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—— Abstract

A long line of research about connectivity in the Massively Parallel Computation model has
culminated in the seminal works of Andoni et al. [FOCS’18] and Behnezhad et al. [FOCS’19].
They provide a randomized algorithm for low-space MPC with conjectured to be optimal round
complexity O(log D + loglogm n) and O(m) space, for graphs on n vertices with m edges and
diameter D. Surprisingly, a recent result of Coy and Czumaj [STOC’22] shows how to achieve the
same deterministically. Unfortunately, however, their algorithm suffers from large local computation
time.

We present a deterministic connectivity algorithm that matches all the parameters of the
randomized algorithm and, in addition, significantly reduces the local computation time to nearly
linear.

Our derandomization method is based on reducing the amount of randomness needed to allow
for a simpler efficient search. While similar randomness reduction approaches have been used before,
our result is not only strikingly simpler, but it is the first to have efficient local computation. This is
why we believe it to serve as a starting point for the systematic development of computation-efficient
derandomization approaches in low-memory MPC.
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1 Introduction

Due to the ever-increasing amount of data available, memory has grown to become a major
bottleneck, which makes many traditional graph algorithms inefficient or even inapplicable.
To overcome this obstacle, inspired by the MapReduce paradigm [17], several computation
frameworks for large-scale graph processing across multiple machines have been proposed.
The Massively Parallel Computation (MPC) model is a clean, theoretical abstraction of
these frameworks and thus serves as a basis for the systematic study of memory-restricted
distributed algorithms. Introduced by Karloff et al. [27] and Feldman et al. [19] in 2010, it
was later refined in a sequence of works and has become tremendously popular over the past
decade.
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MPC Model

In the MPC model, the distributed network consists of M machines, having local memory
S each. The input is distributed across the machines and the computation proceeds in
synchronous rounds. In each round, each machine performs an arbitrary local computation
and then communicates up to S data. All messages sent and received by each machine in
each round have to fit into the machine’s local space. The main complexity measure of an
algorithm is its round complezity, that is, the number of rounds needed by the algorithm to
solve the problem. Secondary complexity measures of an algorithm are its global memory
usage — i.e., the number of machines times the memory per machine required — as well as the
total computation performed by machines to run the algorithm, i.e., the (asymptotic) sum of
the local computation performed by each machine.

We focus on the design of fully scalable graph algorithms in the low-memory MPC
model, where each machine has strongly sublinear memory. More precisely, an input graph
G = (V, E), with n vertices and m edges, is distributed arbitrarily across machines with
local memory S = O(n%) each, for some constant 0 < § < 1, so that the global space is
SGiobal = Q(n +m).

Graph Algorithms and Connectivity

In this model, fundamental graph and optimization problems have recently gained a lot of
attention. There is a plethora of work on the problems of connectivity, matching, maximal
independent set, vertex cover, coloring, and many more (see, e.g., [6, 20, 12, 15, 7, 23, 16]).
One particularly important (and arguably the most central) graph problem that has
received increasing attention over the past few years is the one of connectivity. This is not
only a problem of independent interest, but it serves as a subroutine for many algorithms.

» Definition 1 (Connectivity Problem). Let G = (V, E) be an undirected graph. The goal is
to compute a function cc: V. — N such that every vertex u € V' knows cc(u) and for any pair
of vertices u,v € V, u and v are connected in G if and only if cc(u) = cc(v).

A sequence of works [3, 4, 29, 7, 33, 10, 7] on this problem culminated in a randomized
algorithm by Behnezhad et al. [7] that finds all connected components of a graph with
diameter D in O(log D + loglogm n) rounds.

In a very recent breakthroughy: Coy and Czumaj [12] obtained the same round complexity
with a deterministic algorithm. Their derandomization approach, however, comes at a cost
of heavy local computation, which makes it impractical for large-scale applications.

Deterministic Algorithms and Derandomization

While the problem of connectivity is of independent interest, it is instructive to view the
above results in a broader context of deterministic algorithms and derandomization.

Notably, for almost a decade, (almost) all the research in the domain of Massively
Parallel Computation has focused on the study of randomized algorithms. Only recently,
a sequence of works has aimed at exploring the power of the (low-memory) MPC model
restricted to deterministic algorithms [5, 16, 13, 15, 12]. They demonstrate that several
graph problems can be solved deterministically with (asymptotic) complexity bounds that
are comparable to those of the randomized algorithms. The main ingredients of these results
are derandomization methods specifically tailored to the low-memory MPC model: they are
designed to cope with the limited memory per machine while exploiting the power of local
computation and all-to-all communication in this setting.
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This quest for efficient derandomization techniques has become one of the main problems
of the area. Unfortunately, current derandomization frameworks suffer from long local
running time (e.g., large polynomial or even exponential in n’). In fact, as noted in [16],
allowing heavy local computation might provide an advantage in the context of distributed
and parallel derandomization. However, especially in performance-oriented scenarios, local
computation may quickly become a critical parameter. It thus emerges as a natural direction
to study deterministic algorithms whose total computation matches that of their randomized
counterparts.

1.1 OQOur Contribution

We address this issue by presenting the first computation-efficient deterministic algorithm
for the problem of graph connectivity in the strongly sublinear memory regime of MPC.

» Theorem 2 (Deterministic Connectivity). There is a strongly sublinear MPC algorithm that
given a graph with diameter D, identifies its connected components in O(log D + loglogm n)

rounds deterministically using O(n +m) global space and O(m) total computation.

The total computation of our algorithm significantly improves over the poly(n)-bound of
Coy and Czumaj [12], with no loss in the round complexity. In fact, our algorithm matches
even the state-of-the-art randomized algorithm [7] in all parameters up to a polylogarithmic
factor in the local running time.

While the connectivity algorithm is of independent interest, our result provides a number of
other qualitative advantages. For instance, our analysis relies only on pairwise independence
as opposed to the almost O(logn)-wise independence of [12]. Moreover, to the best of
our knowledge, our result is the first that uses the framework of limited independence for
derandomization without incurring a significant loss in one of the parameters (e.g., in the
total computation time), and hence may be of practical interest. Furthermore, due to their
simplicity, our analyses may serve as a friendly introduction to deterministic algorithms via
the framework of bounded independence and, hopefully, as a stepping stone to the more
systematic development of computation-efficient derandomization.

1.2 Randomized Connectivity Algorithms in a Nutshell

We present the intuition of the randomized connectivity algorithms by Andoni et al. [3] and
Behnezhad et al. [7]. For a broader overview of connectivity algorithms, see Section 1.4.

Vertex Contraction

The main idea behind connectivity algorithms working in O(log D) rounds is to repeatedly
perform vertex contractions [3]. Contracting (often also called relabeling) a vertex u to
an adjacent vertex v means deleting the edge {u,v} and connecting v to all the vertices
adjacent to u. The simplest way to implement this contraction-based approach is to first
appoint a random subset of the vertices as leaders (by letting each vertex independently
with probability % become a leader), and then to contract non-leader vertices to one of their
leader neighbors (if any). This approach requires O(logn) rounds with high probability.

Vertex Contraction with Levels and Budgets (Andoni et al. [3])

A crucial observation to speed up the vertex contractions — going back to the graph ex-
ponentiation approach by Lenzen and Wattenhofer [31] — is to let each vertex expand its
neighborhood to neighbors of neighbors by adding new edges (without changing the con-
nectivity). In fact, if every vertex reaches degree Q(d) by expanding its neighborhood in
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O(log D) rounds, we can mark vertices to be a leader with probability ~ log". As a result,

each non-leader vertex has a leader in its neighborhood and the number of remaining vertices
is O(2).

In their algorithm, Andoni et al. [3] assign a level to every vertex which has not been
contracted yet. Vertices at level i have a budget of b; for expanding their neighborhood,

i.e., each vertex at level 7 can add at most b; neighbors. The initial budget by is set to
min(n‘v 2./ ™) to maintain global space O(m). At iteration i, every vertex either increases

its degree to b; or finds its connected component. As explained above, we thus can mark
logn
b;

to O(n/b;). Hence, the budgets of remaining vertices can be updated to by = bite, for a
small constant ¢, while using the same global space. Overall, after O(loglogm n) iterations,
there will be a unique vertex left in each connected component.

leader vertices with probability and perform contractions to reduce the problem size

Random Leader Contraction (Behnezhad et al. [7])

To further improve the round complexity, Behnezhad et al. [7] design an algorithm that
applies vertex contractions and increases the budgets of vertices in an asynchronous manner,
e.g., at a given time two active vertices can have different budgets. In each round, their
algorithm (informally) ensures that each vertex either learns its 2-hop neighborhood or
increases its budget. We here focus on the routine that defines the budgets’ increase, as this
is the only step involving randomness.

Consider the subgraph induced by vertices with budget level 7. The crucial observation is
that if a vertex has (b;) many neighbors of the same level, then contracting all of them
allows us to recuperate Q(b?) budget. If each vertex is elected as a leader with probability
~ lobgi % and non-leader vertices contracted to an arbitrary neighboring leader, then leaders

can increase their level without exceeding the total memory.

Increasing Initial Budget using Matching (Behnezhad et al. [7])

To allow each vertex to start with a poly logn budget, a randomized constant-round algorithm
(see [7, Algorithm 3]) reduces the number of vertices of G by a constant factor. By running it
for O(loglogn) MPC rounds, the problem size decreases from n to n/poly logn. Intuitively,
this algorithm works by contracting a constant fraction of the vertices to their lowest-ID
neighbors as follows. Each vertex proposes to be contracted to its neighbor with smallest
ID. A deterministic conflict resolving phase results in a graph of size 2(n) consisting of
vertex-disjoint paths. Contracting along the edges of a constant-approximate mazimum
matching in this graph with maximum degree 2 thus allows to contract Q(n) vertices as
desired.

1.3 Deterministic Connectivity: Comparison with the State-of-the-Art

We next present the main ideas behind the recent deterministic connectivity algorithm of
Coy and Czumayj [12].

Coy and Czumaj [12] identify and extract the only two sources of randomization from
the algorithms of [3, 7], namely matching and hitting set. On the one hand, as outlined in
Section 1.2, a constant approximation of matching in graphs with maximum degree 2 can be
used for the initial budget increase. On the other hand, the random leader contraction can
be formulated as a variant of set cover, which we refer to as hitting set with all sets of the
same size (see Definition 9 for a precise definition).
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As these are the only steps involving randomness (as outlined in Section 1.2), the (efficient)
derandomization of these two constant-round key algorithmic primitives immediately leads
to an (efficient) deterministic connectivity algorithm. In fact, their derandomization together
with the O(log D + loglogn) randomized algorithm due to Behnezhad et al. [7] results in
the state-of-the-art deterministic connectivity algorithm in low-memory MPC [12].

Interestingly, because of the conditional lower bound framework (conditioned on the
widely believed 1-vs-2-cycles conjecture for low-space MPC algorithms) due to Ghaffari
et al. [22] and its extension to the deterministic setting due to Czumaj et al. [14], the
two underlying problems of matching and hitting set do not admit any component-stable
constant-round deterministic algorithm. Hence, the authors in [12] incorporate in their work
derandomization techniques that are highly non-component-stable.

While their adopted derandomization framework is well-established, its efficient imple-
mentation for obtaining a deterministic connectivity algorithm on an MPC with low local
space and optimal global space requires to overcome several challenges. Although the algo-
rithm from [12] achieves optimal space guarantees, the computation is suboptimal for both
derandomization steps. We refine these to obtain a more efficient deterministic connectivity
algorithm, as explained next.

Maximum Matching

In [12], the problem of approximating maximum matching in graphs of maximum degree
at most two is solved by searching the space of a randomized process based on pairwise
independent hash functions, which are specified by (2logn + O(1)) random bits. As each of
the O(n?) hash functions is evaluated O(n) times, with each evaluation taking poly log n time,
the resulting total computation is O(n3) We reduce the seed length, i.e., the total number of
random bits needed, to O(loglogn) and, as a result, obtain O(n) total computation.

Hitting Set

For a hitting set instance with n elements and a collection of n subsets of size b, the algorithm
from [12] finds a hitting set of size O(nb~'/?) by derandomizing a simple random sampling
approach based on a O(log,(n))-wise 1/poly(n)-approximately independent family of hash
functions of size poly(n). The distributed implementation of the method of conditional
expectation for this process takes global space O(nb) and poly(n) total computation.

We provide a low-memory MPC algorithm that solves the same hitting set instance using
only pairwise independent random choices with n - poly(b) global space and n - poly(b) total
computation. Thus, the dependency on n improves polynomially when b < n. It turns out
that using this hitting set algorithm as a subroutine in our connectivity algorithm allows us
to obtain an algorithm with total computation O(m). We also note that several other works
[9, 21, 39] solve the hitting set problem deterministically in the context of graph spanners in
CONGEST and CONGESTED-CLIQUE using similar derandomization techniques. However,
these are not straightforward to implement in the low-memory MPC model.

Finally, it is worth observing that because of the shorter seeds, the MPC implementation
of both matching and hitting set algorithms is significantly simplified as we can perform a
simple brute force search instead of using the method of conditional expectation.

! The notion of component-stability intuitively refers to the property that the choices of any vertex over
the course of the algorithm are affected only by vertices in its same connected component.
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1.4 Further Related Work

The connectivity problem in low-memory MPC was studied by Andoni et al. [3] who presented
an O(log D - loglogm n) randomized algorithm, which improves upon the classic O(logn)
bound derived from earlier works in the PRAM model. Concurrently, for graphs with
large spectral gap A, i.e., (1/polylog(n)), the bound was improved in [4] developing a
randomized O(loglogn + log(1/A)) algorithm. Then, a near-optimal parallel randomized
algorithm that in O(log D + loglogm n) rounds determines all connected components was
developed by Behnezhad et al. [7]. Subsequently, Liu et al. [33] extended the same result
to the arbitrary CRCW PRAM model, which is less computationally powerful than MPC,
achieving such result with good probability?. Moreover, by developing a method that converts
randomized PRAM algorithms to highly randomness-efficient MPC algorithms, Charikar et
al. [10] achieved a super-polynomial saving in the randomness used in [7], showing that
(log n)@Uee DFloglog,/n 1) random bits suffice (with good probability), provided that the global
space is Q((n+m)-n’). The current deterministic state-of-the-art algorithm for connectivity
is due to Coy and Czumaj [12] who obtained a deterministic O(log D + loglog= n) algorithm
with asymptotically optimal space. ’

Finally, let us note that the connectivity problem has been studied in other regimes as
well. Lattanzi et al. [30] gave a constant-round MPC connectivity algorithm in the superlinear
regime, i.e., each machine has local space Q(n'*9). By well-known connections between linear
memory MPC and the CONGESTED-CLIQUE model, [26] yields a O(1)-rounds randomized
connectivity MPC algorithm with optimal global space. Then, Nowicki [38] showed that the
same problem can be solved deterministically in O(1) MPC rounds with the same memory
guarantees.

On the hardness side, one of the most outstanding problems for low-space MPCcomplexity
is the problem of distinguishing whether an input graph is an n-vertex cycle or consists of two
F-vertex cycles (see, e.g., [41, 37] for more information). Based on the conjectured (logn)
low-memory MPC round-complexity lower bound for the 1-vs-2-cycles problem, Behnezhad
et al. [7] show an Q(log D) lower bound for computing connected components in general

149 . Coy and Czumaj in [12] extend the same conditional

graphs with diameter D > log
lower bound to the entire spectrum of D proving that no connectivity algorithm can achieve

o(log D) MPC round complexity.

2 Preliminaries

2.1 Primitives in Low-Space MPC

There are a number of well-known MPC primitives that will be used as black-box tools.
These have been studied in the MapReduce framework and can be implemented in the MPC
model with stricly sublinear space per machine and linear global space. We will use the
following lemma to refer to them:

» Lemma 3 ([25, 24]). For any positive constant §, sorting, filtering, prefiz sum, predecessor,
duplicate removal, and colored summation task > on a sequence of n tuples can be performed
deterministically in MapReduce (and therefore in the MPC model) in a constant number of
rounds using S = n’ space per machine, O(n) global space, and O(n) total computation.

2 with success probability at least 1 — 1/poly((mlogn)/n)

3 Given a sequence of n pairs of numbers (color;, z;),i € [n], with C = {color; |i € [n]}, compute
Se = Zi:cozm«, T for all ¢ € C. Note that this problem can be easily solved by a constant sequence
of map, shuffle, and reduce steps with (color;, x;) as key-value pairs.
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Finally, observe that these basic primitives allow us to perform all of the basic computations
on graphs deterministically that we will need in a constant number of MPC rounds. This
includes the tasks of computing the degree of every vertex, ensuring neighborhoods of
all vertices are stored on contiguous blocks of machines, sums of values among a vertex’
neighborhood, and collecting the 2-hop neighborhoods provided that they fit in the memory
of a single machine.

2.2 Derandomization Framework

In this section, we give an overview of the common derandomization techniques used in
all-to-all communication models [9, 34] with a focus on deterministic algorithms in the
strongly sublinear memory regime of MPC. A systematic introduction to the framework of
limited independence can be found for example in [40, 36, 2, 35, 8, 42].

The first step is to obtain a randomized process that produces good results in expectation
based on a small search space (i.e., short random seed) by using random variables with some
limited independence. We will use a k-wise independent family of hash functions, which is
defined as follows:

» Definition 4 (k-wise independence). Let N, k,¢ € N with k < N. A family of hash functions
H = {h: [N] = {0,1}*} is k-wise independent if for all I C {1,...,n} with |I| < k, the
random variables X; := h(i) with i € I are independent and uniformly distributed in {0, 1}
when h is chosen uniformly at random from H. If k = 2 then H is called pairwise independent.
Random variables sampled from a pairwise independent family of hash functions are called
pairwise independent random variables.

The following is a well-known result about the existence and construction of such hash
families:

» Lemma 5 ([1, 11, 18]). For every N, ¢, k € N, there is a family of k-wise independent hash
functions H = {h : [N] — {0,1}*} such that choosing a uniformly random function h from
H takes at most k(£ + log N) + O(1) random bits, and evaluating a function from H takes
time poly(¢,log N) time.

If there is a randomized algorithm, over the choice of a random hash function, that gives
good results in expectation, one can derandomize it by finding the right choice of (random)
bits. To achieve that, if the seed length is small, one can brute force it without incurring an
overhead in the global space.

In previous works this was usually not possible due to a seed length depending on n of
Q(logn) bits, which results in hash families of size larger than the space S of a single machine.
Instead, they used the method of conditional expectation or probabilities. There, one divides
the seed into several parts and fixes one part at a time in a way that does not decrease the
conditional expectation (or probability). This can be done with global coordination. We
refer the interested reader for more details of the method of conditional expectation to [12,
Section 2.5, Appendix A].

2.3 Reducing The Seed Length via Coloring

The following technique plays a central role for reducing the seed length of randomized
processes solving local graph problems. As showed in [5, 16, 15], if the outcome of a vertex
depends only on the random choices of its neighbors, then k-wise independence among
random variables of adjacent vertices is sufficient. Whenever this is the case, we can find a
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mapping from vertex IDs to shorter names (colors) such that adjacent vertices are assigned
different names. Linial gave a 1-round distributed coloring algorithm with O(AZlog(n))
colors [32]. We here adapt a more explicit 1-round distributed coloring algorithm with
O(A?log? (n)) colors by Kuhn [28] to the MPC model, which leads to the following lemma:

» Lemma 6. Let G = (V,E) be a graph of mazimum degree A < n®. There exists a
deterministic algorithm which computes an O(A2log4 n) coloring of G in O(1) MPC rounds
using O(n®) local space, O(n - poly(A)) global space, and O(n - poly(A)) total computation.

Proof. We start by recalling the high-level idea and then we give an efficient MPC imple-
mentation. We assume that each vertex in G is given a unique ID between 1 and n. Let p
be a prime with 10Aloga () < p < 20Aloga(n). It is well known that such a prime always
exist. Moreover, let d = [logs(n)]. There exists p?*t! > n distinct polynomials of degree
at most d over IF,. We denote by f; the i-th such polynomial. Each color corresponds to a
tuple over IF,,. Note that there are p? = O(A? long n) such tuples.

Let C; = {(z, fi(z)): x € F,}. Using Ad < p together with the fact that a non-zero
polynomial of degree d can have at most d zeros implies that each vertex can choose a color
¢(i) € C; such that c(i) ¢ C; for every neighbor j. Now, assigning each vertex ¢ the color
¢(4) results in a valid coloring. It remains to discuss the MPC implementation. By using
the basic primitives of Lemma 3 and the assumption that A < n°, we can assume that the
machine responsible to compute the coloring of the i-th vertex also stores the IDs of all
the neighbors of i. Note that a given polynomial can be evaluated in time poly(logn, A).
Computing the color ¢(i) boils down to O(A - p?) = poly(logn, A) polynomial evaluations.
Hence, the total computation time is O(n - poly(A)), as desired. <

3 Constant Approximation of Maximum Matching

The first algorithmic step for the derandomization of the connectivity algorithm from [7]
consists of solving approximate maximum matching in graphs of maximum degree two. Coy
and Czumaj proved the following theorem:

» Theorem 7 (Theorem 4.2 of [12]). Let G = (V, E) be an undirected simple graph with
mazimum degree A < 2. One can deterministically find a matching M of G of size at
least m/8 = Q(m) in O(1) MPC rounds with local space S = O(n°), and global space

Scioval = O(n).

By extending their algorithm with the seed reduction technique mentioned earlier, we prove
the following result:

» Theorem 8. There exists an algorithm with the same properties as those in Theorem 7
using O(n) total computation.

We start by reviewing the main idea used in the algorithm proving Theorem 7.

Randomized Algorithm. The algorithm of Theorem 7 is based on derandomizing the
following simple random process. Let {X.: e € E} be a family of pairwise independent
random variables with X, = 1 with probability p = 1/4 and X, = 0 otherwise. Now, let M
be the matching that includes each edge e with X, = 1 and X, = 0 for every neighboring
edge ¢/. The expected size of this matching is:
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E[M[] =) Prlee M| =) PriXc=1]- Y  PrX.=1nX,=1]
ecE eckE e'GE\{e}:
e'Ne#l

>m-(p-2") 2 ¢

where the second inequality follows from pairwise independence of the random variable.

Hence, they can be specified by a seed of length 2logn + O(1) by Lemma 5. As explained
n [12], this allows to use the method of conditional expectation to deterministically find a
matching of size at least m/8 in O(1) MPC rounds.

Reducing the Seed Length. We next show how one can further reduce the seed length
to O(loglogn). The main observation is that the above analysis holds as long as for any
two neighboring edges the two corresponding variables are independent. This motivates the
following approach. First, we assign to each edge e a color ¢(e) from the set {1,2,...,C}
for C = O(log®n) by applying Lemma 6 such that two neighboring edges get assigned a
different color. Let {X,: ¢ € [C]} be a family of pairwise independent random variables with
X. = 1 with probability p = 1/4 and X, = 0 otherwise. We now include each edge e¢ in M
if X,y =1 and Xy = 0 for every neighboring edge ¢’. The same calculations as above
shows that E[M] > 2.

MPC Algorithm. Now we are ready to present our deterministic MPC algorithm that proves
Theorem 8. In the following, we say that something can be efficiently computed if there
exists a deterministic MPC algorithm running in O(1) rounds with local space S = O(n°),
global space Sgiopar = O(n) and using O(n) total computation.

Let H = {h: [C] — {0,1}?} be a family of 2-wise independent hash functions of size at
most 22108 C+O(1) — poly(logn) obtained using Lemma 5. Observe that each hash function
h € H defines a matching M(h) that includes each edge e with h(c(e)) = 0 and h(c(e’)) # 0
for every neighboring edge €', where h(i) denotes the length-2 bit sequence assigned to i by
the corresponding integer in {0,...,3}.

The analysis of the randomized algorithm above implies that choosing a hash function
h uniformly at random from H results in a matching of expected size at least m/8. In
particular, this guarantees the existence of a hash function h* with M(h*) > m/8. We
efficiently compute |[M(h)| for every h € H and choose one good hash function that yields a
matching of size at least m/8.

First, we efficiently compute the coloring ¢ using Lemma 6. Next, we compute the
approximate maximum matching in G by derandomizing the sampling approach analyzed
above. Since the size of our family of pairwise independent hash functions is poly logn, we
can store one number per hash function on every machine. Each machine M, which is
responsible for some edges £; C [E], can compute locally the number of edges M7 (h) C E;
in the matching generated by h € ‘H within a single round. Then, we efficiently aggregate
these numbers across all machines to compute the size of the matching M(h) =3_; M (h)
for every hash function h. The best h* € H for which M(h*) > 2, breaking ties arbitrarily,
yields our approximate maximum matching. Finally, let us note that the global memory
occupied by the hash functions across all machines M is M - |H| < M - O(n®) = O(n)
and the overall computation performed to evaluate each hash function for every edge is
[H| - poly(logn) - O(n) = O(n).
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4 Computation-Efficient Derandomization of Hitting Set

In this section, we give a deterministic MPC algorithm for the following hitting set variant
defined in [12]:

» Definition 9 (Hitting Set for Leader Election). Let Si,...,S,, be subsets of [n] with i € S;
and |S;| = b, for each i € [n]. The goal is to find a (small) hitting set L C [n], that is, a set
for which S; N L # O holds for all i € [n].

Coy and Czumaj [12] gave an algorithm with the same parameters as those of the random
sampling approach in [7], except that they need large poly(n) computation.

» Theorem 10 (Theorem 5.6 of [12]). Let b and n be integers with log*’(n) < b < n. One
can deterministically find a subset L C [n] that solves the Hitting Set for Leader Election
problem with |£| < O(n(min{b, S})~/®) within a constant number of MPC rounds using
local space S = O(n%), global space Sgiopar = O(nb), and total computation poly(n).

We extend the randomized approach their algorithm relies on by using the method of
alterations and reducing the amount of randomness needed to prove the following result:

» Theorem 11. There exists an algorithm with the same properties as those in Theorem 10
with two differences. The total computation reduces to O(n - poly(b)) and the global space
increases to O(n - poly(b)).

We will show in Section 5 that the algorithm from Theorem 11 together with minor
changes to the parameters of the connectivity algorithm results in a deterministic connectivity
MPC algorithm with near-linear total computation.

Review of Hitting Set Algorithm of Coy and Czumaj

Consider adding each element to £ with probability p = b=/>. Assuming full independence,
the assumption b > log'® (n) together with a simple Chernoff Bound implies that £ is a
hitting set with high probability. The high probability bound still holds with O(log, n)-wise
independence, but fails to hold with o(log, n)-wise independence. As n k-wise independent
random variables require a seed length of Q(klogn), using O(log, n)-wise independence
would not result in a seed length of O(logn), which is necessary for an O(1) MPC round
derandomization based on the method of conditional expectation. To shorten the seed length,
the authors of [12] use so-called k-wise e-approximately independent random variables for
k = 15log,(n) and ¢ = n=5.
following theorem.

In particular, the starting point of their algorithm is the

» Theorem 12 ([12, Theorem 5.2]). Let log'®(n) < b < n, k be even with k = 15log,(n) >
4,6 =n"% andp=b"">. Then, if X1, Xo,..., X, are k-wise e-approzimately independent
random variables with X; = 1 with probability b='/5 and X; = 0 otherwise. Then each of the
following n + 1 events hold with probability at least 1 — 9n=3:
(1) > jcs, Xj >0 for every 1 <i <n, and
(2) 0 X; < 2nb7 5,

Next, we explain our randomized approach, which bears some similarities with that of 12,

and proceed to the reduction of its seed length and its deterministic implementation on an
MPC with strongly sublinear memory.
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Pairwise Analysis

As a first step, we show that a minor modification to their randomized hitting set algorithm
results in a hitting set of expected size at most 2nb~1/?, assuming only pairwise independence.
As before, each element joins £ with probability p = b=1/%. In expectation, b-p = b*/>
elements are sampled from each set. Using only pairwise independence and Chebyshev’s
inequality, this implies that a set is bad, i.e., no element is sampled from it, with probability

at most b41/5' This directly follows from the following lemmas:

» Lemma 13. Let X5,...,X,, be pairwise independent random variables taking values in
[0,1]. Let X = X1 +...+ X,, and p =E[X]. Then Var[X] =", Var[X;] < u and

n
., Var[X; 1
Pr{|X —pl>p) < 2*172”” <-.
o I
Hence, by adding for each unhit set an arbitrary element to £, at most n/ b*/5 additional
elements are added to £ in expectation, resulting in a hitting set of expected size at most
n(b=1/5 + b=4/%).

Reducing The Seed Length

From the pairwise analysis above, we directly get a seed length of O(logn). Next, we show
how to reduce the seed length to O(logb), which allows for a simple brute-force search. We
again employ a coloring idea, which is based on the simple observation that we only require
pairwise independence between elements contained in the same set. Hence, the goal is to
color the elements with poly(b) colors such that all elements in a given set S; are colored
with a different color.

In general, this may not be possible as there might exist elements which are contained in
a lot of sets. Fortunately, a simple calculation shows that there exist at most n/b elements
which are contained in more than b? different sets. Hence, by directly adding these elements
to £, we can assume “for free” that each element is contained in at most b? sets, which we
will do from now on.

We can then obtain a coloring with the desired properties by finding a proper coloring in
the graph Geon fiict, defined as follows. The vertex set consists of one vertex for each of the n
elements. Moreover, two elements are connected by an edge if there exists a set which contains
both elements. Note that the maximum degree Acopfiict Of Geonfiict is upper bounded by
b3. This follows from our assumption that each element is contained in at most b? sets.
Therefore, we can efficiently color Geonfiict With C = O(Aionﬂm 10g2(n)) = O log? n)
colors. For each ¢ € [n], let ¢(i) denote the color assigned to the i-th element. Note that it
directly follows from the definition of Geon f1ic that all elements in a given set are assigned a
different color.

We are now ready to present our randomized process that produces a hitting set with the
desired properties. Let {X,.: ¢ € [C]} be a family of pairwise independent random variables
with X, = 1 with probability p = b=/% and X. = 0 otherwise. For simplicity, we assume
that 1/p is a power of 2, i.e., there exists £ € N with 2¢ = b'/5. According to Lemma 5, we
can generate these random variables with a seed of length 2(¢ + log C) + O(1) = O(logb).
Now, we add each element i with X;) = 1 to £. Then, for each set S; with Zjesi Xeiy =0,
we add the element i € S; to £. By the analysis and discussion above, £ is a hitting set of
expected size O(nb~1/?).
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MPC Algorithm

It remains to discuss the MPC implementation, which will prove Theorem 11. In the
following, we say that something can be efficiently computed if there exists a deterministic
MPC algorithm running in O(1) rounds with local space = O(n?), global space O(npoly(b)),
and using O(npoly(b)) total computation.

In the preprocessing step, we add all elements which are contained in at least b2 sets to
the hitting set and remove all sets which contain at least one such element from consideration.
The preprocessing step requires us to compute for each element in how many sets it is
contained in. This can be done efficiently by using the colored summation primitive.

Next, we explain how to efficiently construct the graph Geonfiict- We generate the
edges of Geonflict in two steps. First, each set S = {e1,es,...,e} creates (g) entries
{{ei,e;}: i # j € [b]}. This can easily be done with poly(b) global space per set and
min(S, poly(b)) local space in O(1) rounds by using the primitives of Lemma 3. Hence, we
can efficiently generate all these edges in parallel. Afterwards, we use the duplicate removal
procedure of Lemma 3 to remove duplicate edges.

As Geonfiice has maximum degree b3, we can use Lemma 6 to efficiently compute a
coloring of G eon fiict With C'= O(b° log? n) = poly(b) colors. As before, we denote with c¢(7)
the color assigned to the i-th element. For £ := log,(b'/°), let H = {h: [C] = {0,1}'} be a
family of 2-wise independent hash functions of size at most 22(¢+108 ©)+O0() — poly(b) such
that evaluating a function from H takes time poly(¢,log C') = poly(logb) time. Lemma 5
guarantees the existence of such a family.

For each function h € H, we define a hitting set £} as follows. First, each element ¢ with
h(c(#)) = 0 is contained in Ly, where h(c(i)) denotes the length-¢ bit sequence for ¢(z) by the
corresponding integer in {0,...,¢ — 1}. Moreover, if for a given set .S; no element contained
in it was added in the first step, then we add element i to L. The discussion above implies
that there exists at least one hash function h € H with |£),| = O(nb~'/?). Using Lemma 3,
it is easy to see that for a single hash function h € H, we can efficiently compute £;, and its
size. As H only contains poly(b) hash functions, this implies that we can efficiently compute
Ly, for every h € H. After we have done this, we can output the hitting set Ly« of smallest
size. As remarked above, £+ has size O(nb~'/?), which finishes the proof.

5 Connectivity Algorithm

In this section, we discuss the necessary changes to the randomized connectivity algorithm
of Behnezhad et al. [7] and its analysis in order to prove the main result of this paper.

The deterministic approximate matching from Section 3 is used to replace steps 5 and
6 of Algorithm 2 of [7]. The same modification was already done by [12] and they showed
that the total number of vertices drop by a constant factor, assuming that no isolated
vertex exists. Hence, by applying this modified algorithm O(log log% n) times, one can
in O(loglogm n) rounds ensure that m > nlog® n, for a given constant C. All the steps
of the modified deterministic algorithm can be implemented by invoking the primitives of
Lemma 3 O(1) times, which in particular ensures that the algorithm can be implemented
with total computation O(m) Hence, we can from now on assume that m > nlogc n,
for a given constant C. It remains to prove that Algorithm 1 of [7] can be implemented
deterministically with the same asymptotic complexity and using O(m) total computation,
assuming m > nlog®(n) for a sufficiently large constant C. To this end, Coy and Czuma;
proved the following lemma:
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» Lemma 14 ([12, Lemma 6.3]). Let S; denote the set of saturated vertices at level i after
Step 2 of the RELABELINTRALEVEL routine in [7], let L; denote the set of selected leaders at
level i after Step 3 of the same execution of RELABELINTRALEVEL, let 3; denote the budget
of vertices at level i, let b(v) denote the budget of vertex v, and let v,e be arbitrary constants
such that 0 < v,e < 1. If we make the following modifications to RELABELINTRALEVEL:
set Biy1 =B - (min{B;, n°})?/4,
replace Step 3 of RELABELINTRALEVEL with any MPC algorithm that in O(1) rounds

selects O (%) leaders for each level i with high probability or deterministically,
and

replace the budget update rule in Step 4 of RELABELINTRALEVEL with
b(v) = b(v) - (min{b(v),n})/*,

then the connectivity algorithm of [7] remains correct with the same asymptotic local and
global space complexity.

We extend the above lemma to make it work with the deterministic hitting set from
Section 4 by proving the following slight modification of it. The main technical challenge will
be to ensure that our deterministic hitting set algorithm, which adds a polynomial factor (in
b) increase in the memory and computation required, can still be run in parallel with linear
global space and total computation.

» Lemma 15. Let ¢ > 3 be the smallest integer such that both the global space and the total
computation required by the algorithm from Theorem 11 are bounded by n - b°, and let e = §/c
so that n® < n®. The same result as that of Lemma 14 can be achieved with the following
modifications to RELABELINTRALEVEL:

set Bi1 = B; - (min{B;, n°}),

replace Step 3 of RELABELINTRALEVEL with any MPC algorithm that in O(1) rounds

selects O (m) leaders for each level i with high probability or deterministically

using at most nf5 global space and total computation, and

replace the budget update rule in Step 4 of RELABELINTRALEVEL with

b(v) = b(v) - (min{b(v),n}) %,

and by replacing the initial budget (%)1/2 assigned to each vertex with (%)1/2C in Algorithm
1 of [7]. Then, the connectivity algorithm of [7] remains correct with the same asymptotic

local and global space complexity. Moreover, the resulting total computation is O(m).

Proof. We need to show that all claims and lemmas involving the modified steps of Algorithm 1
of [7] do not affect its correctness nor its bounds on local and global memory. As in [12], we
need to prove the following three key properties:

(1) for any vertex v, the value of £(v) never exceeds O(loglog,, /,, n) (cf. [7, Lemma 15]),
(2) the global space used is O(Sgiobar) (cf. [7, Lemma 17]),

(3) the sum of the squares of the budgets does not exceed O(Sgiobar) (cf. [7, Lemma 21]).

(1) Recall that the budget of each vertex is increased as Bi+1 == f; - (min{B;,n°})7 and

that By = (%)1/ % Since the budget of any vertex cannot exceed n, we have that there
are at most O(loglog,,, ;,, n) levels as required.
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(2) Let n; denote the number of vertices which ever reach level i over the course of the
algorithm. In the proof of Lemma 17 [7], it is shown that the total sum of the budget
increases over the course of the algorithm is O(m), namely

L
Z ﬁmi = O(m)
i=1

We extend this claim and prove that the total sum of the global space used by all hitting
set instances over all iterations of the algorithm is bounded by O(m), that is

L
> Bi - =O(m).
=1

Analogously to [12], we first show that 5 | - ni11 < 8§ - n;. We have that the number
of vertices at level 7 removed from the graph (i.e., not marked as a leader) per vertex
marked as leader is at least:

[Si\ Li| _ [Sil = |La| _

= min{B;,n°})” min{3;,n°})"/2.
2l = BB 0 (aing ) ) > (minFn)

It then follows that
Bty Miy1 = (5i : (min{ﬁi,na})%)cmﬂ
< (B¢ - (mingBi,n ) F) (na(min{B;,n°})772)
< B - ni.

Using the fact that the maximum possible level for a vertex is L = O(loglogn), we
obtain

L

> 87 mi < L- (85 -no) < O(loglogm) - (=) -,

i=1

N

1
where the last inequality comes from the fact that 5y = (%) 2. Note that we can assume

that m > nlog®*®(n) and therefore each vertex has an initial budget of 8y = (m/n)'/?¢ >
log'®(n) > O(loglogn), as required by Theorem 11. This yields

O(loglogn) - (%)% n <K (E)% . (@)% -n = 0(m).

n n
(3) Follows by the same line of reasoning as in property (2).

By the choice of ¢, repeating the same calculations as in property (b) proves that the total
computation required by running our deterministic hitting set algorithm over all instances in
each iteration of the algorithm does not exceed O(m). Moreover, Lemma 3 implies that all
the other steps of the algorithm can be implemented with total computation O(m) |

We are now ready to prove our main result.

Proof of Theorem 2. We apply Lemma 15 using our Hitting Set for Leader Election algo-
rithm from Theorem 11 setting v = 3 (Note that m > nlog®(n) for a sufficiently large
constant C' implies By > log'®(n)). Then, it follows directly from Lemma 6.4 of [12] combined
with Lemma 15 that copies of our hitting set algorithms can be run in parallel, for each
possible level and in a constant number of rounds within optimal global space and O(m)
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total computation. Thus, we proved that all relevant aspects of the proof of correctness
have been adjusted in comparison to [12, 7]. Finally, as noted in [12], our extension of
Lemma 15 in [7] proves that the number of iterations remains asymptotically the same and
that the deterministic algorithms replacing the O(1)-round random sampling approach take

asymptotically the same number of rounds. Thus, we conclude that the round complexity is

not affected. <
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