v) = black for each node v ∈ Xj .

Algorithm’s Properties. We go on to analyze some properties of Part_OPT. Consider a
cluster Vj . Let sec(Vj) = {v | sec(v) = id(vj)} be the set of nodes whose secondary affiliation
is to Vj by the end of the algorithm and let ext(Vj) = Vj ∪ sec(Vj).

▶ Lemma 4.4. The subgraphs G(Vj) and G(ext(Vj)) induced on G by Vj and ext(Vj),
respectively, are connected and have diameter O(log n) for each j ∈ [n].
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Proof. Suppose that Vj ̸= ∅ (as the lemma is trivial otherwise). First, observe that by
definition, all nodes v ∈ Vj are reachable from vj in G(Vj), thus G(Vj) is connected.

To see that G(ext(Vj)) is connected, we first observe that the subgraph G(Vj ∪ Xj ∪ Yj)
is connected. By the time cluster Vj is determined, we color the nodes of Xj black. Thus,
their secondary affiliation remains to Vj throughout the algorithm. At termination, it follows
that ext(Vj) = Vj ∪ Xj ∪ Y for some Y ⊆ Yj . Since the nodes of Y all have a neighbor in
Xj , we get that G(ext(Vj)) = G(Vj ∪ Xj ∪ Y ) is connected.

To show that the diameters of G(Vj) and G(ext(Vj)) are O(log n) it is sufficient to show
that r(j) = O(log n). We use a ball growing argument. By definition, for every r′ < r(j) + 6,
it holds that

w(inner2(Br(j)+6
j ), o) ≥ w(inner2(Br′

j ), o) > (1 + ϵ) · w(inner2(Br′−4
j ), o)

> (1 + ϵ)2 · w(inner2(Br′−8
j ), o) > . . .

if Ψ is a MinDGP; and

w(Br(j)+6
j , o) ≥ w(Br′

j , o) > (1 + ϵ) · w(Br′−4
j , o) > (1 + ϵ)2 · w(Br′−8

j , o) > . . .

if Ψ is a MaxDGP. Since the terms w(inner2(Br(j)+6
j ), o) and w(Br(j)+6

j , o) are both bounded
by a polynomial of n, it follows that r(j) = O((1/ϵ) log n) = O(log n) in both cases. ◀

A simple observation derived from Lemma 4.4 is that Part_OPT has locality O(log n).
This observation combined with the results of [13, 27] lead to the following corollary.

▶ Corollary 4.5. The algorithm Part_OPT can be simulated by a LOCAL algorithm with
polylogarithmic round-complexity.

For each j ∈ [n], define Sj = sec(Vj)∪{v ∈ rim(Vj) | sec(v) is empty} as the set of nodes
composed of nodes outside of Vj whose secondary affiliation is to Vj and nodes in rim(Vj)
that do not have a secondary affiliation. The following observation establishes an important
property regarding the sets rim(Vj) and Sj .

▶ Observation 4.6.
⋃

j∈[n] rim(Vj) ⊆
⋃

j∈[n] Sj

Proof. Consider a node v ∈ rim(Vj) for some j ∈ [n]. By definition, if sec(v) is empty, then
v ∈ Sj . If sec(v) is not empty, then there exists some j′ ∈ [n] such that v ∈ sec(Vj′), and
therefore v ∈ Sj′ . Overall, we get that v ∈

⋃
ℓ∈[n] Sℓ. ◀

4.5 Labels and Verification
In this section, we describe the label assignment and verification process of our compiler
for the case of MinDGPs. The description of the changes required to establish the same for
MaxDGPs is deferred to the full version of this paper [8]. In both cases, we establish the
proof size and correctness of our construction, thus proving Theorem 4.1.

Consider a canonical MinDGP Ψ = ⟨Π, f⟩ and an IO graph Gi,o ∈ Π, where o is an
optimal solution for G and i. The prover uses the SLOCAL algorithm Part_OPT presented
in Sec. 4.4 to compute the values r(j) and subsets Vj , sec(Vj), ext(Vj) = Vj ∪ sec(Vj), and
Sj = sec(Vj) ∪ {v ∈ rim(Vj) | sec(v) is empty} for all j ∈ [n].

The goal of the prover is to provide proof of four properties satisfied by the given solution
o and the outcome of Part_OPT. We refer to those properties as feasibility, rim, growth, and
optimality. The four properties are defined as follows. The feasibility property states that o
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is a feasible solution for G and i, i.e., Gi,o ∈ Π; the rim property states that for each j ∈ [n]
and node v ∈ rim(Vj), there exists j′ ∈ [n], such that v ∈ Sj′ ; the growth property states
that w(Sj , o) ≤ ϵ · w(inner2(Vj), o) for each j ∈ [n]; and the optimality property states that
w(inner2(Vj), o) ≤ α · wmin(Vj) for each j ∈ [n].

The prover provides its proof by means of a label assignment L : V → {0, 1}∗ that
assigns each node v with a label L(v) = ⟨Lfeas(v), Lrim(v), Lgrw(v), Lopt(v)⟩. The label L(v)
is composed of the fields Lfeas(v), Lrim(v), Lgrw(v), and Lopt(v) that provide proof for the
feasibility, rim, growth, and optimality properties, respectively.

The field Lfeas(·) provides a proof for the feasibility property by setting Lfeas(v) = o(v)
for each node v ∈ V . Notice that since Π is an LCL, verifying o’s feasibility is done by
checking that Lfeas(v) = o(v), and pΠ

prd(i(v))(Lfeas(v), Lfeas(u1), . . . Lfeas(udegG(v))) = True at
each node v with neighbors u1, . . . , udegG(v).

The field Lrim(·) provides a proof for the rim property as follows. First, the sets Vj and
Sj are encoded for all 1 ≤ j ≤ n, where each of the sets is identified by id(vj). In addition,
each node v ∈ rim(Vj) is assigned the minimal distance to a node u /∈ Vj (notice that by
definition, these values are either 1 or 2). This allows the verifier to check that for each
node v ∈ rim(Vj), there exists j′ ∈ [n] such that v ∈ Sj′ , i.e., verify that the rim property is
satisfied.

The field Lgrw(·) provides a proof for the growth property simply by using a comparison
scheme (as defined in Sec. 3) that compares between w(Sj , o) and ϵ · w(inner2(Vj), o). This
comparison scheme is used concurrently for each ext(Vj) ̸= ∅, based on a shortest paths tree
of G(ext(Vj)) rooted at node vj . Observe that by Lemma 4.4, this tree spans the nodes of
ext(Vj) and has diameter O(log n).

The field Lopt(·) provides a proof for the optimality property as follows. First, for each
Vj ̸= ∅, the prover computes an assignment gj : Vj → {0, . . . , k(Π, n)}, such that gj respects
Π and w(Vj , gj) = wmin(Vj). The prover assigns each node v ∈ Vj with the multiplicity gj(v)
and proves that w(inner2(Vj), o) ≤ w(Vj , gj) by means of a comparison scheme based on a
shortest paths (spanning) tree of G(Vj) rooted at node vj . Finally, the prover proves that
w(Vj , gj) ≤ α · wmin(Vj) by means of an α-APLS for Ψ on the configured subgraph Gi,o(Vj).
Notice that an α-APLS for Ψ is well-defined over the instance Gi,o(Vj) since Π is self-induced,
and thus Gi(Vj) ∈ LEG(Π).

Proof Size and Correctness. We observe that the label assignment produced by the prover
can be computed by means of an SLOCAL algorithm with locality O(log n) and thus it can
be simulated by a locally restricted prover. Moreover, for each node v ∈ V , the sub-labels
Lfeas(v), Lrim(v), and Lgrw(v) are of size O(log n); whereas Lopt(v) is of size ℓΨ,α + O(log n),
where ℓΨ,α is the proof size of an α-APLS for Ψ. Overall, the proof size of this scheme is
ℓΨ,α + O(log n).

Regarding the correctness requirements, we start by showing the completeness requirement,
i.e., we show that if o is an optimal solution for G and i, then the verifier accepts Gi,o. To
that end, it is sufficient to show that all four aforementioned properties are satisfied. The
feasibility property holds since by definition, o is a feasible solution for G and i; the rim
property follows directly from Observation 4.6; the growth property holds by the construction
of the clusters Vj ; and the optimality property follows from Lemma 4.2. We note that as
established in Lemma 4.2, the optimality property is satisfied by o with parameter α = 1.
However, providing proof for this stronger property might be costly in terms of proof size.
Thus, to obtain a small proof size, we settle for an approximated version.
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As for the soundness requirement, consider an IO graph Gi,o such that the veri-
fier accepts Gi,o. This means that all four properties hold for Gi,o. First, observe
that by the feasibility property, it holds that Gi,o ∈ Π. Let V L

1 , . . . V L
k and SL

1 , . . . SL
k

be the subsets Vj and Sj encoded by the prover in the field Lrim(·). By the rim
property, it holds that

⋃
j∈[k] rim(V L

j ) ⊆
⋃

j∈[k] SL
j . From the growth property it fol-

lows that ϵ · w(
⋃

j∈[k] inner2(V L
j ), o) ≥ w(

⋃
j∈[k] SL

j , o) ≥ w(
⋃

j∈[k] rim(V L
j ), o). Let

o∗ : V → {0, . . . , k(Π, n)} be an optimal solution for G and i. We observe that for
any U ⊆ V , the assignment of o∗ on the nodes of U must respect Π, and therefore
w(U, o∗) ≥ wmin(U). The optimality property combined with the last observation implies that
w(

⋃
j∈[k] inner2(V L

j ), o) ≤ α(wmin(V L
1 )+· · ·+wmin(V L

k )) ≤ α(w(V L
1 , o∗)+· · ·+w(V L

k , o∗)) =
α · w(V, o∗) = α · f(Gi,o∗). Combining this inequality with the rim and growth proper-
ties implies that f(Gi,o) = w(V, o) = w(

⋃
j∈[k] inner2(V L

j ), o) + w(
⋃

j∈[k] rim(V L
j ), o) ≤

(1 + ϵ) · w(
⋃

j∈[k] inner2(V L
j ), o) ≤ α · (1 + ϵ) · f(Gi,o∗), thus establishing the soundness

requirement.

5 Compiler for CGFs

In this section, we present our generic compiler for CGFs. It is divided into three subsections
as follows. First, in Sec. 5.1 we characterize the CGFs that are suited for our compiler,
namely SU-closed CGFs. Following that, Sec. 5.3 and 5.4 are dedicated to the compiler
construction. More formally, these sections constructively prove the following theorem.

▶ Theorem 5.1. Let Φ be an SU-closed CGF that admits a PLS with a proof size of ℓΦ.
For any constant δ > 0, there exists a locally restricted δ-TPLS for Φ with a proof size of
ℓΦ + O(log n).

For convenience, the compiler construction is divided between Sec. 5.3, in which we
present an SLOCAL partition algorithm (that plays a similar role to the one presented in the
OptDGP compiler), and Sec. 5.4, in which we describe the label assignment and verification
process. In Sec. 5.2, we provide a high-level overview of the SLOCAL algorithm and how it
is used in the label assignment and verification process.

5.1 SU-Closed CGFs
A CGF Φ is said to be closed under node-induced subgraphs if for every configured graph
Gs ∈ Φ and node subset U ⊆ V , it holds that Gs(U) ∈ Φ. We say that two configured
graphs Gs = ⟨G = (V, E), s⟩ and G′

s′ = ⟨G′ = (V ′, E′), s′⟩ are disjoint if V ∩ V ′ = ∅. We
define the disjoint union between two disjoint configured graphs Gs = ⟨G = (V, E), s⟩
and G′

s′ = ⟨G′ = (V ′, E′), s′⟩ as the configured graph G̃s̃ = ⟨G̃, s̃⟩ consisting of the graph
G̃ = (V ∪̇V ′, E∪̇E′) and the configuration function s̃ : V ∪̇V ′ → {0, 1}∗ that assigns the local
configuration s̃(v) = s(v) to any node v ∈ V ; and s̃(v) = s′(v) to any node v ∈ V ′. We
say that a CGF Φ is closed under disjoint union if for any two disjoint configured graphs
Gs, G′

s′ ∈ Φ with disjoint union G̃s̃, it holds that G̃s̃ ∈ Φ. We refer to a CGF Φ as SU-closed
if it is closed under node-induced subgraphs and under disjoint union.

5.2 Overview
In Sec. 5.3, we present an SLOCAL algorithm called Part_CGF that partitions the nodes of a
given configured graph Gs into clusters. Before formally describing the algorithm in Sec. 5.3,
let us provide some intuition by presenting the high-level idea of the partition and how it is
used to design the label assignment and verification process for an SU-closed CGF Φ.
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Given a configured graph Gs ∈ Φ, we use a ball growing argument to obtain a partition of
the nodes into clusters such that: (1) the subgraph induced by each cluster is of logarithmic
diameter; and (2) the number of crossing edges between clusters is a δ-fraction of the number
of edges in the clusters.

In order to allow the prover to provide a proof for the second property by local means,
during Part_CGF, some nodes may be assigned a secondary affiliation to an adjacent cluster.
The idea is that for each cluster Vj , the number of crossing edges to nodes with secondary
affiliation to Vj is a δ-fraction of the number of edges within Vj .

5.3 Partition Algorithm
Algorithm’s Description. We now provide a formal description of the Part_CGF algorithm.
Consider an SU-closed CGF Φ and a configured graph Gs ∈ Φ. The algorithm partitions the
nodes of G into (possibly empty) clusters V = V1∪̇ . . . ∪̇Vn. As usual in the SLOCAL model,
the nodes are processed sequentially in n iterations based on an arbitrary order v1, . . . , vn

on the nodes, where node vj is processed in the j-th iteration.
Throughout the execution of Part_CGF, each node v ∈ V maintains two fields referred

to as cluster(v) and sec(v). The field cluster(v) is initially empty and its role is to identify
v’s cluster, where each cluster Vj is identified by the id of node vj which is processed in the
j-th iteration, i.e., Vj = {v | cluster(v) = id(vj)}. The field sec(v) is initially empty and its
role is to identify v’s secondary affiliation to a cluster if such affiliation exists (otherwise it
remains empty throughout the algorithm).

The j-th iteration of Part_CGF is executed as follows. Let Gj to be the subgraph induced
on G by V \ (V1 ∪ · · · ∪ Vj−1). If vj ∈ V1 ∪ · · · ∪ Vj−1, then we define Vj = ∅ and finish
the iteration; so, assume that vj is a node in Gj . For an integer r ∈ Z≥0, let Dr

j be the
set of nodes at distance exactly r from vj in Gj and let Br

j =
⋃r

r′=0 Dr′

j . Let Er
j be the

set of edges in the subgraph G(Br
j ) and let Cr

j be the set of edges (u, v) ∈ E, such that
u ∈ Br

j and v /∈ Br
j . Define r(j) to be the smallest integer that satisfies |Cr(j)

j | ≤ δ · |Er(j)
j |.

The j-th iteration is completed by setting cluster(v) = id(vj) for each node v ∈ B
r(j)
j ; and

sec(v) = id(vj) for each node v ∈ D
r(j)+1
j .

Algorithm’s Properties. The following lemma establishes an upper bound on the diameter
of each subgraph G(Vj).

▶ Lemma 5.2. The diameter of subgraph G(Vj) is O(log n) for each j ∈ [n].

Proof. Suppose that Vj ̸= ∅ (as the lemma is trivial otherwise). To show that the diameter
of G(Vj) is O(log n) it is sufficient to show that r(j) = O(log n). We use a ball growing
argument. Note that for any integer r, it holds that |Er

j | ≥ |Er−1
j | + |Cr−1

j |. Thus, for every
r′ < r(j) + 1, we have

|Er(j)+1
j | ≥ |Er′

j | > (1 + δ) · |Er′−1
j | > (1 + δ)2 · |Er′−2

j | > . . .

and since n2 > m ≥ |Er(j)+1
j |, we get that r(j) = O((1/δ) log n) = O(log n). ◀

A simple observation derived from Lemma 5.2 is that Part_CGF has locality O(log n).
This observation combined with the results of [13, 27] lead to the following corollary.

▶ Corollary 5.3. The algorithm Part_CGF can be simulated by a LOCAL algorithm with
polylogarithmic round-complexity.
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5.4 Labels and Verification
Consider an SU-closed CGF Φ and a configured graph Gs ∈ Φ. The prover uses the
SLOCAL algorithm Part_CGF presented in Sec. 5.3 to compute the values r(j) for all
1 ≤ j ≤ n, and the fields cluster(v), sec(v). The goal of the prover is to provide proof of two
properties satisfied by the given configured graph Gs and the outcome of Part_CGF. We
refer to those properties as secondary clusters, crossing edges, and inclusion. To that end,
the prover produces a label assignment L : V → {0, 1}∗ that assigns each node v with a
label L(v) = ⟨Lsec(v), Lcross(v), Linc(v)⟩. The label L(v) is composed of the fields Lsec(v),
Lcross(v), and Linc(v), that provide proof for the secondary clusters, crossing edges and
inclusion properties, respectively.

The secondary clusters property states that sec(v) is not empty for every node v that has
a neighbor belonging to a different cluster. To that end, the sub-label Lsec(v) assigns the
values cluster(v) and sec(v) to each node v ∈ V . Observe that this information is sufficient
for the verifier to verify the secondary clusters property.

For all j ∈ [n], let sec(Vj) = {v | sec(v) = id(vj)} be the set of nodes whose secondary
affiliation is to Vj by the end of the Part_CGF algorithm, and let Fj = {(u, v) ∈ E | u ∈
Vj , v ∈ sec(Vj)} denote the set of edges with one endpoint in Vj and the other endpoint in
sec(Vj). The crossing edges property states that each cluster Vj satisfies |Fj | ≤ δ · |Er(j)

j |.
The field Lcross(·) serves the crossing edges property by means of a comparison scheme
between |Fj | and δ · |Er(j)

j |. This comparison scheme is based on a shortest paths (spanning)
tree rooted at node vj for each cluster Vj ̸= ∅. Notice that each node v ∈ Vj knows its
incident edges from |Fj | based on the Lsec(·) field of its neighbors.

The inclusion property states that Gs(Vj) ∈ Φ for all Vj ̸= ∅. To that end, the prover
uses the field Linc(·) to encode a PLS for Φ concurrently on all subgraphs G(Vj).

Proof Size and Correctness. We observe that the label assignment produced by the prover
can be computed by means of an SLOCAL algorithm with locality O(log n) and thus it can
be simulated by a locally restricted prover. Moreover, the sub-labels Lsec(v) and Lcross(v) are
of size O(log n); and Linc(v) is of size ℓΦ, where ℓΦ is the proof size of a PLS for Φ. Overall,
the proof size of this scheme is ℓΦ + O(log n).

We now show that the correctness requirements are satisfied. We start with completeness,
i.e., showing that if Gs ∈ Φ, then the verifier accepts Gs. Observe that the secondary clusters
and crossing edges properties are satisfied by construction of Part_CGF. In addition, the
inclusion property follows from the fact that Φ is closed under node-induced subgraphs.

As for the soundness requirement, consider a configured graph Gs such that the verifier
accepts Gs. Let V L

1 , . . . V L
k be the clusters encoded in the field Lsec(·). For every j ∈ [k],

let EL
j denote the edge set of subgraph G(V L

j ), let secL
j be the set of nodes for which the

field Lsec(·) encodes a secondary affiliation to V L
j , and let F L

j be the set of edges with one
endpoint in V L

j and one in secL
j . The inclusion property guarantees that Gs(V L

j ) ∈ Φ for
each j ∈ [k]. Let G′

s′ be the disjoint union of Gs(V L
1 ), . . . , Gs(V L

k ). Since Φ is closed under
disjoint union, we get that G′

s′ ∈ Φ. By the secondary clusters property, G′
s′ is the configured

subgraph obtained from Gs by removing the set F L
1 ∪ · · · ∪ F L

k of edges. The crossing edges
property implies that |F L

1 ∪ · · · ∪ F L
k | =

∑
j∈[k] |F L

j | ≤ δ ·
∑

j∈[k] |EL
j | ≤ δm. Thus, Gs is not

δ-far from belonging to Φ, i.e., Gs /∈ FN .
In conclusion, this scheme describes a correct locally restricted δ-TPLS for SU-closed

CGFs with a proof size of ℓΦ + O(log n), thus proving Theorem 5.1.
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A Bounds for Concrete OptDGPs and CGFs

A.1 OptDGPs
In this section, we show how the compiler presented in Section 4 can be used in the design
of locally restricted APLSs for some classical OptDGPs that fit the canonical structure. In
Sections A.1.1, A.1.2, and A.1.3, we present locally restricted APLSs with a logarithmic
proof size for the problems of minimum weight vertex cover, maximum independent set, and
minimum weight dominating set, respectively. Then, in Section A.1.4, we present a locally
restricted (1 + ϵ)-APLS that applies to any canonical OptDGP.

A.1.1 Minimum Weight Vertex Cover
Consider a graph G = (V, E) associated with a node-weight function w : V → {1, . . . , nO(1)}
and let C ⊆ E be a set of constrained edges. A vertex cover of C is a subset U ⊆ V of nodes
such that every edge e ∈ C has at least one endpoint in U . A minimum weight vertex cover
(MWVC) of C is a vertex cover U of C that minimizes w(U) =

∑
u∈U w(u).

Observe that MWVC is a covering OptDGP. Moreover, vertex cover is self-induced (notice
that this is in contrast to the common case of vertex cover where all edges are constrained).
Thus, MWVC is canonical. We aim to use our compiler to construct a locally restricted
2(1 + ϵ)-APLS for MWVC. To that end, we establish the following lemma.

▶ Lemma A.1. There exists a 2-APLS for MWVC with a proof size of O(log n).

Proof. As presented in [7], there exists a 2-APLS for the instance of MWVC where all edges
are constrained and the graph is connected. We can obtain a 2-APLS for MWVC in the more
general case where a subset C ⊆ E of edges are constrained simply by applying the 2-APLS
from [7] on the connected subgraphs induced by the constrained edge set C. The proof size
of this scheme is O(log n + log W ), where W is an upper bound on the node-weights. Since
in our case W = nO(1), it follows that the proof size is O(log n). ◀

Plugging the 2-APLS obtained in Lemma A.1 into our compiler leads to the following
corollary.
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▶ Corollary A.2. For any constant ϵ > 0, there exists a locally restricted (2(1 + ϵ))-APLS
for MWVC with a proof size of O(log n).

We now consider the unweighted version, simply referred to as minimum vertex cover
(MVC), on graphs with large odd-girth (where the odd-girth of a graph is defined to be
the shortest odd cycle). As the following theorem shows, this case allows for an improved
approximation ratio.

▶ Theorem A.3. For any constant ϵ > 0, there exists a locally restricted (1 + ϵ)-APLS for
MVC on graphs of odd-girth ω(log n) with a proof size of O(log n).

Proof. Recall that our compiler first partitions the nodes into clusters of diameter O(log n),
and then proceeds to apply an α-APLS concurrently on the subgraph induced by each cluster.
We observe that each of these subgraphs created by the partition is bipartite since the
odd-girth of the graph is ω(log n). Thus, it is sufficient to show that there exists a PLS for
MVC on bipartite graphs with a proof size of O(log n).

The well known König’s theorem states that in bipartite graphs the size of minimum
vertex cover is equal to the size of maximum matching. This allows for a PLS for MVC
in bipartite graphs with a proof size of O(log n) constructed as follows. The prover simply
encodes a maximum matching on the graph along with a proof that the size of this matching
is equal to the size of the given vertex cover (e.g., by means of a comparison scheme). ◀

A.1.2 Maximum Independent Set
Consider a graph G = (V, E) and let C ⊆ E be a set of constrained edges. An independent
set of C is a subset I ⊆ V of nodes, such that each node v ∈ I is incident on an edge in C

and every edge e ∈ C has at most one endpoint in I. A maximum independent set (MaxIS)
of C is an independent set I of C that maximizes |I|.

Observe that MaxIS is a packing OptDGP. Moreover, independent set is self-induced
(notice that this is in contrast to the common case of independent set where all edges are
constrained). Thus, MaxIS is canonical.

Let us denote by ∆ = maxv∈V {deg(v)} the largest degree in graph G = (V, E). In the
following lemma, we present a simple ∆-APLS for the MaxIS problem.

▶ Lemma A.4. There exists a ∆-APLS for MaxIS with a proof size of O(log n).

Proof. We use the fact that the ratio between the size of a maximum independent set and the
size of a maximal independent set (i.e., an independent set that is not a subset of any other
independent set) is at most ∆. The ∆-APLS construction is simple. The prover encodes a
maximal independent set along with the value of ∆ and a proof that its size is at most a
multiplicative factor of ∆ away from the given independent set. ◀

Plugging the ∆-APLS from Lemma A.4 into our compiler leads to the following corollary.

▶ Corollary A.5. For any constant ϵ > 0, there exists a locally restricted (∆(1 + ϵ))-APLS
for MaxIS with a proof size of O(log n).

Similarly to the MVC problem, restricting MaxIS to families of graphs with odd-girth
ω(log n) allows for a better approximation ratio, as established by the following theorem.

▶ Theorem A.6. For any constant ϵ > 0, there exists a locally restricted (1 + ϵ)-APLS for
MaxIS on graphs of odd-girth ω(log n) with a proof size of O(log n).
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Proof. Similarly to the proof of Theorem A.3, it is sufficient to show that there exists a PLS
for MaxIS on bipartite graphs with a proof size of O(log n). To that end, we can use the
fact that in bipartite graphs, the size of MaxIS is equal to the size of a minimum edge cover.
We can now construct a PLS where the prover encodes a minimum edge cover of the graph,
along with a proof that it is equal in size to the given independent set. ◀

A.1.3 Minimum Weight Dominating Set

Consider a graph G = (V, E) associated with a node-weight function w : V → {1, . . . nO(1)}
and let C ⊆ V be a subset of constrained nodes. A dominating set of C is a subset D ⊆ V

of nodes, such that D ∩ (v ∪ N(v)) ̸= ∅ for each constrained node v ∈ C. A minimum weight
dominating set (MWDS) of C is a dominating set D of C that minimizes

∑
u∈D w(u).

Observe that MWDS is a covering OptDGP. Moreover, dominating set is self-induced
(notice that this is in contrast to the common case of dominating set where all nodes are
constrained). Thus, we get that MWDS is canonical. We aim to use our compiler to construct
a locally restricted O(log n)-APLS for MWDS. To that end, we establish the following lemma.

▶ Lemma A.7. There exists an O(log n)-APLS for MWDS with a proof size of O(log n).

Proof. An O(log n)-APLS for the instance of MWDS where all nodes are constrained and is
presented in [7]. The idea behind that O(log n)-APLS is that the prover provides a feasible
solution to the dual LP, such that the objective value of this dual solution is at most a
multiplicative factor of O(log n) from the given dominating set. We argue that this technique
can be applied to obtain O(log n)-APLS for MWDS (in its more generalized version described
above). This follows from the fact that the gap between an optimal MWDS solution and an
optimal dual solution remains O(log n) (since MWDS is an instance of set cover). ◀

Plugging the O(log n)-APLS obtained in Lemma A.7 into our compiler leads to the following
corollary.

▶ Corollary A.8. There exists a locally restricted O(log n)-APLS for MWDS with a proof
size of O(log n).

A.1.4 Generic Locally Restricted (1 + ϵ)-APLS for Canonical OptDGPs

We establish a generic upper bound that applies to any canonical OptDGP.

▶ Theorem A.9. Consider a canonical OptDGP Ψ. For any constant ϵ > 0, there exists a
locally restricted (1 + ϵ)-APLS for Ψ with a proof size of O(n2).

Proof. As stated in [19, Theorem 3.2], any decidable property admits a PLS. The idea
behind this universal PLS is that the prover can assign each node v with a label L(v) that
encodes the entire configured graph Gs. In response, the verifier at node v verifies that v’s
neighbors agree on the structure of the configured graph encoded in L(v), and that v’s local
neighborhood is consistent with the one encoded in L(v). Following that, the verifier can
evaluate whether Gs is a yes-instance or not.

Observe that applying the universal PLS described above for a canonical OptDGP requires
a proof size of O(n2). We can now plug this PLS construction into our compiler to obtain
the desired locally restricted (1 + ϵ)-APLS for Ψ. ◀
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A.2 CGFs
In this section, we show how the compiler presented in Section 5 can be combined with known
PLS constructions to obtain locally restricted δ-TPLSs for various well-known SU-closed
CGFs.

A.2.1 Planarity
A graph G = (V, E) is called planar if it can be embedded in the plane. The following lemma
has been established by Feuilloley et al. [11].

▶ Lemma A.10. There exists a PLS for planarity with a proof size of O(log n).

Observe that planar graphs are SU-closed. Thus, plugging the PLS for planarity into our
compiler implies the following corollary.

▶ Corollary A.11. For any constant δ > 0, there exists a locally restricted δ-TPLS for
planarity with a proof size of O(log n).

A.2.2 Bounded Arboricity
The arboricity of a graph G = (V, E) is the minimum number k for which there exists an
edge partition E = E1∪̇ . . . ∪̇Ek such that Gi = (V, Ei) is a forest for each i ∈ [k]. Let
arb(G) denote the arboricity of graph G. We say that graph G is of bounded arboricity if
arb(G) = O(1).

▶ Lemma A.12. There exists a PLS for bounded arboricity with a proof size of O(log n).

Proof. As established in [19], there exists a PLS for forests with a proof size of O(log n). A
PLS for bounded can be implemented by using the PLS construction for forests concurrently
on arb(G) edge-induced subgraphs of G. ◀

Observe that bounded arboricity is SU-closed. Thus, plugging the PLS for bounded arboricity
into our compiler implies the following corollary.

▶ Corollary A.13. For any constant δ > 0, there exists a locally restricted δ-TPLS for
bounded arboricity with a proof size of O(log n).

A.2.3 k-Colorability
For a positive integer k, we say that a graph G = (V, E) is k-colorable if there exists a proper
k-coloring of its nodes. Observe that k-colorability admits a (simple) PLS with proof size
O(log k) and that it is SU-closed. Thus, combined with our compiler, we get the following
theorem.

▶ Theorem A.14. For any constant δ > 0, there exists a locally restricted δ-TPLS for
k-colorability with a proof size of O(log n).

A.2.4 Forests and DAGs
The following two lemmas have been established by Korman et al. [19].

▶ Lemma A.15. There exists a PLS for forests with a proof size of O(log n).
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▶ Lemma A.16. There exists a PLS for directed acyclic graphs (DAGs) with a proof size of
O(log n).

Observe that both forests and DAGs are SU-closed. Thus, plugging the PLSs for forests and
DAGs into our compiler implies the following corollaries.

▶ Corollary A.17. For any constant δ > 0, there exists a locally restricted δ-TPLS for forests
with a proof size of O(log n).

▶ Corollary A.18. For any constant δ > 0, there exists a locally restricted δ-TPLS for
directed acyclic graphs with a proof size of O(log n).

B Impossibilities of Locally Restricted GPLS

In this section, we establish some inherent limitations of locally restricted GPLSs based on
the following observation.

▶ Observation B.1. If there exists a locally restricted GPLS over U with yes-family FY and
no-family FN , then there exists a LOCAL algorithm with a logO(1)(n) round-complexity that
given a configured graph Gs ∈ U , decides if Gs ∈ FY (in which case all nodes return True);
or Gs ∈ FN (in which case at least one node returns False).

Proof. Given a configured graph Gs ∈ U , we obtain a LOCAL algorithm by first simulating
the locally restricted prover on Gs (using a polylogarithmic number of rounds), and then
simulating the verifier (using 1 round). By the correctness requirements of a GPLS, the
outcome of this algorithm is that all nodes return True if Gs ∈ FY ; whereas at least one
node returns False if Gs ∈ FN . ◀

The observation above implies that it is impossible to construct a locally restricted GPLS
for verification tasks that require ω(poly log n) rounds in the LOCAL model. Notice that
this impossibility applies to a large class of verification tasks associated with OptDGPs and
CGFs. For example, using a simple indistinguishability argument, one can show that there is
no locally restricted PLS for forests (i.e., a PLS deciding if a given graph is a forest). Similar
arguments can be applied to exclude a locally restricted PLS for most of the OptDGPs and
CGFs considered in Section A.

C Additional Related Work

The PLS model was introduced by Korman, Kutten, and Peleg in [19] and studied extensively
since then, see, e.g., [11, 18, 5, 9, 24, 10]. Research in this field include [18], where a PLS
for minimum spanning tree is shown to have a proof size of O(log n log W ), where W is the
largest edge-weight, and [11], where a PLS for planarity is shown to have a proof size of
O(log n).

In parallel, several researchers explored the limitations of the PLS model, often relying on
known lower bounds from nondeterministic communication complexity [20]. Lower bounds of
Ω(n2) and Ω(n2/ log n) are established in [16] with regards to the proof size of any PLS for
graph symmetry and non 3-colorability, respectively. A similar technique was used by the
authors of [4] to show that many classic optimization problems require a proof size of Ω̃(n2).

The lower bounds on the proof size of PLSs for some optimization problems have motivated
the authors of [6] to introduce the APLS notion, further studied recently in [7]. Optimization
problems considered in the context of APLS include maximum weight matching, which was
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shown in [6] to admit a 2-APLS with a proof size of O(log W ), and minimum weight vertex
cover, which was shown in [7] to admit a 2-APLS with a proof size of O(log n + log W ),
where in both cases W refers to the largest weight value.

In the current paper, we also introduce the TPLS model which is suited for properties
that are not formulated as optimization problems. This model is based on the notion of
property testing [14]. More specifically, the TPLS model is formulated using the distance
measure between graphs defined in [1].

Our focus in this paper is on locally restricted APLSs and TPLSs, restricting the prover
to a LOCAL algorithm with a polylogarithmic number of rounds. Interest in the power of
deterministic LOCAL algorithms with polylogarithmic round-complexity was initiated by
Linial’s seminal work [21, 22]. One particular problem that raised a lot of interest in this
context is the network decomposition problem introduced by Awerbuch et al. in [3]. In a
recent breakthrough [27], Ghaffari and Rozhon presented a deterministic algorithm with
polylogarithmic round-complexity for the network decomposition problem. As established in
[13], a consequence of this result is that any SLOCAL algorithm with logO(1) n locality can
be simulated by a LOCAL algorithm with logO(1) n rounds. This simulation technique is
used in the construction of our compilers in Sections 4 and 5.
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