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—— Abstract

Randomisation is a critical tool in designing distributed systems. The common coin primitive,
enabling the system members to agree on an unpredictable random number, has proven to be
particularly useful. We observe, however, that it is impossible to implement a truly random common
coin protocol in a fault-prone asynchronous system.

To circumvent this impossibility, we introduce two relaxations of the perfect common coin:
(1) approzimate common coin generating random numbers that are close to each other; and (2) Monte
Carlo common coin generating a common random number with an arbitrarily small, but non-zero,
probability of failure. Building atop the approzrimate agreement primitive, we obtain efficient
asynchronous implementations of the two abstractions, tolerating up to one third of Byzantine
processes. Our protocols do not assume trusted setup or public key infrastructure and converge to
the perfect coin exponentially fast in the protocol running time.

By plugging one of our protocols for Monte Carlo common coin in a well-known consensus
algorithm, we manage to get a binary Byzantine agreement protocol with O(n3 log n) communication
complexity, resilient against an adaptive adversary, and tolerating the optimal number f < n/3
of failures without trusted setup or PKI. To the best of our knowledge, the best communication
complexity for binary Byzantine agreement achieved so far in this setting is O(n*). We also show
how the approzimate common coin, combined with a variant of Gray code, can be used to solve an
interesting problem of Intersecting Random Subsets, which we introduce in this paper.
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1 Introduction

Generating randomness in distributed systems is an essential part of many protocols, such
as Byzantine Agreement [4], Distributed Key Generation [21] or Leader Election [35]. Any
application that needs an unpredictable or unbiased result will most likely rely on randomness.
Although sometimes local sources of randomness are enough for some protocols [34], having
access to a common random number can guarantee faster termination [3]. Producing a
common unpredictable random number has been extensively studied in the literature on
cryptography and distributed systems under the names of random beacon, distributed (multi-
party) random number generation or common coin (even if the result is not binary). In
essence, these protocols ensure:
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Termination: every correct process eventually outputs some value;

Agreement: no two correct processes output different values;

Randomness: the value output by a correct process must be uniformly distributed over some
domain D, |D| > 2.

We call a protocol that ensures the three properties (Termination, Agreement, and
Randomness) a perfect common coin. There are many message-passing protocols without
trusted setup that implement a perfect common coin in the presence of Byzantine adversary
[40, 11, 25, 9, 7, 29, 19]. These protocols are either synchronous, meaning that every message
sent by a correct process is delivered within a certain (known a priori) bound of time, or
partially-synchronous, meaning that such a bound exists but is unknown.

In contrast, one can also consider an asynchronous system, where no bounds on communi-
cation delays can be assumed. In a seminal work of Fischer, Lynch, and Paterson, it has been
shown that the problem of consensus has no asynchronous fault-tolerant solutions [17]. As
we show in Appendix A, this impossibility also holds for perfect common coins: no algorithm
can implement a perfect common coin in a message-passing asynchronous system where
at least one process might crash. Note that this statement cannot be proven by a simple
black-box reduction from consensus to a perfect common coin and a reference to FLP [17].
Indeed, if such a reduction existed, the resulting protocol would have to always terminate in
a bounded number of steps, even with unfavourable outputs of the black-box common coin.
Hence, if we were to replace the common coin protocol by a protocol that always returns 0,
it would still provide termination as well as all other properties of consensus, violating [17].

Note that this impossibility applies even to systems with trusted setup, such as the one
assumed in [9]. Such protocols typically do not satisfy the Randomness property of a perfect
common coin. The outputs of these protocols follow deterministically from the information
received by the processes during the setup.

In light of the impossibility of a perfect coin, one might look for relazed versions of
the common-coin problem that allow asynchronous fault-tolerant solutions. For example,
one can relax the Agreement property by only requiring the output to be common with
some constant probability, which results in an abstraction sometimes called weak common
coin' or 6-matching common coin. In this paper, we call this abstraction a probabilistic
common coin, in order to avoid confusion with other relaxations we introduce. More
precisely, probabilistic common coins replace the Agreement property above with probabilistic
d-consistency.

Probabilistic §-Consistency: with probability at least §, no two correct processes output
different values.

We also introduce the concept of a Monte Carlo common coin which is a probabilistic
common coin whose success rate § can be parameterized as follows: the more rounds of the
protocol are executed, the more reliable the outcome is. In our case § starts at % in the first
round of the protocol and converges to 1 at an exponential rate in the number of rounds. In
most probabilistic common coins, § could be increased by decreasing the resilience level (the
allowed fraction of Byzantine processes). However, to the best of our knowledge, this paper
is the first to present an implementation of a Monte Carlo common coin that can achieve
arbitrarily small (but non-zero) ¢ by increasing the running time of the protocol (Sections 5
and 6).

! Many weak common coin protocols such as the one in [10] also relax Randomness.
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We also propose a novel, alternative relaxation of Agreement: instead of ensuring that
the same output is produced (with some probability), we may require that the produced
outputs are close to each other according to some metric. For this variant, we have to also
slightly relax randomness so that only one correct process is guaranteed to obtain a truly
random value. More precisely, assume a discrete range of possible outputs [0..D—1], and let
dy(,y) denote the distance between x and y in the algebraic ring Z,.? The Approximate
common coin abstraction then satisfies Termination and the following two properties:
Approximate e-Consistency: if one correct process outputs value x and another correct

process outputs y, then dp(z,y) < [eD], for a given parameter € € (0, 1];

One Process Randomness: the value output by at least one correct process must be uni-
formly distributed over the domain [0..D—1].3

Our implementations of Monte Carlo and Approximate common coins build upon the
abstraction of Approzimate Agreement [15]. It appears that the abstraction perfectly matches
the requirements exposed by our relaxed common-coin definitions: it naturally grasps the
notion of outputs being close where the precision can be related to the execution time.
Building atop existing asynchronous Byzantine fault-tolerant implementations [15, 1], we
introduce and discuss an efficient implementation of the bundled version of this abstraction
which is, intuitively, equivalent to n parallel instances of Approximate Agreement, but is
much more efficient.

We discuss two applications of our protocols. First, we observe that our Monte Carlo
common coin can be plugged into many existing Byzantine agreement protocols [6, 10,
13, 33]. This helps us to obtain a binary Byzantine agreement protocol with O(n3\logn)
communication complexity, where \ is the security parameter. The protocol exhibits optimal
resilience of f < n/3, tolerates adaptive adversary, and assumes no trusted setup or PKI. In
this setting, the best prior protocols for binary Byzantine agreement we are aware of have
communication complexity of O(n*\) [28, 2].

We also introduce Intersecting Random Subsets, a new problem that can be used to
asynchronously choose random committees with large intersections. Using elements of coding
theory, namely Gray Codes [23, 36], we show how our Approximate common coin can be
used to solve this problem without additional communication overhead.

We present our model definitions in Section 2 and describe the building blocks used in
our constructions in Section 3. We present our protocols in Sections 4-6, provided with
implementation details and complexity analysis. In Section 7, we show how the Monte Carlo
common coin can be used in solving binary Byzantine agreement. In Section 8, we overview
the related work and in Section 9, we conclude the paper.

We provide some of the necessary complementary material in the appendices and we refer
the reader to the full version of the paper [18] for the remaining parts. In Appendix A, we
prove the impossibility of an asynchronous perfect common coin. Appendix B introduces
and shows how to solve the problem of Intersecting random subsets. In addition to the
contents of this paper, the full version [18] contains the proof of correctness of our common
coin constructions, it contains a modular presentation of the coin proposed by Canetti and
Rabin in 1993 [10], and it also presents two implementations of Random Secret Draw, one of
the major building blocks of our common coins.

? Le., d(z,y) = min{|lz — y|,q — |z — y[}.

3 With a small modification to our protocol, we can easily achieve (f+1)-Process Randomness instead on
One Process Randomness. However, we do not know if it is possible to guarantee that all outputs of
correct processes are random without relaxing other properties.
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2 System Model

We consider a system of n processes able to communicate using reliable communication
channels. Among the participants, at most f < § are Byzantine and might display arbitrary
behaviour.

We assume the adaptive adversarial model: up to f Byzantine processes are chosen by
the adversary depending on the execution. A non-Byzantine process is called correct. The
communication complexity of our baseline protocols can be improved by a factor of n using
Aggregatable Publicly Verifiable Secret Sharing (APVSS) [24]. However, as we are not aware
of APVSS implementations that are secure against the adaptive adversary, the improved
protocols can only be proved correct in the presence of the static one.

The adversary can control the time the messages sent by correct processes take to arrive,
as well as reorder them. However, it cannot drop a message sent by a correct process unless
it corrupts this process before the message has arrived.

We assume that each process has access to a local random number generator that can be
accessed as follows:

Randomlnt(D): produces a uniformly distributed random integer number in the range
[0..D—1].

The proposed protocols as well as some of the building blocks rely on the use of crypto-
graphic hash functions. The hash of an arbitrary string s is denoted H(s) and has length A
that we call the security parameter. It is computationally infeasible to find two strings s # &’
such that H(s) = H(s'), as well as inverting a hash without knowing which input was used a
priori.

We assume a computationally bounded adversary, so that it is incapable of breaking
cryptographic primitives with all but negligible probability. However, since such a probability
exists, we allow the properties of all our protocols as well as all building blocks to be violated
with a negligible in A probability.

3 Building Blocks

Our protocols make use of a wide range of building blocks. None of them are completely
new, but some of them are modified according to our needs. In particular, we introduce the
Random Secret Draw abstraction inspired by the ideas from [10] and [2] (Section 3.3). We also
provide a bundled version of the Approxzimate Agreement [15, 1] abstraction (Section 3.5). In
addition, we use Byzantine Reliable Broadcast [6, 14] (Section 3.1), Asynchronous Verifiable
Secret Sharing [8, 14] (Section 3.2), and Gather [10, 39] (Section 3.4).

3.1 Byzantine Reliable Broadcast

Byzantine Reliable Broadcast (BRB) [6] allows a designated leader to communicate a single
message to all processes in such a way that, if any correct process delivers a message, then
every other correct process eventually delivers exactly the same message (even if the leader
is Byzantine). More precisely, a BRB protocol must satisfy the following properties:
Validity: if the leader is correct and it broadcasts message m, then every correct process will
eventually deliver m;
Consistency: if two correct processes j and k deliver messages m; and my, then m; = my,.
Totality: if a correct process j delivers some message m, then eventually all correct processes
will deliver m.
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The performance of reliable broadcast is of crucial importance to our protocols. We
believe that the BRB implementation recently proposed by Das, Xiang, and Ren [14] will
be the most suitable option. It has total communication complexity of just O(n|M|+ n?\),
where | M| is the size of the message and A is the security parameter, total message complexity
of O(n?), and the latency of 3 message delays in case of a correct leader and 4 message delays
in case of a Byzantine leader.

In this paper, we always use BRB in groups of n instances, with each process being the
leader of one. We use the following notation:

BRB;.Broadcast(m): allows process i to broadcast a message in an instance of BRB where

1 is the leader;

BRB;.Deliver(m): an event indicating that message m from process i has been delivered.

3.2 Asynchronous Verifiable Secret Sharing

Asynchronous Verifiable Secret Sharing (AVSS) [8] allows a process to securely share infor-
mation with other participants and to keep its contents secret until the moment a threshold
of participants agree to open it.

In our protocols, AVSS is used with the following interface:
AVSS,.ShareSecret(x): allows process ¢ to share a secret 2 among the participants;
AVSS,;.SharingComplete(): an event issued when a secret is correctly shared by process i;
AVSS, .EnableRetrieve(): enables responses to retrieval requests;

AVSS,;.Retrieve(): returns z if it was previously shared and all correct processes invoked
AVSS;.EnableRetrieve().

An AVSS implementation must satisfy the following properties:

Validity: if a correct process i invokes AVSS;.ShareSecret(z), then every correct process
eventually receives the AVSS;.SharingComplete() event and no value other than x can be
returned from the AVSS;.Retrieve() operation invoked by a correct process;

Notification Totality: if one correct process receives the AVSS;.SharingComplete() event,
then every correct process eventually receives it;

Retrieve Termination: if all correct processes invoke AVSS;.EnableRetrieve() and any correct
process invokes AVSS, . Retrieve(), then this operation will eventually terminate and the
process will obtain the shared secret;

Binding: if some correct process receives the AVSS;.SharingComplete() notification, then
there exists a fixed secret = such that no value other than x can be returned from the
AVSS; .Retrieve() operation invoked by a correct process;

Secrecy: if process i is correct and no correct process invoked AVSS;.EnableRetrieve(), then
the adversary has no information about the secret shared by 1.

Das, Xiang, and Ren [14] proposed an AVSS protocol with quadratic communication
complexity, constant latency, and without assuming trusted setup. Notice that in order to
secretly share a long string s, it is better to follow the method proposed in [30]: encrypt s
using a much shorter secret key sym, reliably broadcast the encrypted value {s}sy, and then
perform secret sharing of the key sym. Thus, we shall assume that the total communication
complexity of secret sharing of string s is O(n|s| + n?\).

3.3 Random Secret Draw

One of the key ideas of the weak common coin protocol of Canetti and Rabin [10] is to assign
each process a random number in a given domain [0..D—1] in such a way that:
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Assignment Termination: if a correct process ¢ participates, then it is eventually assigned a
value. Moreover, everyone will eventually receive a notification that ¢ has been assigned a
random value;

Notification Totality: if process ¢ receives a notification that some process j has been
assigned a value, then every correct process will eventually receive such a notification;

Randomness: the assigned numbers are independent and distributed uniformly over the
domain [0..D—1]. The distribution of the value assigned to process j cannot be affected
by the adversary even if j itself is Byzantine;

Unpredictability: until at least one correct process agrees to reveal the assigned values, the
value assigned to each process j remains secret, even to process j itself;

Retrieve Termination: if all correct processes invoke EnableRetrieve() and any correct process
invokes RetrieveValue(j), having received ValueAssigned(j), then this operation eventually
returns a value.

Although this idea has been widely used as part of the implementation of asynchronous
consensus protocols, to the best of our knowledge, it was never considered a separate primitive
and assigned a name. Hence, we shall call it Random Secret Draw (RSD).

This abstraction resembles a well known concept of a Verifiable Random Function
(VRF) [32]. However, the important difference is that process j itself cannot know the value
it is assigned until the reveal phase. Hence, a Byzantine process cannot choose whether
it wants to participate or not based on the random value it is assigned. Moreover, unlike
Random Secret Draw, VRF schemes typically require a seed chosen at random after the
process chose the public key for its pseudo-random function. In fact, a variant of RSD has
been recently used to generate such seeds [20].

We use the following interface for the RSD abstraction:

RSD.Start(): allows a process to start participating in RSD and, eventually, to be assigned
a random number. We assume that this function is non-blocking, i.e., that an invocation
of this function terminates after 0 message delays;

RSD.EnableRetrieve(): used by the processes to start participating in the process of recons-
tructing the assigned values;

RSD.RetrieveValue(j): returns the value assigned to process j if all correct processes invoked
RSD.EnableRetrieve() and process j has been assigned some value.

The original RSD implementation by Canetti and Rabin [10] used n? instances of AVSS.
To the best of our knowledge, to this day, there is no known AVSS protocol that would allow
to do it with less than Q(n*) bits of communication in total. Hence, in the full version of the
paper [18], we give two possible implementations of RSD. The first one is secure against an
adaptive adversary and does not rely on PKI, while the second one uses the implementation
from [2] that relies on Aggregatable Publicly Verifiable Secret Sharing instead of AVSS. While
saving a linear factor in communication complexity, this solution lacks security against
adaptive adversary and requires PKI. Since both [10] and [2] did not consider RSD as a
separate abstraction and did not provide separate pseudocode for it, in [18], we present both
RSD implementations.

3.4 Gather

Yet another important contribution made by Canetti and Rabin in their weak common
coin construction [10] is a multi-broadcast protocol that has been recently given the name
Gather [39, 2]. In this protocol, every process starts by broadcasting a single message through
Byzantine Reliable Broadcast. The processes then do a few more rounds of message exchanges
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and, in the end, each participant ¢ outputs a set of process ids S; such that for all j € S;:

i has received the message of j through reliable broadcast.* Moreover, the sets output by

correct processes satisfy a strong intersection property:

Binding Common Core: There exists a set S* of process ids of size at least n — f, called the
common core, such that for every correct process i: S* C S;. Moreover, once the first
correct process outputs, $* is fixed and the adversary cannot manipulate it anymore.

The fact that the adversary cannot affect the common core once a single correct process
outputs will be important in our protocols. The adversary should not be able to choose the
common core based on the generated random numbers after some of the correct processes
invoked EnableRetrieve.

We slightly generalize the interface of Gather by using it in conjunction with BRB, but
also with other similar primitives (in particular, AVSS and RSD) and their combinations.
When a process invokes GATHER, it passes to it an arbitrary callable function GatherAccept
that takes a process id j and returns t¢rue if the message from this process is considered to
be delivered (not necessarily through BRB). We assume that Gather exports the following
interface:

Gather.Start(GatherAccept): allows a process to start participating in the Gather protocol;
Gather.DeliverSet(S): provides the output of the Gather protocol.

In order for the protocol to terminate, the GatherAccept function has to satisfy properties
similar to those of reliable broadcast.

Accept Validity: if a correct process i invoked GATHER.Start, then for every correct process
J, GatherAccept(7) invoked by process j must eventually return ¢rue. Moreover, for all i,
once GatherAccept(i) returned to true to some correct process, it must never switch back
to false;

Accept Totality: if GatherAccept(i) invoked by one correct process returned true, then
eventually it must return true to all correct processes.

Thanks to the properties of AVSS and Random Secret Draw (in particular, to the
Notification Totality property), in our protocols, this assumption is trivially satisfied. For
Gather, we use the original protocol of [10] (to the best of our knowledge, it was first described
as a separate primitive in [39]).

3.5 Bundled Approximate Agreement

The last building block that we shall need is Approzimate Agreement (AA) [16]. In a (one-

dimensional) AA instance, the processes propose inputs and produce outputs (real values) so

that the following properties are satisfied:

Validity: the outputs of correct processes must be in the range of inputs of correct processes.

Approximate é-consistency: the values decided by non-faulty processes must be at most a
distance € apart from each other.’

Termination: every non-faulty process eventually decides.

In our algorithms, Approximate Agreement is always executed in bundles of n parallel
instances. For the sake of efficiency, one can treat it as a bundled problem with an input
vector of size n, corresponding to the different instances and then, for every message, send

4 In [39] and [2], Gather returns a set of pairs (id, value). However, for our purposes, working with sets of
ids is more convenient. The values will be delivered through normal BRB.Deliver event.
5 We use € to distinguish it from e used in the definition of Approximate Common Coin.
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information about all instances at the same time, but treat them separately as before. We call
this abstraction Bundled Approximate Agreement (BAA). BAA should not be confused
with Multidimensional Approxzimate Agreement [31], which is a stronger abstraction than the
one we rely upon.
Assuming binary inputs, the processes access BAA via the following interface:
BAA.Run([z1, 2,...,x,]): Launches n instances of Approximate Agreement protocol,
where the input for the i-th instance is z;. For a given parameter €, the protocol is
executed until é-approximation is satisfied in every instance and then returns a vector of

outputs [y1, Y2, .- -, Yn)-

For implementing BAA, we suggest using the Approximate Agreement protocol proposed
in [1] with resilience f < %. Since in our protocols, the inputs are either 0 or 1, we do not need
the termination detection techniques described in [1] neither do we need the “init” phase of

the protocol. With the aforementioned BRB and some trivial changes®, this implementation
will give us the communication complexity of O(n?\) and latency 4 - log, (1/€).

4 Approximate Common Coin

Algorithm 1 Approximate common coin.

1: Instance parameters: domain D, precision €

2: Distributed objects:

3: Vj € [n] : AVSS; — instance of Asynchronous Verifiable Secret Sharing with leader j
4: GATHER - instance of Gather

5: BAA - instance of Bundled Approximate Agreement with precision € = ¢/ f

6: function GatherAccept(j)

7 return true if received AVSS;.SharingComplete()

8: operation Toss() returns integer
9: 2 = RandomInt(D)

10: AVSS;.ShareSecret(z)

11: GATHER.Start(GatherAccept)

12: wait for GATHER.DeliverSet(S)

17 ] € S?

0, otherwise

14: [w],...,w,] = BAA.Run([wi,...,wy])

15: Vj € [n] : AVSS;.EnableRetrieve() // only after BAA completes
A ;.Retri i f W

16: Vi€ [n]: letz; = VSS; Retrieve(), if v 7%0
0, otherwise

13: Vj € [n] : let w; = {

17: // Compute and return the final random number

18: return (’VZ],E[”] xj - w;—‘ mod D)

The main idea of this protocol is to aggregate numbers locally generated by enough
different processes so that at least one of them is correct and the number it generated is truly
random and uniformly distributed. With a good aggregation function, the resulting value
will also be uniformly distributed. An example of such an aggregation function is addition
modulo the size of the domain. Indeed, it is easy to see that, if x is uniformly distributed

6 In the “report” messages, hashes of the values should be sent instead of the values themselves.
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over [0..g—1] and y is any number chosen independently of z, then (x + y) mod ¢ will also
be uniformly distributed over [0..g—1]. Another example of an aggregation operation that
satisfies a similar property is bit-wise xor (as long as the domain size is a power of 2).

However, without being able to solve consensus, we cannot just elect f +1 or n — f
processes from whom we shall take these values. Thankfully, unlike xor, addition has one more
useful property: it is continuous. If we take two numbers, z and y, such that dq(z,y) < «,
then for any number z, dg(z + 2,2 +y) < a.” Hence, a natural idea is to approzimately elect
the set of processes to provide the random inputs.

More precisely, in order to produce an approzimate common coin in the range [0..D—1],
each process locally generates and secret-shares a random number in this range. Then each
process gathers a set of ids of processes that have completed the sharing (line 12).

The next step is to create a binary vector with n positions, where each position j is set
to 1 if and only if j is present in the gathered set (line 13). This vector is then used as an
input for the BAA protocol (line 14), which outputs a vector W of weights such that for
each position j, the weights received by different processes are at most € apart.

The value of € = ¢/f is chosen such that the final outputs of the coin are at most e apart
from each other. For the details on how this particular value was computed, see [18].

Recall that BAA ensures that the output values lie within the range of of inputs of correct
processes. Moreover, by the properties of Gather and AVSS, if at least one correct process
has j in its gathered set, then j has correctly shared its value and it can be later retrieved
by the correct processes. Therefore if the j-th value is irretrievable, the j-th component
will always be assigned weight 0. On the other hand, due to the common core property of
Gather, at least n — f values will have weight 1, which guarantees that the result is uniformly
distributed in the desired range.

Finally, the processes reveal the secrets (lines 15 and 16) and compute the resulting
random number.

» Theorem 1. Algorithm 1 implements an approximate common coin.

The proof of Theorem 1 is presented in the full version of this paper [18].

Complexity analysis. The communication complexity of our approximate common coin can
be broken down into:

n instances of AVSS.ShareSecret in parallel = O(n3\);

One instance of GATHER = O(n3)\);

One instance of BAA with é = ¢/f = O(n*A(log f + log 1));
n instances of AVSS.Retrieve in parallel = O(n®)\);

ol o\ A

Hence, the total communication complexity is O(n®A(log f + log %)) with Bundled Ap-
proximate Agreement being the bottleneck.
The time complexity of the protocol is O(log f + log %)

5 Monte Carlo Common Coin from Approximate Common Coin
In this section, we present a simple reduction from an approximate common coin to a Monte

Carlo common coin. The very short pseudocode is in Algorithm 2.

7 Recall that dq(z, y) is the distance between 2 and y in the ring Zg, i.e., dg(x,y) = min{|z—y|, ¢— |z —y|}.
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Algorithm 2 Monte Carlo Common Coin from Approximate Common Coin, code for process i.

19: Instance parameters: domain size D, success probability ¢
20: let k= [1Z5]

21: Distributed objects:
22: AC — instance of approximate common coin with domain size kD and precision ¢ = %

23: operation Toss() returns integer

AC.Toss()J

24: et
return { k;

The transformation requires first to generate an approximate common coin of domain
kD where k is an integer number L%J and € = %. This implies that different processes
shall get values at most [% . kD-| =1 apart.

The domain of the approximate coin is k times larger than the domain of the targeted
Monte Carlo common coin. By dividing the result by k, we get the desired range of values
and success probability ¢, where k values of the approzimate common coin are mapped to

one value of Monte Carlo common coin.

» Theorem 2. Algorithm 2 implements a Monte Carlo common coin with domain D and
success probability §.

Proof. Termination and Unpredictability follow from the properties of approzimate common
coin, while Randomness follows from One Process Randomness since exactly k values from
the larger domain (kD) are mapped to each value in the smaller domain (D). Let 2’ be the
resulting toss of the first correct process that completes BAA in its approximate common
coin toss. Then, as established, every other process will be at a distance at most 1 from it.
Hence, if the remainder of the division of x’ by k is neither 0 nor k — 1, every correct process
decides the same value:

2
F=1

<1-6. |

2
Pr[failure] < 7=

Complexity analysis. This protocol runs a single instance of an Approximate Common

Coin, with precision € = If used with our algorithm from Section 4, it will take

1
D[%5]"
O(log f + log %) = O(log f +1log D + log ﬁ) rounds of approximate agreement.

Hence, the overall time complexity of the protocol is O(log f + log D + log %) and the

communication complexity is O(n*A(log f + log D + log 175)).

6 Direct Implementation of Monte Carlo Common Coin

Overview. The main idea of this protocol is to assign to each process a random value and
a random ticket. Then, using approximate agreement, the protocol is able to select the
process with maximum ticket with adjustable probability of success and adopt the value
corresponding to this ticket as the coin value.

Tickets and values. The protocol first assigns random values and random tickets to each
participant, maintaining both secret until later (lines 37 and 38). Processes then gather a list
of participants who have both drawn a ticket and a value, guaranteeing that all processes
will hold sets that all intersect in at least n — f participants (line 39).
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Algorithm 3 Monte Carlo Common Coin, code for process .

25: Instance parameters: domain size D, success probability §, security parameter A

26: Functions:
27: Calibrate(w) — returns the weight to apply to a ticket given that BAA returned w

28: Distributed objects:

29: T1cKETDRAW — instance of Random Secret Draw with domain size 2*

30: VALUEDRAW — instance of Random Secret Draw with domain size D

31: GATHER — instance of Gather

32: BAA - instance of Bundled Approximate Agreement with precision €,

33: where € depends on the calibration function (see “Weight calibration” below)

34: function GatherAccept(j) returns boolean
35: return true iff received both TICKETDRAW.ValueAssigned(j) and VALUEDRAW.ValueAssigned(j)

36: operation Toss() returns integer

37: TICKETDRAW.Start()
38: VALUEDRAW.Start()
39: GATHER.Start(GatherAccept)
40: wait for event GATHER.DeliverSet(S)

. 1, jes
41: Vje[n]:letw; =19’ ’

J € lnfslet w; {0, otherwise
42: [wh,...,w,] = BAA.Run([ws, ..., wn])
43: candidates = {j € [n] | w} > 0}
44: TicKETDRAW.EnableRetrieve()
45: VALUEDRAW.EnableRetrieve()
46: tickets = {TICKETDRAW.RetrieveValue(j) | j € candidates}
47: values = {VALUEDRAW.RetrieveValue(j) | j € candidates}
48: winner = argmax Calibrate(w) - tickets[j]

J € candidates

49: return values[winner|

Approximate Agreement. In a similar manner as in the previous protocol, each process
runs Bundled Approximate Agreement inputting 1 in the dimensions corresponding to the
processes it has received from Gather, and 0 in the other dimensions (line 42). Similar to the
previous protocol, if a process has not made a valid draw it will always be assigned weight
zero, whereas if the weight is different than zero then it is possible to recover the secretly
drawn number.

Opening the secrets. Prior to the first decision of a correct process in BAA, no secrets
are leaked, as the underlying Random Secret Draw abstraction requires at least one correct
process to invoke the EnableRetrieve operation before any information about the generated
numbers is revealed. After this first decision of a correct process, the secrets can be opened
(line 45), but at this point the adversary can only induce other processes deciding values
which are at most € apart from the first decision, which does not undermine the safety of the
protocol.

Decision. With the tickets and values now openly available, the processes calibrate the
tickets by multiplying the plain ticket by a calibration function applied to the weights. The
simplest calibration function is an identify function, the calibrated ticket of a process i is
simply the product of the output i-th output of BAA and the original ticket ¢;. In their
final steps, processes decide the value corresponding to the highest calibrated ticket (lines 48
and 49).
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Figure 1 The weight calibration function.

Weight calibration. The protocol without weight calibration (i.e., with Calibrate(w) = w)
requires 3 + [log,(n) + log, (ﬁ)} rounds of approximate agreement in order to achieve the
success probability §. A similar performance is achieved by the protocol in Section 5.

In order to get rid of the log,(n) part in the time complexity, we use a calibration function
that is linear on (0, 1] with a discontinuity point at 0, as illustrated in Figure 1. If w; > 0 and
wg > 0 and |w; — we| = € then, after calibration, |Calibrate(w;) — Calibrate(ws)| = €- (1 —v).
This is similar in effect to running extra log, ﬁ rounds of approximate agreement, but at
no extra latency cost. We then balance the value of the parameter v in such a way that,
intuitively, the discontinuity at 0 is very unlikely to cause disagreement. An example of

a good value for v that achieves this goal is 1 — W In order to achieve success

probability 6, 5 + {logQ (ﬁ) + log, (10g2 (ﬁ)ﬂ rounds of approximate agreement are
required.

» Theorem 3. Algorithm 8 implements a Monte Carlo common coin.

The proof of Theorem 3 is presented in the full version of this paper [18].

Complexity analysis. The communication complexity of our Monte Carlo common coin
can be broken down into:

2 instances of Random Secret Draw = O(n3\);

1 instance of GATHER = O(n3)\)

One instance of BAA with é = O(1/(1 — §)) = O(n3Alog X5);
2n secret retrievals in parallel = O(n3\);

il o\ e

Hence, the total communication complexity is O(n?)log ﬁ) with Bundled Approximate
Agreement being the bottleneck. The time complexity of the protocol is O(log 1175)

7 Applications

Asynchronous Binary Byzantine Agreement. Monte Carlo common coins can be plugged
into any Byzantine Agreement protocol that makes a call to a probabilistic common coin,
such as [6, 10, 13, 33]. Given any probabilistic common coin with constant success probability,
these algorithms terminate in a constant number of rounds, exchanging at most O(n?)\) bits.

Using our Monte Carlo common coin obtained via the transformation from approximate
common coin (Section 5), we get a protocol that is secure against an adaptive adversary,
assumes no trusted setup or PKI, and exhibits communication complexity O(n3Xlogn)
at the expense of extra O(logn) factor in time complexity (the complexity of coin flips



L. Freitas, P. Kuznetsov, and A. Tonkikh

dominate the rest of the protocol). As far as we know, the best existing setup-free solutions
that are resilient against adaptive adversary and tolerate up to f < n/3 failures exhibit
communication complexity of O(n*)) [28, 2].

Intersecting Random Subsets. An example of an interesting new application that can be
solved with Approximate Common Coins but not probabilistic common coins, with direct
consequences into the choice of committees among processes, is given in Appendix B.

8 Related Work

Ben-Or [4] proposed the first randomized consensus algorithm based on the “independent
choice” common coin. In this algorithm, every participant tosses a local random coin and
with probability 27", the values picked by n participants are identical. Bracha [6] extended
this algorithm to the Byzantine fault model with f < n/3 faulty participants.

Rabin [37] proposed an implementation of a perfect common coin based on Shamir’s
secret sharing [38], assuming trusted setup (a trusted dealer distributes a priori a large
number of secrets). Today, most protocols that allow trusted setup use the solution proposed
by Cachin et al. [9] who have described a practical perfect common coin based on threshold
pseudorandom functions (tPRF), assuming that a trusted dealer distributes a short tPRF
key. These protocols use the pre-distributed randomness in a clever way to obtain multiple

numbers that are computationally indistinguishable from random (much like a PRNG [5]).

In contrast, our algorithms do not assume trusted setup.

In the setup-free context, Canetti and Rabin [10] proposed a weak common coin algorithm
based on asynchronous verifiable secret sharing (AVSS), which resulted in an efficient
randomized binary consensus. In designing our protocols, we make use of multiple ideas
from this work, taking into account recent improvements, such as the use of Aggregatable

Publicly Verifiable Secret Sharing [24], suggested in a similar context by Abraham et al. [2].

Using standard PKI cryptography, Cohen et al. [12] built two common coins relying
18¢2+24e—1
601469
The second coin involves sampling committees among the processes and also guarantees a

on VRFs. The first one with resilience f < (1/3 — €) achieves success rate 6 =

constant success rate that depends on the system’s resilience.

Kogias et al. [28] proposed a relaxed abstraction called eventually perfect common coin.

They first build a weak distributed key generator (wDKG) which is a protocol that never
terminates: each party outputs a sequence of candidate keys to be used for encryption and
decryption with the property that they will eventually agree on a set of keys. This mechanism
can replace the trusted setup in [9]. Moreover, it can be shown that the participants may
disagree on the set of keys at most f + 1 times. The resulting coin eventually terminates
with a perfect result, hence its name. In contrast, the challenge of our work was to devise
(one-shot) unbiased common coins with provable termination.

Gao et al. [20] combined VRFs and AVSS to produce the first random coin which
has O(n3)\) communication complexity. With the advent of new broadcast and APVSS
implementations, the classic protocol of [10] gains the same complexity. They created a weak
form of Gather called core-set selection in which f + 1 correct participants share at least
n — f VRFs coming from different processes. They then use AVSS to build the seeds for
VRFs and whenever the highest VRF is in the common core, the nodes successfully agree in
the coin outcome. Their protocol assumes the static adversary, but it can be made adaptive
with a relatively weak form of trusted setup: a single common random number must be
published after the public keys of the participants are fixed. In contrast, our protocols do
not assume any form of trusted setup. Assuming static adversary, our protocols can achieve
the same communication cost while additionally enabling parameterized success rate.

24:13
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Our Monte Carlo coin from Section 6 was inspired by the Proposal Election protocol
recently introduced by Abraham et al. [2]. Technically, it is not a common coin per se but it
uses elements of it. In this protocol, every party inputs some externally valid value, and with
a constant probability, all parties output the same value that was proposed by a non-faulty
party chosen at random. Intuitively, the main contribution of the protocol in Section 6 is the
use of approximate agreement to amplify the success probability.

In the full information model, without using cryptography, King and Saia [27] observed
that the strength of the Byzantine adversary is in its anonymity, but it cannot bias the
coin indefinitely without being detected. Even though their Byzantine agreement algorithm
with polynomial expected time does allow the adversary to bias the coin, but amended this
with statistical tests aiming at detecting this kind of deviation and evicting misbehaving
participants. The resilience level of this algorithm is, however, orders of magnitude lower
than n (f < n/400 in the best case). Huang et al. [26] recently extended this work to achieve
the resilience of f < n/4. In contrast, our algorithms use cryptographic tools to produce
unbiased (approximate) outputs and maintain optimal resilience f < n/3.

Monte Carlo protocols are randomized algorithms that have a fixed number of rounds
and yield results that are correct with a given probability, while Las Vegas protocols always
give the correct results but do not have a fixed number of rounds. Notice that Las Vegas
algorithms must have a fixed probability of terminating every round and thus can be converted
into Monte Carlo by stopping after a fixed number of rounds and deciding a random value if
termination is not attained.

Such a transformation could be applied to [28], but since their latency is a function of
O(f), the resulting Monte Carlo common coin would also have a latency which is a function
of f, while our solution is independent of this parameter. Another option would be to create
a set of keys using [2] which could be run a fixed number of rounds and then to use [9]. Since
their expected number of rounds is not a function of f, this transformation would have the
same asymptotic complexity as ours, but it would include many unnecessary message delays
from the consensus protocol, from the verifiable gather and other parts of their ADKG that
are not present in a direct implementation such as ours.

9 Conclusion

In this paper, we suggest 2 new relations of the common coin primitive implementable in
a fully asynchronous environment. We provide efficient implementations based on a range
of novel techniques. Our protocols are the first use of approximate agreement to generate
random numbers, which is used to keep decided values close in the approximate common
coin protocol and to increase the probability of agreement in the direct implementation of
the Monte Carlo common coin. Moreover, we also introduced elements of coding theory that
were not previously applied to the distributed computing realm in the solution of what we
called intersecting random subsets.

Further studies are necessary to explore the full potential of using these new abstractions
in the design of distributed protocols and to understand the theoretical limits of their
performance.

Tight performance analysis for the Monte Carlo common coin. In the full version of
the paper, we proved that in order to achieve success probability ¢, our probably common
coin protocol requires 3 + [log,(n) + log,y (ﬁ)] or 5+ {logg (1—;) + log, (log2 (ﬁ)ﬂ
rounds of approximate agreement, depending on whether weight calibration is used. While it
seems to correctly reflect the asymptotic behaviour of the actual distribution, these bounds
seem to be rather pessimistic when only a few rounds of approximate agreement are run.
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For example, according to these bounds, with weight calibration, we will need 8 rounds in
order to achieve § = % However, in practice, 6 = % is achieved with 0 rounds of approximate
agreement as with probability at least 2/3 a process in the common core will have the largest
ticket. As we estimated empirically through simulations, the actual § that we obtain after
running 8 rounds of approximate agreement is around 0.993 instead of 2/3.

Non-linear calibration function for the Monte Carlo common coin. Weight calibration
is necessary to achieve the latency of O(log l—ig) rounds in our Monte Carlo common coin
protocol. We chose a concrete linear function because it was relatively simple to analyze
(as we could do a reduction to the case without the calibration). However, this function
is unlikely to be optimal. The extra log,(log, 1=5) part in the resulting estimate on the
number of rounds of approximate agreement is likely to be due to sub-optimal choice of the
weight calibration function.

Approximate common coin without extra log,(f) rounds. Using the magic of weight
calibration, for Monte Carlo common coin, we managed to achieve O(log(1/¢)) time complex-
ity, which is likely to be optimal. However, our approximate common coin protocol requires
log, f +1ogy(1/€) rounds of approximate agreement and, hence, its time complexity depends
on two variables: f and e. In some applications, ¢ may be constant and log,(f) can become
the bottleneck.

Creating a protocol without this extra delay or proving a Q(log(f)) lower bound would be
an interesting contribution to the understanding of the approximate common coin abstraction.
It would also mean that the transformation from approximate common to Monte Carlo
common would result in more efficient coins of the latter type.
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A Impossibility of an Asynchronous Perfect Common Coin

A perfect common coin protocol makes sure that the correct processes agree on a random
number taken uniformly over a specific domain.

By reusing the classical arguments of the impossibility of asynchronous consensus [17], we
are going to show that no asynchronous perfect common coin protocol may exist, if a single
process is allowed to fail by crashing. Recall that we consider protocols in which processes
may non-deterministically choose its actions based on local coin tosses.

Formally, a protocol provides each process with an automaton that, given the process
state and an input (a received message and a result of a local random coin toss), produces an
output (a finite set of messages to send and/or the application output). We assume that the

)

automaton itself is deterministic, i.e., all non-determinism is delegated to the outcomes of
local random coins. A step of process p is therefore a tuple (p, m,r), where m is the message
p receives (can be L if no message is received in this step) and r is the outcome of its local
random coin.

A configuration of the protocol assigns a local state to each process’ automaton and a set
of messages in transit (we call it the message buffer). The initial configuration Cip assigns
the initial local state to each process and assumes that there are no messages in transit. A
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step s = (p, m,r) is applicable to a configuration C if m is L or m is in the message buffer of
C. The result of s applied to C' is a new configuration C.s, where, based on the automaton
of p, the local state of p is modified and finitely many messages are added to the message
buffer.

A sequence of steps E = s1, Sa, . .. is applicable to a configuration Cy if each s;, 7 =1,2,...
is applicable to C;_1, where, for all ¢ > 1, C; = C;_1.s;. We use Cy.E to denote the resulting
configuration; we also say that C' = Cy.FE is an extension of Cy. By convention, C' is a trivial
extension of C.

An ezecution of the protocol is a sequence of steps E applicable to Cy,;;. A finite execution
E results in a reachable configuration C'g. Somewhat redundantly, we call a sequence of
steps applicable to a reachable configuration Cg an eztension of E. It immediately follows
that steps of disjoint sets of processes commute:

» Lemma 4. Let C be a reachable configuration, and E and E' be sequences of steps of
disjoint sets of processes. If both E and E' are applicable to C, then C.E.E’ and C.E'.E are
identical reachable configurations.

In an infinite execution, a process is correct if it executes infinitely many steps. We
assume that every message m that is sent to a correct process p is eventually received, i.e.,
the execution will eventually contain a step (p, m, —). As we assume that at most one process
is allowed to fail by crashing, we only consider infinite executions in which at least n — 1 out
of n processes are correct.

Without loss of generality, we assume that the implemented coin is binary: the correct
processes either all output 0 or all output 1.

A configuration C' is called bivalent if it has an extension C.FEy in which some process
outputs 0 and an extension C.F; in which some process outputs 1. Notice that any configu-
ration preceding a bivalent configuration must be bivalent. Also, no process can produce a
random-coin output in a bivalent configuration: otherwise, we get an execution in which two
processes disagree on the output.

A protocol configuration that is not bivalent is called univalent: O-valent if it has no
extension in which 1 is decided or 1-valent otherwise.

» Lemma 5. The initial configuration Cl,q is bivalent.

Proof. The algorithm must output each of the two values with a positive probability. Thus,
for each v € {0, 1}, there exists an assignment of local coin outcomes and a message schedule
that result in an execution with outcome v. |

» Lemma 6. Let C be a reachable configuration, and E and E’ be sequences of steps of a
process p applicable to C. If C.E and C.E' are univalent, then they have the same valencies.

Proof. The difference between C.F and C.E’ consists in the local state of p and the message
buffer. Since the algorithm is required to tolerate a single crash fault, there must exist a
sequence of steps E” that does not include any steps of p such that some process ¢ outputs
a value v € {0,1} in C.E”. Moreover, as E” contains no steps of p, E” is also applicable to
both C.E and C.E’. But as the two configurations have opposite valences, and ¢ decides the
same value in C.E.E” and C.E’.E"”. Thus, if C.E and C.E’ are univalent, then they must
have the same valencies. |

Following the steps of [17], we show that the protocol must have a critical configuration D
for which:
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there exist steps s, and s, of processes p and ¢ such that both s, and s,.s, are applicable
to D

D.s) is O-valent;

D.sq.5p is 1-valent.

» Lemma 7. There must exist a critical configuration.

Proof. Starting with the initial (bivalent by Lemma 5) configuration C := Cj;;, we pick
process p := p; and check if there exists C’, an extension of C, and s, a step of p applicable
to C” in which the oldest message to p in the message buffer is consumed (if any), such that
(s, is bivalent. If this is the case, we set C' to C'.s,, pick up the next process p := po.
Again, if there exists C’, an extension of C, and s, a step of p in which the oldest message
to p in the message buffer is consumed, such that C’.s,, is bivalent, then we set C' to C”.s,,.
We repeat the procedure, each time picking the next process (in the round-robin order, i.e.,
after p, we go to pi, etc.), as long as it is possible.

The first observation is that the procedure cannot be repeated indefinitely. Indeed,
otherwise, we obtain an infinite sequence of steps in which every process takes infinitely many
steps and receives every message sent to it (and which is, thus, an execution of the protocol)
that goes through bivalent configurations only. Hence, this execution cannot produce an
output — a contradiction with the Termination property.

Thus, there must exist a bivalent configuration C' and a process p, such that for each C”,
an extension of C' and each s, = (p,m,—), a step of p applicable to C’, C".s,, is univalent,
where m is the oldest message addressed to p in C.

Let s, = (p,m,r) be a step of p applicable to C'. Without loss of generality, let C.s, be
0-valent.

As C' is bivalent, it must have an extension F = ey, ..., e such that C.F is 1-valent.

Let ¢ be the largest index in {1,...,k} such that either s, is not applicable to Cy =
C.ei,...,egor Cy.sp is 1-valent. Such an index exists, as C.s,, is O-valent C.E is 1-valent and
for any C’, an extension of C, if s, is applicable to C’, then C’.s,, is bivalent.

Suppose first that s, is not applicable to Cy. As s, is applicable to every configuration
C;=Ce,...,ej,j=1,...,0—1, e, must be be of the form (p, m,r’), i.e., e, must consume
the message received in s, = (p,m, ). By our assumption Cp = Cy_1.(p,m, ") is univalent.
As Cy has a 1-valent descendant C’, it must be 1-valent too.

But, by Lemma 6, Cy_1.s, = Cy_1.(p, m,r) and Cp = Cy_1.(p, m,r’), must have the same
valencies — a contradiction.

Thus, Cy.sp is 1-valent. Hence, we have a bivalent configuration D = Cy_; and steps s,
and s, = eg such that both s, and s,.s;, are applicable to D. Moreover, D.s), is 0-valent and
D.sy.sp is 1-valent. Thus, we get a critical configuration. <

Finally, we establish a contradiction by showing that:
» Lemma 8. No critical configuration may exist.

Proof. By contradiction, let a critical configuration D exist, and let s, and s, be steps of p
and g applicable to D such that D.s, is 0-valent and D.sg.s, be 1-valent.

If s, is a step of p, then Lemma 6 establishes a contradiction.

Otherwise, consider any infinite execution going through to D.s, in which all processes
but ¢ take infinitely many steps in this execution after D.s,. By the Termination property,
there must exist a finite sequence of steps E such that some process outputs a value v € {0,1}
in D.sp.E. As D.s, is O-valent, v = 0. Moreover, as E contains no steps of ¢ and p has the
same state in D.s, and D.s,.s,, E is also applicable to D.s;.s,. Thus, 0 is also decided in
D.sq.sp.E — a contradiction with the assumption that D.s,.s, is 1-valent. <
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Lemmata 7 and 8 imply:

» Theorem 9. There does not exist a 1-resilient asynchronous random coin protocol.

B Intersecting Random Subsets

A direct application of an approximate common coin is a problem that we call intersecting
random subsets. In this problem the following information is globally known: a set S, where
|S| = s; and two parameters m and k, where 1 < k < m < s. Each correct process i chooses
S;, a random subset of S with cardinality m, such that [(); e i1 = m — k. In other
words, there are at least m — k elements chosen at random that appear in all subsets.

The following variation of Gray Codes [23, 36] will be instrumental:

» Definition 10. Code Cs ,, is a list of (:n)—l binary strings (called code words) satisfying
the following conditions:
for all i, Cs 7] is a string of m ones and s —m zeros;
every string of m ones and s —m zeros is present in Cs n exactly once;
Vie{l,...,(2)=1} : Csmli] and Cy . [i—1] differ in two bits;
Coml(2)—1] and C; 1, [0] differ in two bits.

The following recursive equation satisfies all requirements.

“ 7 if0=m=s
[“000...000”] if0=m<s
[“111...1117] if0<m=s

0||Cs—1,m, reverse(1||Cs ym—1) otherwise

Vs> 0and m € [0..s] : Csp, =

In order to avoid computing all (ni) code words, when s and m are large, we can use the
following recursive formula to efficiently (with O(poly(s)) operations) find a code word by
its index:

Vs >0 and m € [0..s],7 € [0.. (;)1} :

“” f0=m=s
“000. ..000” if0o=m<s

Csmli] = { “111...1117 if0<m=s
0[|Cs—1.mli] if0<m<s,i<(®")
UCotm-a[(n)) = (1= (1) =1 if0<m<si> (7.0

For example, here is C5 »: [00011, 00110, 00101, 01100, 01010, 01001, 11000, 10100, 10010,
10001].

Intuitively, this code is composed of binary strings of length s and it can be read in
the following manner: if the i-th position of the string is 1, then i-th element is selected,
otherwise it is considered to be left outside. Moreover, this code has the property that
consecutive numbers differ only by swapping exactly one position set to 1 with a position
marked with a 0. Therefore all consecutive subsets have the same fixed size and include m — 1
common elements and differ by only one. Hence, by generating an approximate common
random coin over the domain {0..()—1} with parameter ¢ < k- (7‘;)_1, processes can select
subsets of size m differing by at most k elements.
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This could be interesting for selecting a committee among n users in scenarios subject
to a mobile Byzantine adversary, i.e. on systems where the set of processes who display
malicious behaviour changes, provided the time to corrupt a majority of processes in any
given committee is higher than an asynchronous round. Note that this solution provides an
interesting alternative to committee elections in protocols such as Algorand [22]. It not only
is completely asynchronous, but it also guarantees a fixed committee size and provides a way
to control the intersection of quorums obtained by different users. Recall that in the case of
Algorand, with non-zero probability, it might happen that quorums do not intersect at all.
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