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Abstract
We present poly log log n-round randomized distributed algorithms to compute vertex splittings, a
partition of the vertices of a graph into k parts such that a node of degree d(u) has ≈ d(u)/k neighbors
in each part. Our techniques can be seen as the first progress towards general poly log log n-round
algorithms for the Lovász Local Lemma.

As the main application of our result, we obtain a randomized poly log log n-round CONGEST
algorithm for (1 + ε)∆-edge coloring n-node graphs of sufficiently large constant maximum degree ∆,
for any ε > 0. Further, our results improve the computation of defective colorings and certain tight
list coloring problems. All the results improve the state-of-the-art round complexity exponentially,
even in the LOCAL model.
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1 Introduction

Consider the following fundamental load-balancing problem: Partition the vertices of an
n-node degree-∆ graph into two parts so that each node has at most (1 + ε)∆/2 neighbors
in each part, where ε > 0 is an arbitrary given constant. When ∆ is large enough (say,
superlogarithmic), such a 2-splitting is trivially achieved w.h.p. without communication. Can
it be solved fast distributively for arbitrary ∆?

The 2-splitting problem can be formulated as an instance of the Lovász local lemma (LLL).
Consider some “bad” events over a probability space. The celebrated Lovász local lemma
states that if the events satisfy certain limited dependencies, then there is a positive probability
that none of them happens [16]. In the 2-splitting problem, the probability space is spanned
by each node picking a part uniformly at random and there is a bad event for each node that
occurs when too many of its neighbors are in any one of the parts. In the constructive version
of the LLL, the objective is to also compute an assignment avoiding all bad events, and using
known distributed LLL algorithms, it can be solved in O(log n) distributed rounds [41, 13].
For small ∆, there is a faster O(∆2 + poly log log n)-round algorithm [18], but it does not
improve the case of arbitrary ∆. This leaves a major open problem: Can we close the gap
between the O(log n) upper bound and Ω(log∆ log n) lower bound [2]? Clarifying this for
2-splitting would be the first step towards resolving the complexity of general distributed
LLLs.

1 Alexandre Nolin changed affiliation from Reykjavik University to CISPA after this work was completed.
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Our central technical result is to answer this question affirmatively, even in the bandwidth-
constrained CONGEST model, by giving a poly log log n-round algorithms for 2-splitting and
various other vertex- and edge splitting problems. Note that these are also exponential
improvements for the LOCAL model. Such splitting problems are pervasive in distributed
graph algorithmics [27, 28, 17, 19, 25, 23, 31, 2]. They can be viewed as questions of rounding
and discrepancy, and they are frequently the major building block in solving various classic
problems when using a divide-and-conquer approach.

We illustrate the reach of the techniques by giving much faster algorithms for two classic
coloring problems.

▶ Theorem 1 (Edge coloring). For any constant ε > 0, there is a poly log log n-round
randomized CONGEST algorithm to compute a (1 + ε)∆-edge coloring on any graph with
maximum degree ∆ ≥ ∆0 where ∆0 is a sufficiently large constant.

Notice that as a function of n alone, previous methods use at least Ω(log n) time, even
in the LOCAL model. The problem has a Ω(log∆ log n) lower bound [10]. Previously,
poly log log n-round algorithms were only known for 2∆ − 1-edge coloring [15, 29], and
O(log∆ n + poly log log n)-round algorithms for using any smaller number of colors [14, 42,
13, 15, 10], even in the LOCAL model. Tackling this problem in CONGEST is non-trivial as it
depends on LLL, which only has efficient known CONGEST solutions for the constant-degree
case [39].

In the second application, the (L, T )-list coloring problem, each node of a graph is given
a list of at least L colors such that any color in its list appears in at most T neighbors’ lists.
We ask for a valid node coloring where each node receives a color from its list, with the ratio
L/T as small as possible. Observe that the degree of a node can be much larger than its list
of colors, and thus greedy approaches are insufficient, even centrally.

▶ Theorem 2 (List coloring). There is a poly log log n-round randomized LOCAL algorithm
for the list coloring problem, for any T and L with L ≥ (1 + δ)T , for any δ > 0 and any
∆ ≥ ∆0, for some absolute constant ∆0.

Previous algorithms either used O(log n)-rounds [13] or required L/T ≥ C0 for a (large)
constant C0 [18]. See Appendix B for more related work on list coloring.

1.1 Contributions on Splitting problems
The main ingredient for both of the above applications is our efficient method to split graphs
into small degree subgraphs. A k-vertex splitting problem with discrepancy z is a partition
of the vertex set into k parts V1, . . . , Vk such that, for each i ∈ [k], each node v ∈ V has
d(v)/k ± z neighbors in Vi. Intuitively, splitting a graph into k parts with a discrepancy
of ε∆/k is useful to solve various problems that are easier on low-degree graphs. These
problems must be resilient to imperfect splits, which is ensured in coloring problems by
having a surplus of colors.

A Chernoff bound argument shows that such splittings are quite easy for high degrees
(∆ ≫ k log n). We obtain the following theorem:

▶ Theorem 3. There exists a universal constant c1 > 0 s.t.: For any ε > 0, maximum degree
∆ ≤ poly log n, and k ≤ c1 · (ε4∆/ ln ∆), there is a distributed randomized LOCAL algorithm
to compute a k-vertex splitting with discrepancy ε∆/k in O(1/ε) + poly log log n rounds.
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The poly log log n term in the runtime of Theorem 3 stems from solving LLL instances
of size N = poly log n deterministically. Any improvement on such algorithms immediately
carries over to our result. However, there is a lower bound of Ω(log∆ log n) rounds for
randomized and Ω(log∆ n) rounds for deterministic algorithms for the respective splitting
problems (and hence also for the LLL problem) [2]. These lower bounds even hold for a weak
variant of the vertex splitting problem, in which each node only needs to have one neighbor
of each color class.

Variants. Our main applications require subtle variations of the splitting problem. To this
end, we solve a more general problem, where we separate the two functions of each node: as
a variable (which part is it assigned to) and as an event (whether its neighborhood is evenly
split). In the bipartite k-vertex splitting problem with discrepancy z, we have a set V L of
nodes for the events and a set V R of nodes for the variables, with an edge between every
dependent variable-edge pair. We wish to partition V R into k parts such that each event
vertex u ∈ V L has d(u)/k ± z neighbors in each part.

▶ Theorem 4. There exists a universal constant c2 > 0 s.t.: For any ε > 0, maximum
degree ∆ ≤ poly log n and k ≤ c2 · (ε4∆L/ ln ∆), there is a distributed randomized LOCAL
algorithm to compute a bipartite k-vertex splitting problem with discrepancy ε∆L/k in O(1/ε)+
poly log log n rounds.

We also devise CONGEST versions of Theorems 3 and 4 that are essential to our edge
coloring result in CONGEST. The formal statement appears in Theorem 20 and requires k

to be a O(log2 log n) factor smaller than in Theorems 3 and 4.
In a d-defective c-coloring, each of the c color classes induces a graph of maximum

degree d. Defective colorings are frequently used in divide-and-conquer approaches to other
coloring problems [34, 3] and they have been studied in several works, e.g., [34, 3, 33, 26, 37],
usually stating variations of deterministic algorithms for computing d-defective coloring with
O((∆/d)2) colors. As any vertex splitting is also a defective coloring, Theorem 3 implies a
poly log log n-round algorithm for (1 + ε)∆/k-defective k-coloring. Previous algorithms for
(1 + ε)∆/k defective colorings either used O(k2) colors [34, 37] or a logarithmic number of
rounds through solving the respective LLL problem [13].

1.2 Challenges to Fast and Efficient Splitting
Known approaches to splitting (or any of the other problems we consider) all build on the
Lovász Local Lemma (LLL) for the low-degree case (∆ < log n). This hits a wall, since there
are no strongly sublogarithmic time distributed LLL algorithms known, in spite of intensive
efforts [12, 10].

There are two known approaches to distributed LLL algorithms. The breakthrough
Moser-Tardos method [41, 13] is based on stochastic local search, which appears to inherently
require logarithmic rounds. The other approach is to use the shattering technique, solving
most of the problem quickly, leading to small remaining “shattered” subgraphs for which we
can afford to apply slower techniques. This was introduced by Beck [5] in the centralized
setting and Alon [1] in the parallel setting.

Fischer and Ghaffari [18] proposed a shattering-based distributed algorithm, modeled on an
earlier sequential algorithm of Molloy and Reed [40]. Using recent network decompositions [46],
their method runs in O(∆2 + poly log log n) time, which is fast for low-degree graphs (∆ ≤
poly log log n) but doesn’t improve the general case. To understand the issue, let us examine
more closely the reasoning behind the method of [18] in the context of 2-splitting.

DISC 2022
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A random assignment (of the nodes into the parts) is easily seen to satisfy the lion’s
share of the vertices, where “satisfied” means having discrepancy within the stated bound.
Each node is so likely to be satisfied that the remaining subgraph is indeed shattered: the
connected components induced by the set of unsatisfied nodes are of small size (assuming
∆ ≤ poly log n, which is the hard case). One natural approach is to undo the assignment
to the unsatisfied nodes, and then solve the problem separately on the unsatisfied nodes.
However, this causes new problems: Nodes that were previously satisfied may become hard
to satisfy. For instance, suppose a node v has neighbors u1, . . . , ut assigned to the first part
and nodes ut+1, . . . , u2t assigned to the second part, for a perfect split. But it is now possible
that all of u1, u2, . . . , ut are retracted, having their assignment undone. Then, satisfying v

now requires assigning its neighbors back to the second part, which leaves little flexibility,
and there may not be a valid solution.

Fischer and Ghaffari [18] (and [40]) fix this by sampling the random variables (i.e., which
part each node is assigned to) only gradually, i.e., at most one variable per event is sampled
simultaneously. Along with “freezing” (or deferring) certain nodes, this ensures that no vertex
experiences too heavy a setback caused by retractions. The gradual sampling is achieved by
first computing a distance-2 coloring of the graph using O(∆2) colors, and then sampling only
the nodes of a single color class at a time. The downside is that this unavoidably requires
time complexity at least ∆2.

A different type of challenge appears when aiming for bandwidth-efficient algorithms. Even
if one drastically improves upon the sketched O(∆2) “pre-shattering” procedure from [18], the
deterministic procedure used in the “post-shattering” phase of their algorithm to complete
the obtained partial solution makes heavy use of the unlimited bandwidth of the LOCAL
model. In fact, while both types of randomized distributed LLL methodologies [38, 13] are
themselves frugal in terms of bandwidth, known deterministic LLL algorithms are based on
bandwidth-hungry generic derandomization results [27, 23, 46].

1.3 Our Methods in a Nutshell
Fast splitting. Our approach is to sample gradually – like in [40, 18] – but faster. We group
the variables (representing the part assigned to a node) into buckets and then sample the
variables one bucket at a time. This is crucially done so that the impact of any given bucket
on any given event is limited (namely, the number of neighbors of a node in any given bucket
is upper bounded), so that we can recover from bad probabilistic assignments. Intuitively,
a node might have to “give up” on all of its neighbors inside a bucket, i.e., it may be that
their assignment is chosen adversarially. As we can guarantee that each event has to give up
on at most one bucket, it turns out to suffice to use a constant number of buckets to get a
good split, or more generally O(1/ε) buckets to get (1 + ϵ)-approximate split. Generating
this bucket assignment is itself a splitting problem (that we term a q-divide) requiring the
use of LLL, but one with less moving parts and a much simpler analysis in LOCAL. In the
CONGEST model, it still requires a novel post-shattering phase.

Post-shattering in CONGEST. We solve the post-shattering phase as a sequence of successive
relaxations, one for each disjoint group of clusters of the network decomposition. In effect,
we solve a new LLL for each cluster group, with progressively stricter criteria (due to
the accumulated discrepancy). Each relaxation is solved by a randomized, rather than a
deterministic, algorithm. Namely, we run O(log n) independent instances of the Moser-Tardos
process on the cluster, and since each succeeds with constant probability, we achieve at least
one valid solution, w.h.p. This parallel instance technique was introduced by Ghaffari [21]
for problems like ∆ + 1-coloring, a simpler setting where the problem is always solvable on
clusters processed later, regardless of how the earlier clusters are solved.
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In our edge-coloring application, we use splitting to whittle down the degree parameter
to a manageable size. Once degrees are down to poly log log n, we can simulate the known
algorithms from the LOCAL model, including derandomization techniques, to solve them also
in poly log log n CONGEST rounds.

For our list coloring results, we use our splitting procedure to first reduce the parameter
L and T to poly log log n while keeping the initial ratio L/T ≥ (1 + δ) almost intact. Then,
in additional color pruning steps we amplify the ratio until it is larger than a sufficiently
large constant, at which point the problem can be solved efficiently via a known LLL-based
method [18].

1.4 Further Related Work
The only known LLL algorithm in the CONGEST model is by Maus and Uitto [39] who
provide a poly log log n-round algorithm for LLLs with a polynomial criterion and constant
dependency degree. In this work, we observe that their runtime remains poly log log n, even
if the dependency degree is as large as poly log log n, see Lemma 21 for details.

Edge coloring. Dubhashi, Grable, and Panconesi [14] gave a distributed algorithm for
(1 + ϵ)∆-edge coloring based on the Rödl nibble method. Their results only apply to large
values of ∆. Elkin, Pettie, and Su [15] extended the reach to arbitrary ∆ by reduction to
distributed LLL, and obtained improved complexity of O(log∗ ∆ · ⌈log n/∆1−o(1)⌉). Chang
et al. [10] improved the complexity to O(log∆ n + log3+o(1) log n) for ε−1 ∈ O(1), and to
O(log n) for ε−1 ∈ Õ(

√
∆).

There are clear tradeoffs between the number of colors and the time complexity. Comput-
ing (2∆ − 1)-edge coloring can be achieved in poly log log n rounds [15] (even in CONGEST
[29]), and even in O(log∗ n) rounds for ∆ ≥ log2 n [15, 29]). Chang et al. [10] showed via the
round elimination method that computing a (2∆ − 2)-edge coloring requires Ω(log∆ log n)
rounds. A poly(∆, log n)-round algorithm is known for ∆ + 2-coloring [47] and very recently
for ∆ + 1-coloring [6]. Chang et al. [10] showed that an (possibly randomized) algorithm for
∆ + 1-coloring that can start with any partial coloring requires Ω(∆ log n) rounds. They also
showed that (1 + log ∆/

√
log ∆)∆-edge coloring can be found in O(log n) rounds.

Splitting. Ghaffari and Su [28] gave three LOCAL algorithms for splitting the edges of a
graph into two parts such that each node has at most (1 + ε)∆/2 incident edges in each part,
rounded up for their randomized result.

Their deterministic algorithms achieve complexity O(ε−1∆2 log5 n) when ∆ ≥ c ·ε−1 log n,
and complexity O(ε−3 log7 n) when ∆ ≥ c · ε−2 log n, where c is a suitable absolute constant.
Their randomized algorithm solves the problem for all ∆ in O(ε−2∆2 log4 n) rounds. These
results were later improved by [25] to O(ε−1−o(1) log n) rounds for deterministic algorithms
and O(ε−1−o(1) log log n) for randomized algorithms, with stronger guarantees on the split.
However, it is unclear whether these edge-splitting algorithms can be extended to the
CONGEST model, as the algorithms communicate simultaneously over various long paths in
the network. The importance of splitting problems for the area was highlighted in [27] and
[2]. The latter gave various direct reductions of the maximal independent set problem and
coloring problems to splitting problems. In addition, they studied several weak variants of
the splitting problem, e.g., splitting into two parts such that each node needs to have at least
one neighbors in each part. They show that even these have a Ω(log∆ log n) lower bound
for randomized algorithms and Ω(log∆ n) for deterministic algorithms. They also obtain a
poly log log n-round algorithm for the weak variant in the special case of regular graphs.

DISC 2022
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1.5 Outline
In Section 2, we define the models, the setup for the Lovász Local Lemma and introduce
notation. Section 3 contains our algorithm for the q-divide that does not just serve as a
warm-up for our more involved splitting algorithms, but is also used as a subroutine in the
latter. Our main splitting algorithm is presented in Section 4 for LOCAL and in Section 5 for
CONGEST. In Section 6, we present our splitting applications for edge coloring in LOCAL,
and in Appendix A for CONGEST. In Appendix B, we provide more details on our second
application, i.e., list coloring. The appendix also contains our results on bipartite splitting
(Theorem 4). Further details, and the missing full proofs appear in the full version [30].

2 Models, Lovász Local Lemma, Shattering, and Notation

LOCAL and CONGEST model [36, 43]. In the LOCAL model, a communication network is
abstracted as an n-node graph with maximum degree ∆. Nodes communicate in synchronous
rounds, in each of which, a node can perform arbitrary local computations and send messages
of arbitrary size to each of its neighbors. Initially, each node is unaware of the network
topology and at the end of the computation a node has to output its own part of the solution,
e.g., the colors of its incident edges in an edge coloring problem. The main complexity
measure is the number of rounds until each node has produced an output. The CONGEST
model is identical, with the additional restriction that messages contain O(log n) bits.

Distributed Lovász Local Lemma. There are random variables Var and (bad) events X at
the nodes. Each event X depends on a subset Var(X) of the random variables. Let p(X)
denote the probability that event X occurs. As usual, we want to find an assignment to the
variables so that none of the events occur. We form the dependency graph H = (X , EH) on
the events, where two events X1, X2 ∈ X are adjacent if they depend on a common variable,
i.e., if Var(X1) ∩ Var(X2) ̸= ∅.

In a distributed setting, we assume that each variable and each event is associated with
some node of the communication graph G. For most LLL algorithms it is essential that the
dependency graph can be simulated efficiently in the communication network. In the LOCAL
model, one round of communication in H can be simulated in t rounds if the variables Var(X)
upon which the event X depends are within distance t in G of the node where X resides.
Let d be the maximum degree of H, while ∆ is the max degree of G.

Normally, an LLL is specified in terms of a function f , such that p(X)f(d) ≤ 1. The
original specification of Lovász has f(d) = e · d and ensures the existence of an assignment of
the variables such that all bad events are avoided. In the study of distributed LLL algorithms,
the functions d2 [13], c · d8 [18] (both polynomial criteria), and 2d (exponential criterion)
[7, 9, 8] have appeared in the literature.

▶ Example 5 (k-vertex splitting with discrepancy 6∆/k is an LLL). Let each node in the graph
pick one of k parts, V1, . . . , Vk, uniformly at random. Introduce a bad event Xv for each node
v ∈ V that holds if the number of neighbors of v within any one part deviates from the expected
value by more than 6∆/k, i.e., if |N(v) ∩ Vi| ̸= d(v)/k ± 6∆/k, for some i ∈ [k]. Formally,
there is one variable for each vertex indicating the part that the vertex joins. As the event
Xv shares variables only with the events in its 2-hop neighborhood, the dependency degree
of the LLL is d ≤ ∆2. A Chernoff bound shows that Pr(Xv) ≤ exp(−Ω(∆)) = exp(−Ω(

√
d)).

Hence, this splitting problem is an LLL with exponential criterion, if ∆ is above an absolute
constant.

The constant 6 is chosen somewhat arbitrarily in order to make the Chernoff bound-based
claim simple. In the following sections, we aim at splittings with discrepancy (1 + ε)∆/k.
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Shattering. Our algorithms make use of the influential shattering technique2 in which one
first uses a randomized algorithm to set the values of some of the variables such that unsolved
parts of the graph induce small connected components, which are solved in the post-shattering
phase. The following lemma shows that the remaining components are indeed small.

▶ Lemma 6 (Lemma 4.1 of [11]). Consider a randomized procedure that generates a subset
Bad ⊆ V of vertices. Suppose that for each v ∈ V , we have Pr[v ∈ Bad] ≤ ∆−3c, and the
events v ∈ Bad and u ∈ Bad are determined by non-overlapping sets of independent random
variables for nodes with distance larger than 2c. Then, w.p. 1 − n−Ω(c′), each connected
component in G[Bad] has size at most (c′/c)∆2c log∆ n.

The following standard result solves these small components efficiently.

▶ Lemma 7 ([46]). There is a deterministic LOCAL LLL algorithm with polynomial criterion
that runs in poly log N rounds on instances of size N , even with an ID space of size exponential
in N .

Proof Sketch. The result follows with the derandomization of the distributed version of
Moser-Tardos [41] via the network decomposition by Rozhon and Ghaffari [46], as explained
in [46]. Note that the exponential ID space is not an obstacle in the LOCAL model as it can
be circumvented by first computing a Θ(T )-distance coloring with poly N colors, e.g., by
using Linial’s coloring algorithm [35] if the algorithm runs in T rounds. ◀

Notation and concentration bounds. Given a graph G = (V, E) and a subset S ⊆ V

the induced graph G[S] is the graph with vertex set S that contains all edges of E with
both endpoints in S. Similarly, for an edge set F ⊆ E, the induced graph G[F ] is the
graph with edge set F that contains all vertices that appear in an edge of F . We denote
[n] = {0, . . . , n − 1}. We use the following standard concentration bounds (see, e.g., [14]).

▶ Lemma 8 (Chernoff bounds,[14]). Let {Xi}r
i=1 be a family of independent binary random

variables with Pr[Xi = 1] = qi, and let X =
∑r

i=1 Xi. For any δ > 0, Pr[|X − E[X]| ≥
δ E[X]] ≤ 2 exp(− min(δ, δ2)E[X]/3).

▶ Corollary 9. With X of the same form as in Lemma 8, ∀µ, z s.t. z ≤ µ and E[X] ≤ µ,
Pr[|X − E[X]| ≥ z] ≤ 2 exp(−z2/(3µ)).

3 Warm-Up: Computing q-divides

For an integer q ≥ 1, a q-divide of a graph is a partition of its vertices into q parts (“buckets”)
V1, . . . , Vq such that each vertex has at most 8∆/q neighbors in each bucket. We show:

▶ Theorem 10. For any ∆ ≤ poly log n and q ∈ [1, (1/6)∆/ ln ∆], there is a LOCAL algorithm
to compute a q-divide in poly log log n-rounds.

We use q-divide as a subroutine in our k-splitting algorithm of Theorem 3. Additionally,
the techniques to compute a q-divide serve as a warm up for the more involved algorithm
for vertex splitting. There are two crucial differences between a (tight) k-splitting and a

2 The technique has been used extensively for efficient algorithms for various local distributed graph
problems and in particular symmetry breaking problems such as sinkless orientation [28], ∆ + 1-vertex
coloring [11], ∆-coloring [24], Maximal Independent Set [20], Maximal Matching [4], (2∆ − 1)-Edge-
Coloring [4], and also for general LLL algorithms on small degree graphs [18].

DISC 2022
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q-divide: (1) A splitting guarantees both the minimum and maximum number of neighbors
of a node inside each part, while a q-divide gives only an upper bound, (2) the upper bounds
asked for by a q-divide are loose, i.e., we deviate by a factor 8 from a perfect partition, while
a splitting is within a (1 ± ε)-factor.

A q-divide is guaranteed to exist by LLL when q ∈ O(∆/ log ∆). A q-divide can also be
defined as a 8∆/q-defective 8∆/q-frugal q-coloring, where x-frugal means that each color
appears no more than x times in each neighborhood.
▶ Remark 11. For ∆/q = Ω(log n), there is a trivial zero round CONGEST algorithm for
q-dividing. Each vertex assigns itself to a bucket uniformly at random ; each vertex has
d(v)/q ≤ ∆/q neighbors in each bucket in expectation. By Lemma 8 (Chernoff bound), for
each vertex v and i ∈ [q], Pr[|N(v) ∩ Vi| > 8∆/q] ≤ exp(−∆/q) ∈ n−Ω(1). Therefore, w.h.p.,
no vertex has more than 8∆/q neighbors in a bucket.

For smaller ∆/q we give an algorithm based on shattering (that also works for large ∆/q).
The algorithm is parameterized with a threshold parameter z(v) for each vertex v. For

Theorem 10 we set z(v) = 8∆/q for all nodes. In the full version, we compute slightly
different versions of q-divides with different choices of z(v).

Algorithm. Phase I: (Pre-shattering) Each vertex picks one of the first q/2 buckets u.a.r.
Whenever a node has more than z(v) neighbors in a bucket, it deselects these, i.e., these
neighbors are removed from the bucket. Phase II: (Post-shattering) The post-shattering
instance is formed by all nodes that are not assigned to any bucket, together with their
neighbors. The objective is to add each unassigned node to one of the last q/2 buckets, such
that each node has at most z(v) neighbors in each bucket. In Lemma 13, we show that this
problem is an LLL instance with a polynomial criterion, and in Lemma 12 that it is induced
by connected components of small size. We solve it via Lemma 7 in LOCAL.

▶ Lemma 12. For threshold discrepancy z(v) = 8∆/q for all v ∈ V , the connected components
participating in the post-shattering phase of the algorithm are of size poly(∆) · log n, w.h.p.

Proof. For j ∈ [q/2] and node v, let Dj(v) be the number of neighbors of v in bucket j.
We have E[Dj ] = 2∆/q for each of the q/2 buckets. By Chernoff (Lemma 8), a node v has
an unusually high number of neighbors (> z(v) = 8∆/q = (1 + 3)2∆/q) in a given bucket
w.p. at most exp(−2∆/q) ≤ ∆−12 , using q ≤ (1/6)∆/ ln ∆. A node v takes part in the
post-shattering phase if one of its neighbors or v itself renounced its choice of bucket, i.e., if
a node in its distance-2 neighborhood had too many neighbors in one of the buckets. This
occurs w.p. at most q · ∆2 · ∆−12 ≤ ∆−9, and is fully determined by the random choices
of nodes inside the 3-hop ball around v. Hence, by Lemma 6, the graph is shattered into
components of size O(∆6 log n), w.h.p. ◀

▶ Lemma 13. When z(v) = 8∆/q, for all v ∈ V , the instances formed in the post-
shattering phase are LLL problems with criterion f(d) = (q/2) exp(−2

√
d/q) and d ≤ ∆2.

For q ≤ (1/6)∆/ ln ∆, the error probability of the LLL is upper bounded by d−5.

Proof. Consider the following probabilistic process. Each node picks each part in [q] \ [q/2]
u.a.r., i.e., with probability p = 2/q. For j ∈ [q] \ [q/2], let Dj denote the random variable
describing the number of neighbors in bucket j. We have E[Dj ] ≤ 2∆/q. Let Xv denote the
“bad” event that node v has more than z(v) = 8∆/q neighbors in one of the q/2 buckets. We
analyze the LLL formed by the events Xv and their underlying variables.

The event Xv is fully determined by the random choices of direct neighbors of v. Hence,
two bad events Xv and Xw are dependent on a shared variable iff v and w are at distance
2 or less, and each bad event shares a variable with at most ∆2 other events. Therefore,
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the dependency graph of the LLL has maximum degree at most d ≤ ∆2. By Chernoff
(Lemma 8), Xv occurs w.p. at most (q/2) exp(−2∆/q). Hence, the LLL has criterion
f(d) = (q/2) exp(−2

√
d/q), which ranges from being polynomial to exponential depending

on how small q is compared to ∆ ≥
√

d. In the worst case, the bound q ≤ (1/6)∆/ ln ∆
implies that f(d) ≤ (∆/(12 ln ∆))∆−12 ≤ d−5. ◀

Proof of Theorem 10. The problem is solved by the algorithm above. The runtime is O(1)
rounds for the pre-shattering phase, and poly log log n rounds for the post-shattering phase
via Lemma 7. To apply this lemma we require Lemma 12 that shows that any component
in the post-shattering phase has size log n · poly ∆ = poly log n, w.h.p., and that Lemma 13
shows that these components form LLLs with a polynomial criterion. ◀

Note that in the special case of ∆/q = Ω(log n) we get the stronger property that, w.h.p.,
there will no post-shattering phase (see Remark 11).

4 Vertex Splitting in LOCAL

In this section, we prove the following result on vertex splitting.

▶ Theorem 3. There exists a universal constant c3 > 0 s.t.: For any ε > 0, maximum degree
∆ ≤ poly log n, and k ≤ c3 · (ε4∆/ ln ∆), there is a distributed randomized LOCAL algorithm
to compute a k-vertex splitting with discrepancy ε∆/k in O(1/ε) + poly log log n rounds.

When ∆ is logarithmically larger than k, there is an easy solution.

▶ Observation 14. If k ≤ ε2∆/(9 ln n), the trivial zero round algorithm in which each node
picks one of the k parts u.a.r. results in a k-vertex splitting with discrepancy ε∆/k, w.h.p.

Proof. For a node v and class i, let D be the number of neighbors of v that picked class i.
Then E[D] = dv/k. Let µ := ∆/k, z = ε∆/k. By Corollary 9 (Chernoff bound)

Pr[|D − E[D]| ≥ ϵ∆/k] ≤ 2 exp(−z2/(3µ)) = 2 exp(−ε2∆/(3k)) .

This is at most 2n−3 when k ≤ ε2∆/(9 ln n), so by union bound over all nodes v and classes
i we get a k-splitting w.h.p. ◀

4.1 Shattering for ε-Vertex-Splitting in O(1/ε) Rounds
Due to Observation 14, the most challenging case for a a poly log log n-round algorithm is
when ∆ ≤ poly log n and ∆/k = O(log n) holds. Next, we present our algorithm.

FastShattering. Find a q-divide χ for q = 24/ε. To avoid confusion between this partition
of the nodes and that of the k-splitting we are computing, let us refer to χ as a schedule
of the nodes, made of q slots, which we denote by N1, . . . , Nq. Go through the q slots of χ

sequentially, and temporarily assign each node in this slot one of the k parts uniformly at
random. If a node has received too few or too many neighbors in a part when processing
a slot, we retract the last batch of assignments within the neighborhood of that node and
freeze those nodes. We also freeze all nodes within distance 3 that are in later slots. All
non-frozen nodes (in slot j) keep their assignment permanently. The frozen nodes then get
solved in post-shattering (along with all neighbors acting as events, including non-frozen
neighbors). For each j ∈ [q], there is one such post-shattering instance stemming from nodes
that were frozen when processing slot j.
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Figure 1 Whether a node joins the post-shattering instance depends on random choices at
distance up to 5.

For the rest of this section, set the number of slots to q = 24/ε and define the following
threshold parameters for the pre-shattering and post-shattering phase zpre

j (v) = zpost
j (v) =

ε2∆/(72k) for all j ∈ [q], v ∈ V .

Detailed description of FastShattering. During the course of the algorithm nodes are either
frozen or non-frozen. Initially, all nodes are non-frozen. Pre-shattering: After computing
the q-divide, we iterate through the slots 1, . . . , q. In each iteration, we temporarily assign
the non-frozen nodes in slot j by sampling each u.a.r. into one of the k parts. Next, we
formalize the event that retracts these assignments. Fix a node v ∈ V , a slot j ∈ [q] and a
part i ∈ [k]. Let Nj(v) be the neighbors of node v in slot j. Let d̂j(v) denote the live degree
of node v when processing slot j, i.e., the number of vertices in Nj(v) that are not frozen
just before processing slot j. Let Di,j denote the number of neighbors of v in Nj(v) that
are temporarily assigned to part i. Event Bpre

i,j (v) holds if Di,j deviates from its expectation
E[Di,j ] = d̂j(v)/k by more than the threshold parameter zpre

j (v). Let Bpre
j (v) =

∨
i∈k Bpre

i,j (v)
be the event that v sees such a large deviation from its expectation in some part i. Suppose
after sampling event Bpre

j (v) occurs, then node v undoes the temporal assignment of all
neighbors in slot j, i.e., of all nodes in Nj(v), and additionally freezes all unassigned nodes
in distance 3, i.e., the nodes in {u ∈ ∪j′>jNj(v) : d(u, v) ≤ 3}. Add all nodes that become
frozen when processing slot j to Badj . All (temporal) assignments that do not undergo
a retraction are kept permanently. While frozen nodes do not sample colors, each node
monitors how its neighbors are being colored and thus yields an event node in each of the q

iterations, regardless of whether it is frozen or not.
Post-shattering: For each j ∈ [q] there is a separate post-shattering LLL instance containing

a variable for each node in Badj and a bad event node Bv
j for each node v with a neighbor in

Badj . The random process of the j-th LLL is as follows: Each node in Badj picks one of the
k parts independently and u.a.r. For a node v the number of neighbors in Badj is denoted by
fj(v). Let Fi,j(v) be the number of neighbors of v in part i (restricted to neighbors in Badj).
Event Bpost

i,j (v) holds if Fi,j deviates from its expectation E[Fi,j(v)] = fj(v)/k by more than
the threshold parameter zpost

j (v). The bad event Bpost
j (v) =

∨
i∈k Bpost

i,j (v) holds if v sees such
a large deviation from its expectation in some part i. In Lemmas 6 and 19 we show that
for each j ∈ [q] we indeed obtain an LLL with polynomial criterion that can be solved via
Lemma 7 in the LOCAL model. All q instances are solved in parallel; their deviations add up
to (ε/3) · ∆/k as shown in Lemma 16.

Intuition for the runtime: The pre-shattering phase runs in O(q) = O(1/ε) rounds. The
post-shattering phase runs in poly log log n rounds for the following reason. Each component
in each of the q post-shattering instances forms an LLL and is of size N = poly(∆) · log n =
poly log n, see Lemma 18. As all components are independent, they can can be solved in
parallel in poly log N = poly log log n rounds in the LOCAL model via Lemma 7.
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Notation. We summarize and extend the notation that we need for the analysis.
V1, . . . , Vk parts (changing throughout the algorithm),
N(v) neighbors of v in G, Nj(v) neighbors of v in slot j, N̂j(v) ⊆ Nj(v) are the live
neighbors of v in bucket j, i.e., the unfrozen neighbors of v in slot j just before slot j is
processed, Fj(v) ⊆ N(v) neighbors of v in the j-th post-shattering instance,
d(v) = |N(v)|, dj(v) = |Nj(v)|, d̂j(v) = |N̂j(v)|, fj(v) = |F̂j(v)| .

▶ Observation 15. In FastShattering, any node can have at most one slot in which (some)
of its neighbors get their part assignment undone.

Proof. Let v be a node with a neighbor u ∈ Nj(v) that has its assignment retracted during
slot j. Then u is adjacent to a node that detected that too few or too many of its neighbors
were assigned a given part when processing slot j. That node is at distance at most 2 from v,
and it freezes the nodes in slots higher than j within distance 3. Therefore, all the unassigned
neighbors of v are frozen, and v will not see another retraction in its neighborhood (in fact,
it will not even see an assignment). ◀

4.2 Analysis of Discrepancy
In this section, we bound the deviation in the number of neighbors that a node v sees in the
i-th part from d(v)/k.

The full proof of the following lemma appears in Appendix C.

▶ Lemma 16. In the final assignment V1, . . . , Vk, i.e., after the pre- and post-shattering
phases, each node v has d(v)/k ± ε∆/k neighbors in every Vi, i ∈ [k].

Proof sketch. The discrepancy (deviation from expectation) for a node comes from three
sources, (a) slots with neighbors that got retracted, (b) the parts of other slots assigned
in the pre-shattering phase, and (c) the deviation summed up over all q post-shattering
instances. Due to Observation 15, there can be at most one slot with retracted nodes and the
deviation from that slot j∗ from the expectation can be upper bounded by dj∗(v)/k + z ≤
8∆/q + z ≤ ε/3∆ + z. For each other slot the discrepancy is at most z, and for each of
the q instances in the post-shattering phase the discrepancy is also at most z. Thus, with∑

j∈[q] zpre
j (v) =

∑
j∈[q] zpost

j (v) ≤ ε/3 · ∆/k and q = 24/ε the total discrepancy adds up to
8∆/q +

∑
j∈[q] zpre

j (v) +
∑

j∈[q] zpost
j (v) ≤ ε∆/k. ◀

4.3 Analysis of Bad Event Probabilities
Throughout our analysis of the pre-shattering and post-shattering parts of our algorithm,
we consider random processes and events which are essentially always the same: nodes in
some subgraph each pick a random bucket u.a.r. independently from other nodes, and for
each node we analyze the probability that the number of neighbors that pick a given bucket
deviates too much from expectation. Recall, that we set q = 24/ε and z = ε2∆/(72k) earlier.

▷ Claim 17. Let k, N be positive integers. Let D be a sum of at most N independent
Bernouilli random variables of parameter 1/k, and let z ≤ N/k. Consider the event B that
D deviates from its expectation by more than z. Pr(B) ≤ 2e−z2k/(3N).

In particular, for N = ∆, k ≤ ε4∆/(219 ln ∆) and z = ε2∆/(72k) we obtain Pr(B) ≤ ∆−24.
If D is a sum of only N = 8∆/q variables, k ≤ ε3∆/(217 ln ∆) suffices for the same bound.
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Throughout this paper, D is taken to be a sum of indicator random variables associated to a
set of nodes. More precisely, for a subset of nodes in a neighborhood N(v), we consider the
sum of the random variable indicating whether each node chose a specific part i out of k

choices.

Proof. The general bound on Pr(B) is from Corollary 9 (Chernoff bound).
When N = ∆, k ≤ ε4∆/(219 ln ∆) and z = ε2∆/(72k), exp(−z2/(3N)) simplifies to

exp(−ε4∆/(3 · 722k)) ≤ ∆−24. When N = 8∆/q (recall q = 24/ε), k ≤ ε3∆/(217 ln ∆) and
the same z as before, exp(−z2k/(3N)) simplifies to exp(−ε3∆/(722k)) ≤ ∆−24. ◁

4.4 Analysis of FastShattering
Next, we show that the post-shattering instances consist of small connected components.

▶ Lemma 18. After FastShattering, each connected component in each of the q post-shattering
instances is of size ∆10 log n, w.h.p.

The proof of Lemma 18 appears in Appendix C.2. In spirit it is similar to the proof of
Lemma 12, but it is more advanced as frozen variables need to be taken care of formally.

4.5 Post-shattering
In this section we show that the q post-shattering instances are indeed LLLs.

▶ Lemma 19. Each connected component in each of the q = O(1/ε) post-shattering instances
forms an LLL with dependency degree d′, bad events’ probabilities upper bounded by p′ such
that the polynomial criterion d′8p′ < 1 holds. In LOCAL, the dependency graph can be
simulated with O(1) overhead in the communication network G.

Proof. Consider a post-shattering instance j ∈ [q]. The LLL is formally defined in Section 4.1.
Recall, that in the associated random process each node in Badj joins one of the k parts
u.a.r. and that there is a bad event Bpost(v) =

∨
i∈[k] Bpost

i (v) for each node with neighbor in
Badj . The event Bpost(v) occurs if too many or too few neighbors join the i-th part. Thus, a
bad event only depends on the randomness of adjacent nodes and the dependency degree is
at most d′ = ∆2.

By Claim 17 (applied with N = ∆, and z = zpost
j (v) = ε2∆/(72k)), the probability that

Bpost
i (v) holds is at most ∆−24 if k ≤ ε4∆/(219 log ∆). With a union bound over all k parts

we obtain the upper bound p′ = k∆−24 = ∆−23 for the probability of each bad event.
Hence, we obtain p′d′11 < 1. ◀

4.6 Proof of Theorem 3
Assume k ≤ ε4∆/(219 log ∆) and recall that ∆ ≤ poly log n. The runtime of Fast-Shattering
is linear in the number of slots, i.e., O(q) = O(1/ε). Next, we show that the post-shattering
instances meet the requirements of Lemma 7. Due to Lemma 18 each connected component
is of size poly(∆) log n = poly log n, w.h.p. Further, due to Lemma 19 each such component
forms an LLL with polynomial criterion and the dependency graph can be simulated with
O(1) overhead in the communication network G. Thus, we can apply Lemma 7 (in parallel
for all q instances) and obtain a runtime of poly log log n rounds for the post-shattering phase.
Lemma 16 shows that the deviation of |N(v) ∩ Vi| from d(v)/k is upper bounded by ε∆/k

for any node v ∈ V .
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5 Vertex Splitting in CONGEST

We obtain the following theorem for vertex splitting and bipartite vertex splitting.

▶ Theorem 20. There exists a universal constant c4 > 0 s.t.: For ε > 0, ∆ ≤ poly log n,
and k ≤ c4 · (ε4∆/(ln ∆ log2 log n)), there are distributed CONGEST algorithms to solve the
k-vertex splitting problem with discrepancy ε∆/k and to solve the bipartite k-vertex splitting
problem with discrepancy ε∆L/k in O(1/ε) + poly log log n rounds.

Theorem 20 requires k to be a O(log2 log n) factor smaller than in Theorems 3 and 4.
As the pre-shattering phase of Theorems 3 and 4 immediately works in the CONGEST

model, the main challenge to prove Theorem 20 is to design a new post-shattering method.
Recall, the post-shattering phase in the LOCAL model, i.e, the core steps of Lemma 7.
Each connected component in the post-shattering phase forms an LLL with a polynomial
criterion and has N = poly(∆) · log n = (poly log log n) · log n nodes. This small size allows
to compute a network decomposition (see Section 5.1) with poly log log n cluster diameter
and O(log log n) color classes with distance s = Ω(log N) = Ω(log log n) between clusters
of the same color. The latter is sufficient to derandomize the O(log N) = O(log log n) ≪ s

round LLL algorithm from [13]. The details of the derandomization are not important, but it
is based on gathering all information in the cluster and close-by nodes. In the LOCAL model,
this can be done in time that is linear in the cluster diameter, i.e., in poly log log n rounds.
One can show that in the CONGEST model all information of a cluster can be encoded
with N · poly log log n bits. By using a pipelining argument (see the full version and [39] for
details) and that the bandwidth of the CONGEST model is Θ(log n) bits, one can aggregate
all of this information at a cluster leader in N · poly log log n/bandwidth + clusterdiameter
rounds, as done in [39]. For ∆ = poly log log n, we obtain N = log n · poly log log n and this
method runs in poly log log n rounds. In summary, we obtain the following theorem3 and the
corollary thereafter.

▶ Lemma 21 ([39]). There is a randomized CONGEST algorithm with bandwidth = Θ(log n)
for LLL instances of size N ≤ log n · poly log log n, dependency degree d ≤ poly log log n and
error probability p < d−4, that runs in poly log log n rounds.

The algorithm works with an ID space that is exponential in N and is correct w.h.p in n.

▶ Corollary 22. There is a randomized CONGEST algorithms for LLL with error probability
p, dependency degree d and criterion p < d−8 that uses poly log log n rounds, whenever
d ≤ poly log log n. Here, the dependency graph is also the communication network.

Proof. The shattering framework of [18], w.h.p., reduces to the LLL problem to LLL problems
with error probability p′, the same dependency degree d and criterion p′ < d−4 on instances
of size N = log n · poly d. These can be solved in poly log log n rounds via Lemma 21. ◀

For ∆ ≫ poly log log n, any such gather all information approach inherently requires signific-
antly larger runtimes. The main ingredient for Theorem 20 is a new method for solving the
vertex splitting instances in the post-shattering phase, that can deal with degrees as large as
∆ = poly log log n while using only poly log log n rounds. We prove the following theorem.

3 The proof of Lemma 21 appears in the full version [30]. It is similar to an CONGEST LLL algorithm in
[39] for instances of size N = O(log n) and the case of d = O(1). In fact, following all dependencies on
d (and a slightly increased N) in the proof of [39] yields an algorithm with runtime poly(d, log log n),
which yields the desired runtime whenever d = poly log log n.
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▶ Lemma 23. There exists a universal constant c5 > 0 s.t.: For any ε > 0 and any k ≤
c5 · (ε2∆/(log ∆ log2 log n)), there is a poly log log n-round randomized CONGEST algorithm
with bandwidth = Θ(log n) that computes a k-vertex splitting with discrepancy ε∆/k on
instances of size N ≤ poly log n.

The algorithm works with an ID space that is exponential in N and is correct w.h.p in n.

The proof of Lemma 23 uses network decompositions that we introduce in Section 5.1,
before proving the lemma in Section 5.2. In Section 5.3, we prove Theorem 20.

5.1 Network Decomposition
A weak distance-s (C, β)-network decomposition with congestion κ is a partition of the vertex
set of a graph into clusters C1, . . . , Cp of (weak) diameter ≤ β , together with a color from
[C] assigned to each cluster such that clusters with the same color are further than s hops
apart. Additionally, each cluster has a communication backbone, a Steiner tree of radius
≤ β, and each edge of G is used in at most κ backbones. For additional information on such
decompositions we refer the reader to [39, 22]. For the sake of our proofs we only require that
such decompositions can be computed efficiently (Theorem 24) and that one can efficiently
aggregate information in all clusters of the same color in parallel in time that is essentially
proportional to the diameter β (see the full version [30] for the precise statement).

▶ Theorem 24 ([39]). For any constant C > 0 and s ∈ poly log log n, there is a deterministic
CONGEST algorithm with bandwidth b that, given a graph G with at most n nodes and unique
b-bit IDs from an exponential ID space, computes a weak (C log n, O(s/C · log3 n))-network
decomposition with cluster distance s and congestion O(s · log2 n) in O(log7 n · s2) rounds.

5.2 Efficient Post-shattering in CONGEST (Proof of Lemma 23)
In order to devise an efficient CONGEST post-shattering algorithm, we decompose each small
component into small clusters via the network decomposition algorithm from Theorem 24.
Then, the objective is to iterate through the color classes of the decomposition and when
processing a cluster we want to assign all nodes in that cluster to a part. When doing so
we ensure that each node of the graph obtains a discrepancy of at most (ε/Q)∆/k in each
iteration. Hence, over the Q iterations, each node’s discrepancy adds up to at most ε∆/k.

Proof of Lemma 23. First, compute a distance-3 network decomposition of the graph with
Q = 2 log log n colors via Theorem 24. Then, iterate through the color classes of the network
decomposition, processing all clusters of a color class as it gets considered.

When processing a cluster C, we set up a new instance of the vertex splitting problem as
follows: Let V L,C = N(C) be all nodes that have a neighbor in C; V L,C may contain many
nodes of C itself. Each node of C is supposed to join one one the parts V C

1 , . . . , V C
k such

that for each i ∈ [k] each node in v ∈ V L,C has dC(v)/k ± ε/Q · ∆/k neighbors in V C
i . After

processing all clusters we set Vi =
⋃

cluster C V C
i . As clusters processed at the same time are

in the same color class, they have distance-3, and no node has neighbors in more than one
simultaneously processed cluster. Hence, the deviation of the number of neighbors into one
Vi from d(v)/k is bounded by Q · ε/Q · ∆/k = ε∆/k.

The bounds on k and Q imply that the problem that we solve when processing one
cluster is an LLL LC with a polynomial criterion: Variables and the random process are
given by the nodes of C choosing one of the parts V C

1 , . . . , V C
k uniformly at random. For a

node v ∈ V L,C introduce a bad event BC
v that holds if for any i ∈ [k] node v does not have

dC(v)/k ± ε/Q · ∆/k neighbors in part V C
i . Due to the distance between clusters no node

can have a bad event for more than one of the simultaneously processed clusters.
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Due to Claim 17 (applied with N = ∆, z = ε/Q · ∆/k), we obtain that Pr(BC
v ) ≤

k · exp(−ε2∆/(3Q2k)). Plugging in Q = 2 log log n and k ≤ Cε2∆/(log ∆ log2 log n), we get
Pr(BC

v ) ≤ k · exp(− log ∆/(12C)) ≤ ∆−19 for C ≤ 2−8. As the dependency degree is at most
∆2, we obtain an LLL with a polynomial criterion of exponent 9.

The goal is to assign all nodes of C to a part such that all bad events BC(v) for v ∈ V L,C are
avoided. In order to do so, we run ℓ = 6 log n parallel instances of the LLL algorithm of [13]
on LC , each running for O(log N) = O(log log n) rounds. At the end of the proof we reason
that these ℓ instances can indeed be run efficiently in parallel, for now, we continue with the
remaining steps of the algorithm. We say that an instance is correct for an event of LC if it is
avoided under the computed assignment of the instance. By the properties of the algorithm
of [13], each instance is correct for all events of LC with probability ≥ (1 − 1/N) ≥ 1/2.
Hence, with probability 1 − 1/2ℓ = 1 − 1/n6 one of the ℓ instances is correct for all events of
LC . Then, each node holding an event of LC determines which instances are correct, and the
nodes agree on a winning instance, i.e., one that is correct for all of them.

Assume that nodes know in which instance their bad events are avoided. Then, agreeing
on a winning instance can be done efficiently as follows: Let each such node hold a bit string
of length ℓ = O(log n) in which the j-th bit indicates whether the bad event is avoided in
the outcome of the j-th instance. All nodes can agree on a winning instance in time linear
in the cluster’s weak diameter by computing a bitwise-AND of the bitstrings (see the full
version for details).

In order to determine the status of its events in each of the ℓ instances, node v only
needs to know which part each neighbor has chosen in which instance. As there are only
k parts, the index of the part can be communicated with O(log k) bits. Hence, a node u

can inform each neighbor about the parts node u chose in all ℓ instances by communicating
ℓ ·O(log k) = O(log n log log n) bits over each incident edge. Using bandwidth = Θ(log n), this
requires O(log log n) rounds. The same reasoning is also sufficient to run the ℓ instances of
[13] in parallel. In one iteration of [13], the variables of local ID minima in the graph induced
by violated events are re-sampled. We just reasoned that a node can determine the status of
its events in each of the ℓ instances in O(log log n) rounds, and with an additional round we
can compute a set of local ID minima of violated events for each instance. Then, nodes can
inform neighbors about the instances in which they need to re-sample their part. ◀

5.3 Proof of Theorem 20

The pre-shattering phase of computing the q-divide can immediately be implemented in the
CONGEST model. Its post-shattering phase is replaced with the stronger q-vertex splitting
result of Lemma 23 (with ε = 1 and k = q = 24/ε) that runs in poly log log n rounds.
Note that the hypotheses of Theorem 20 assume that ∆/(log ∆ log2 log n) is greater than an
absolute constant 1/c4. With c4 ≤ c5/24, q satisfies the hypotheses of Lemma 23.

The pre-shattering of the main algorithm can also immediately be implemented in the
CONGEST model. For each of its q post-shattering instances we use Lemma 23 with ε2/72
and the same k. Using the proof of Lemma 16, the total discrepancy of the pre-shattering
and the post-shattering phase is upper bounded by (2ε/3)∆/k and (ε/3)∆/k, respectively.

6 Application: (1 + ε)∆-edge coloring

In this section, we first prove the LOCAL version of the following theorem.
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▶ Theorem 1 (Edge coloring). For any constant ε > 0, there is a poly log log n-round
randomized CONGEST algorithm to compute a (1 + ε)∆-edge coloring on any graph with
maximum degree ∆ ≥ ∆0 where ∆0 is a sufficiently large constant.

We use the following result based on prior work to color small degree graphs.

▶ Theorem 25 ([18, 15, 10]). For any constant ε > 0, there is an absolute constant ∆0 such
that for ∆ ≥ ∆0, there is a randomized LOCAL algorithm with runtime O(d2) + poly log log n

for (1 + ε)∆-edge coloring where d = poly ∆.

The papers [15, 10] both solve the (1 + ε)∆-edge coloring problem via a constant number
of LLL iterations (for constant ε > 0). Their dependency graph can be simulated in the
original network with O(1) overhead and has dependency degree d = poly ∆. Plugging in
the runtime of O(d2) + poly log log n for solving such LLLs by [18] yields Theorem 25.

High level overview (1 + ε)∆-edge coloring algorithm. We recursively (two recursion
levels) partition the edge set of G into parts that induce small degree subgraphs. Then,
we color each subgraph with a disjoint color palette. More detailed, first we partition the
edge set into k = Θ(ε2∆/ log n) parts such that each part induces a graph of maximum
degree at most ∆′ = poly log n. Then, in another recursive step we partition the edge set of
each of these parts further into k′ = Θ(ε4∆′/ log2 log n) parts, each with maximum degree
∆′′ = poly log log n. We obtain k · k′ subgraphs, each with maximum degree at most ∆′′. We
color each part with a disjoint color palette with (1 + ε/10)∆′′ colors via Theorem 25 in
O((∆′′)2) + poly log log n = poly log log n rounds. The colors of the k · k′ subgraphs sum up
to (1 + ε)∆ colors in total.

Proof of Theorem 1, LOCAL. If ∆ ≤ poly log log n we skip the first two steps of the al-
gorithm and immediately apply Theorem 25 to compute a (1 + ε)∆-edge coloring in
poly log log n rounds. If ∆ ≤ poly log n, we skip the first step and set ∆′ = ∆, k = 1
and G1 = G, otherwise we first partition the graph into k = (ε/6)2∆/(9 log n) subgraphs
G1, . . . , Gk, each with maximum degree ∆′ = ∆/k + (ε/6) · ∆/k = poly log n. To this end, let
each edge uniformly at random and independently join one of the Gi’s. The same Chernoff
bound as in Observation 14 shows that w.h.p., the maximum degree of each Gi is upper
bounded by ∆′.

In the next step, we use Theorem 20 to split each Gi, i ∈ [k] in parallel into k′ =
c4(ε′)4∆′/ log2 log n graphs Gi,j , j ∈ [k′], each of maximum degree ∆′′ = ∆′/k′ + ε′∆′/k′ =
poly log log n. We set ε′ = ε/6. Recall, that c4 is the constant from Theorem 20. More
formally, we set up the following k bipartite splitting instances Bi = (V L

i ∪ V R
i , Ei), i ∈ [k]:

V R
i = E(Gi) and V L

i = V (Gi). Note that the degree dBi(v) = dGi(v) for a node v ∈ V R
i and

dBi(e) = 2 for a node e ∈ V R
i . Hence, Bi has maximum degree ∆′.

We use Theorem 4 (for each Bi in parallel and with the same k′ and ε′) to compute
a partition of V R

i into V R
i,1, . . . , V R

i,k′ such that each v ∈ V L
i has dBi(v)/k′ ± ε′∆′/k′ =

dG(v)/(k ·k′)±3ε′∆/(k ·k′) neighbors in each V R
i . Now, for i ∈ [k], j ∈ [k′] let Gi,j = Gi[V R

i,j ]
and note that Gi,j has maximum degree at most ∆′′ = ∆′/k′ + ε′∆′/k′ = poly log log n.

In the last step, we apply Theorem 25 on each Gi,j , i ∈ [k], j ∈ [k′] in parallel to edge-color
Gi,j with (1 + ε/6)∆′′ colors in poly ∆′′ + poly log log n = poly log log n rounds.

The total number of colors used is upper bounded by

k · k′ · (1 + ε/6)∆′′ ≤ k · (1 + ε/6)2 · ∆′ ≤ (1 + ε/6)3 · ∆ ≤ (1 + ε)∆ . ◀
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A Edge coloring in CONGEST (similar to Section 6)

We begin with proving a CONGEST counterpart of Theorem 25 for very low degree graphs.

▶ Theorem 26. For any constant ε > 0, there is an absolute constant ∆0 such that there
is a randomized CONGEST algorithm with runtime poly log log n for (1 + ε)∆-edge coloring
any n-node graph with maximum degree ∆0 ≤ ∆ ≤ poly log log n.

Proof. Recall from the text after Theorem 25 that the edge-coloring problem can be solved
via a constant number of LLL instances that are defined on a dependency graph H such
that one round of communication can be simulated in O(1) rounds in LOCAL in the original
network [10]. The dependency degree of H is d = poly ∆. Hence, if ∆ ≤ poly log log n, one
round of communication in H can be simulated in poly log log n CONGEST rounds in the
communication network. The result follows via Corollary 22. The base case for the algorithm
of [10] is a 5∆-edge coloring step, which can also be solved in poly log log n CONGEST
rounds [29]. ◀

Proof of Theorem 1, CONGEST. We use the same high level algorithm as in the LOCAL
model, that is, we first split into subgraphs of ∆′ = poly log n maximum degree, then in
to subgraphs of ∆′′ = poly log log n degree, which we then color with disjoint color spaces,
with (1 + ε/6)∆′′ colors each. We refer to the LOCAL version for further the details on this
reduction. Here, we only explain which parts differ in the CONGEST model. First, each
edge is simulated by one of its endpoints. The reduction to poly log n degrees works in zero
rounds, just as in the LOCAL model.

The most challenging part is the reduction from poly log n degrees to poly log log n degrees.
The pre-shattering phases (in computing the q-divide and in the main algorithm) immediately
work in the CONGEST model. We only need to reason that the post-shattering phases (of
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q-divide and the q instances in the main algorithm) can be solved via Lemma 23. To this
end, we need to run ℓ = O(log n) instances of [13] in parallel with bandwidth = Θ(log n).
Observe that k ≤ poly log n holds. For each node to be able to evaluate the status of its bad
events in all ℓ instances in parallel, we have the node simulating each edge send to the other
endpoint the parts it chose in all ℓ instances (one part per instance). As the part index of an
edge can be encoded with O(log k) bits, the indices in the ℓ instances can be communicated
with ℓ · O(log k) = O(log n log log n) bits. With the available bandwidth this requires only
O(log log n) rounds. The other messages needed by the algorithm to simulate the ℓ instances
of [13] in parallel, such as whether the edge needs be re-sampled in each instance, similarly
never exceed O(log log n) rounds.

Once the degrees of the subgraphs are at most poly log log n we use Theorem 26 to color
the graphs. Formally, the color space is still large. To really use Theorem 26, vertices color
each subgraph with colors in the range from 1 to poly log log n, and map their color back to
the original color space at the end of the computation. ◀

B Application: List Coloring

▶ Definition 27. In an (L, T )-list-coloring instance on a graph G = (V, E), each node v ∈ V

is given a list L(v) of colors of at least L such that for each c ∈ L(v) there are at most T

neighbors u of v with c ∈ L(u). The parameter T is referred to as the color degree. Similarly
for c ∈ L(v), |{u ∈ N(v) | c ∈ L(u)}| is the color degree of color c for v.

Note that one cannot generally solve such the problem via a greedy approach, not even
centrally. Still, the objective is to find solutions for arbitrary L and T with a ratio L/T

as small as possible. Reed [44] gave a simple LLL argument for the existence of a solution
when L/T ≥ ⌈2e⌉. This was improved to L/T = 2 by Haxell [32]. Reed and Sudakov [45]
then showed that L/T = 1 + o(1) suffices. Reed’s famous list coloring conjecture states that
L = T + 2 colors always suffice [44]. We recall Reed’s argument for the existence if L/T > 2e.
In the distributed setting, there is an O(log n) round algorithm for L/T ≥ (1 + δ) [13], and a
O(poly ∆ + poly log log n) rounds for L/T ≥ C0 for a sufficiently large constant C0 [18].

LLL formulation (for existence only). Suppose each node picks a color from its list uniformly
at random. Define a bad event Bu,v,c for each edge {u, v} ∈ E and each color c if both u and v

choose the color c. The probability for such an event is at most p = 1/|L(v)| ·1/|L(u)| ≤ 1/L2.
The dependency degree of these events is d = 2L · T , because it can depend on at most L

colors for each of the endpoints of the edge and on T other incident edges for each of these
colors. Thus, we obtain the LLL criterion p · (2L · T ) = 2T/L, and hence for L/T > 2e, a
the standard criterion epd < 1 is satisfied and a solution exists.

Distributed results. Reed’s argument leads to an O(log2 n)-round LOCAL algorithm for
any L/T > 2e with the classic Moser-Tardos algorithm [41]. Chang, Pettie and Su [13]
gave a algorithm for L/T = 1 + δ, with a quite involved analysis, that runs in time
O(log∗ L max(1, log n)/D(1−γ). Fischer and Ghaffari [18] showed using color pruning that
there exists some (possibly large) constant C to solve (L, T )-list coloring whenever L/T ≥ C

in poly(∆, log log n) rounds.
Our main theorem combines the effectiveness of [13] with the speed of [18].

▶ Theorem 2 (List coloring). There is a poly log log n-round randomized LOCAL algorithm
for the list coloring problem, for any T and L with L ≥ (1 + δ)T , for any δ > 0 and any
∆ ≥ ∆0, for some absolute constant ∆0.
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Similarly to the edge-coloring problem our high level idea is to first reduce the size of the
relevant parameters to poly log log n, after which we can solve arbitrary LLLs efficiently on the
problem. However, the reduction and the base case (once parameters are of size poly log log n)
are significantly more involved than in the edge-coloring problem. We summarize the main
technical lemma showing that we can efficiently reduce the parameters L and T while keeping
the ratio of list size and color degree almost the same.

▶ Lemma 28 (List color sparsification). There exists a universal constant c6 > 0 s.t.: For any
ε > 1/ poly log log n and k ≤ c6 · (ε4L/ log L), there is a poly(ε−1, log log n)-round algorithm
for the following list coloring sparsification problem: Given a (L, T )-list coloring instance
with T < L ≤ poly log n on an n-node graph G = (V, E) the goal is to compute a sublist
L′(v) ⊆ L(v) for each node yielding a (L′, T ′)-list coloring instance on the same graph with

L′ = L/k ± εL/k, T ′ ≤ T/k + εT/k and L′/T ′ ≥ (1 − ε)L/T. (1)

We obtain the same properties in zero rounds if L > poly log n and k ≤ ε2∆/(9 ln n) holds
for ∆ = L · T .

C Missing Proofs

C.1 Vertex Splitting: Bounding the Discrepancy
In this section, we bound the deviation in the number of neighbors that a node v sees in
the i-th part from d(v)/k. For a node v let Npre(v) (Npost(v)) be the neighbors of v that
are permanently assigned to a part in the pre-shattering (post-shattering) phase. Also, let
dpre(v) = |Npre(v)| and dpost(v) = |Npost(v)|. Recall, the definition of zpre

j (v) = zpost
j (v) =

ε2/(72k) and q = 24/ε, which immediately yields the following claim.

▷ Claim 29. We have
∑

j∈[q] zpre
j (v) =

∑
j∈[q] zpost

j (v) ≤ ε/3 · ∆/k .

▶ Lemma 16 (restated with details). In the final assignment V1, . . . , Vk, i.e., after the
pre-shattering and post-shattering phase, we have the following guarantees on the split for
each part i ∈ [k]:
1. Node v has dpre(v)/k ± 2ε/3 · ∆/k neighbors in Vi ∩ Npre(v).
2. Node v has dpost(v)/k ± ε/3 · ∆/k neighbors in Vi ∩ Npost(v).
In total, for each i ∈ [k] any node v has d(v)/k ± ε∆/k neighbors in Vi.

Proof. We first prove the first claim. The discrepancy (deviation from expectation) for a
node v comes from two sources: (a) slots with neighbors that got retracted; (b) other slots.
We bound both separately. Consider a vertex v and fix a part Vi, i ∈ [k]. For the rest of
the proof let zj = zpre

j (v). We partition the vertices in Vi ∩ Npre(v) according to the q slots
N1(v), . . . Nq(v). Due to Observation 15 for at most one j does Nj(v) contain nodes whose
values were retracted. Denote this j (if any) by j∗, otherwise set j∗ = ⊥.

▷ Claim 30. If j∗ ̸= ⊥, then |Vi ∩ Nj∗(v) ∩ Npre(v)| ≤ d̂j∗(v)/k + zj .

Proof. If v caused the retraction then, Nj∗(v) ∩ Npre(v) = ∅, as v retracted all assignments of
nodes in Nj∗(v) and froze the nodes (they will only be assigned in the post-shattering phase).
Now consider the case that v did not cause the retraction, i.e., Bpre

j does not occur, and let
Xi be the nodes in part i in the temporal assignment of nodes in slot j before any retractions
happened (also before the ones caused by nodes u ≠ v). Since Bpre

j does not occur, we have
|Xi ∩ Nj∗ | ∈ d̂j∗/k ± zj . Some nodes of Xi might get retracted by other nodes u ̸= v, but we
obtain |Vi ∩ Nj∗(v) ∩ Npre(v)| ≤ |Xi ∩ Nj∗(v)| ≤ d̂j∗(v)/k + zj . ◁
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▷ Claim 31. For each j /∈ [q] \ j∗, we obtain |Vi ∩ Npre(v) ∩ Nj(v)| = d̂j(v)/k ± zj .

Proof. Since j ̸= j∗ there are no retracted variables in Nj(v). If the bound in the claim does
not hold, then Bpre

j (v) would have occurred after the sampling, and v would have retracted,
a contradiction. ◁

▷ Claim 32.
∑

j∈[q],j ̸=j∗ d̂j(v) ≤ dpre(v) ≤
∑

j∈[q] d̂j(v).

In the following we omit the explicit dependence on v, e.g., we write d̂j instead of d̂j(v).
Using,

∑
j∈[q] zj(v) ≤ ε∆/(3k) (Claim 29), d̂j∗ ≤ dj∗ ≤ 8∆/q = ε∆/3 (from the properties

of a q-divide), bounds on |Vi ∩ Npre(v) ∩ Nj(v)| (Claims 30 and 31), and Claim 32 we obtain

|Vi ∩ Npre(v)| ≤
∑
j∈[q]

(
d̂j/k + zj

)
≤ (dpre + d̂j∗ )/k +

∑
j∈[q]

zj ≤ dpre/k + 2ε∆/(3k) and

|Vi ∩ Npre(v)| ≥
∑

j∈[q],j ̸=j∗

(
d̂j/k − zj

)
≥

(
dpre − d̂j∗

)
/k − ε∆/(3k) ≥ dpre/k − 2ε∆/(3k) .

For the second part of the claim, fix again some i ∈ [k] and a node v. There are q separate
post-shattering instances. Recall, the set of neighbors of a node participating in the j-th
instance is denoted by Fj(v) and fj(v) = |Fj(v)|. The solution to the LLL instance yields

|Vi ∩ Fj(v) ∩ Npost(v)| = fj(v)/k ± zpost
j (v). (2)

Summing over all q post-shattering instances, using dpost(v) =
∑

j∈[q] fj(v) and using Claim 29
to bound

∑
j∈[q] zpost

j (v) ≤ ε∆/3 ≤ ε∆/2 yields the second part of the claim. ◀

C.2 Analysis of FastShattering

▶ Lemma 18. After FastShattering, each connected component in each of the q post-shattering
instances is of size ∆10 log n, w.h.p.

Proof of Lemma 18. Let us focus on one post-shattering instance, instance number j,
formed of both the nodes in Badj that were frozen while processing slot j and all their
incident ’events nodes’. Let us say that a node v triggers if one of the events Bpre

i,j , i ∈ [k]
occurs, i.e., if Di,j(v) deviates too much from expectation. That a node triggers is entirely
determined by the random choices of its neighbors. By Claim 17 (applied with N = 8∆/q,
z = zpre

j (v) = ε2∆/(72k), and Di,j(v)), the probability that a node triggers is at most ∆−24.
A variable is frozen if it is within distance 3 of a triggering node. A node v joins the
post-shattering instance if it is frozen itself or one of its neighbors is frozen, which depends
on whether nodes within distance 4 of v trigger or not, which itself is entirely determined by
the random choices within distance 5 of v. Thus, whether two nodes at distance 10 participate
in the j-th post-shattering instance depends on two sets of non-overlapping random variables
from the processing of slot j.

By a union bound over the ∆4 nodes in the 4-hop neighborhood and the k parts, a
node participates in the j-th post-shattering instance w.p. at most k(∆4)∆−24 ≤ ∆−19. By
Lemma 6, the resulting connected components of the post-shattering instance are all of size
O(∆10 log∆ n), w.h.p. ◀
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D Bipartite Vertex Splitting and Beyond

Another classic version is to split only one side of a bipartite graph. Given a bipartite graph
(V L ∪ V R, E) and an parameter k the objective is to split the variable vertices V R into k

parts V R
1 , . . . , V R

k such that the degree of every event vertex u ∈ V L into each part V R
i does

not deviate from d(u)/k by too much. More formally, each event node u ∈ V L comes with a
parameter z(u) that bounds the deviation. Let ∆L and ∆R be the maximum degree of nodes
in V L and V R respectively. With the same analysis as for Theorem 3 (reasons below) we
obtain the following theorem for bipartite vertex splitting.

▶ Theorem 4. There exists a universal constant c7 > 0 s.t.: For any ε > 0, maximum
degree ∆ ≤ poly log n and k ≤ c7 · (ε4∆L/ ln ∆), there is a distributed randomized LOCAL
algorithm to compute a bipartite k-vertex splitting problem with discrepancy ε∆L/k in O(1/ε)+
poly log log n rounds.

The simpler q-divide problem also naturally extends to this more general setup. The
objective of a bipartite q-divide is to partition the variable vertices into q parts such that
each event node has at most 8∆L/q neighbors in each part.

▶ Theorem 33. For any q ∈ [1, (1/6)∆L/ ln ∆], there is a LOCAL algorithm to compute a
bipartite q-divide in poly log log n-rounds.
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Figure 2 A graph and the bipartite splitting instance obtained from the vertex-splitting problem
on it by turning each node into a variable node (circles) and an event node (squares).

To better understand this more general setting and how our results for q-divide and
k-split extend to it, let us translate those problems into their bipartite versions. For a graph
G = (V, E), we construct a bipartite graph G′ = (V L ∪ V R, E′) such that a bipartite k-split
(bipartite q-divide) on G′ maps to a k-split (q-divide) on G. Let n = |V | be the number
of nodes of G and ∆ its maximum degree. In bipartite terminology, when computing a
k-split on G each node of G is acting both as an event node and a variable node, as we
must ensure the proper splitting of its neighborhood as well as assigning it. The bipartite
graph corresponding to this problem is the graph G′ = (V L ∪ V R, E′) where |V L| = |V R| = n,
∀i, j ∈ |V |2, vivj ∈ E ⇔

(
vL

i vR
j ∈ E′ ∧ vR

i vL
j ∈ E′). G′ has 2n nodes and maximum left and

right degree ∆L = ∆R = ∆. See Figure 2 for an illustration of the translation process.

Proof of Theorems 4 and 33. Our proofs of Theorems 3 and 10 naturally extend to the
bipartite setting. Intuitively, the algorithms follow the same pattern. We have a simple
random assignment procedure that we show properly partitions the neighborhood of a node
w.p. 1 − poly(∆). In addition, there is a way of running this procedure, retracting some
assignments and avoiding to assign some nodes that ensures that only small patches of the
graph remain unassigned and the partial assignment that is obtained can be completed to a
full assignment. All that we need to show is that our setting of parameters in the bipartite
setting are correct, i.e., control the amount of discrepancy as in the previous setting.
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Let ∆L be the degree of the left hand side vertices in V E and let ∆R be the degree of the
right hand side vertices in V . Let ∆ = max{∆L, ∆R}.

All probabilities are exponential in −Θ(z), or in Θ(−z · (z/(d(u)/k))) if the degree of a
node u is larger than k · z.

The union bound in the shattering over distance 5-neighborhoods introduces a multi-
plicative ∆5 term. Hence, we require that eΘ(z) and eΘ(z)·(z/(d(u)/k)) dominate the ∆5 term.
This, clearly holds if z = ε2∆/(72k) as before, given the assumed upper bound on k.

The proof of the discrepancy (in Section 4.2) remains exactly the same; just note that in
the bipartite vertex splitting the discrepancy values (z(v)s) depend on ∆L instead of ∆, and
hence we obtain a deviation from d(u)/k that is upper bounded by ε∆L/k. ◀

▶ Remark 34. In general, it is not possible to recursively use vertex-splitting to split into
smaller and smaller parts. Special properties of an instance (as we have with edge-splitting
and when solving list-coloring here) sometime still make it possible.
See the full information for more details on Remark 34
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