
The Weakest Failure Detector for Genuine Atomic
Multicast
Pierre Sutra #

Telecom SudParis, Palaiseau, France

Abstract
Atomic broadcast is a group communication primitive to order messages across a set of distributed
processes. Atomic multicast is its natural generalization where each message m is addressed to
dst(m), a subset of the processes called its destination group. A solution to atomic multicast is
genuine when a process takes steps only if a message is addressed to it. Genuine solutions are the
ones used in practice because they have better performance.

Let G be all the destination groups and F be the cyclic families in it, that is the subsets of G
whose intersection graph is hamiltonian. This paper establishes that the weakest failure detector to
solve genuine atomic multicast is µ = (∧g,h∈G Σg∩h) ∧ (∧g∈G Ωg) ∧ γ, where ΣP and ΩP are the
quorum and leader failure detectors restricted to the processes in P , and γ is a new failure detector
that informs the processes in a cyclic family f ∈ F when f is faulty.

We also study two classical variations of atomic multicast. The first variation requires that
message delivery follows the real-time order. In this case, µ must be strengthened with 1g∩h, the
indicator failure detector that informs each process in g∪h when g∩h is faulty. The second variation
requires a message to be delivered when the destination group runs in isolation. We prove that its
weakest failure detector is at least µ ∧ (∧g,h∈G Ωg∩h). This value is attained when F = ∅.

2012 ACM Subject Classification Theory of computation→ Distributed computing models; Software
and its engineering→ Distributed systems organizing principles; General and reference→ Reliability

Keywords and phrases Failure Detector, State Machine Replication, Consensus

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.35

Related Version Extended Version: https://arxiv.org/abs/2208.07650 [37]

1 Introduction

Context. Multicast is a fundamental group communication primitive used in modern
computing infrastructures. This primitive allows to disseminate a message to a subset of the
processes in the system, its destination group. Implementations exist over point-to-point
protocols such as the Internet Protocol. Multicast is atomic when it offers the properties of
atomic broadcast to the multicast primitive: each message is delivered at most once, and
delivery occurs following some global order. Atomic multicast is used to implement strongly
consistent data storage [4, 11, 36, 32].

It is easy to see that atomic multicast can be implemented atop atomic broadcast. Each
message is sent through atomic broadcast and delivered where appropriate. Such a naive
approach is however used rarely in practice because it is inefficient when the number of
destination groups is large [31, 35]. To rule out naive implementations, Guerraoui and
Schiper [25] introduce the notion of genuineness. An implementation of atomic multicast is
genuine when a process takes steps only if a message is addressed to it.

Existing genuine atomic multicast algorithms that are fault-tolerant have strong synchrony
assumptions on the underlying system. Some protocols (such as [34]) assume that a perfect
failure detector is available. Alternatively, a common assumption is that the destination
groups are decomposable into disjoint groups, each of these behaving as a logically correct
entity. Such an assumption is a consequence of the impossibility result established in [25].

© Pierre Sutra;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 35; pp. 35:1–35:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pierre.sutra@telecom-sudparis.eu
https://orcid.org/0000-0002-0573-2572
https://doi.org/10.4230/LIPIcs.DISC.2022.35
https://arxiv.org/abs/2208.07650
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 The Weakest Failure Detector for Genuine Atomic Multicast

Table 1 About the weakest failure detector for atomic multicast. (
√√

= strongly genuine)

Genuiness Order Weakest
× Global Ω ∧ Σ [8, 15]√

· /∈ U2 [25]
· · ≤ P [34]
· · µ §5, §4
· Strict µ ∧ (∧g,h∈G 1g∩h) §6.1
· Pairwise (∧g,h∈G Σg∩h) ∧ (∧g∈G Ωg) §7√√

Global if F = ∅ then µ ∧ (∧g,h∈G Ωg∩h) §6.2else ≥ µ ∧ (∧g,h∈G Ωg∩h)

This result states that genuine atomic multicast requires some form of perfect failure
detection in intersecting groups. Consequently, almost all protocols published to date (e.g.,
[30, 17, 20, 10, 29, 13]) assume the existence of such a decomposition.

Motivation. A key observation is that the impossibility result in [25] is established when
atomic multicast allows a message to be disseminated to any subset of the processes. However,
where there is no such need, weaker synchrony assumptions may just work. For instance,
when each message is addressed to a single process, the problem is trivial and can be solved
in an asynchronous system. Conversely, when every message is addressed to all the processes
in the system, atomic multicast boils down to atomic broadcast, and thus ultimately to
consensus. Now, if no two groups intersect, solving consensus inside each group seems both
necessary and sufficient. In this paper, we further push this line of thought to characterize
the necessary and sufficient synchrony assumptions to solve genuine atomic multicast.

Our results are established in the unreliable failure detectors model [9, 18]. A failure
detector is an oracle available locally to each process that provides information regarding the
speed at which the other processes are taking steps. Finding the weakest failure detector
to solve a given problem is a central question in distributed computing literature [18]. In
particular, the seminal work in [8] shows that a leader oracle (Ω) is the weakest failure
detector for consensus when a majority of processes is correct. If any processes might fail,
then a quorum failure detector (Σ) is required in addition to Ω [15].

A failure detector is realistic when it cannot guess the future. In [14], the authors prove
that the perfect failure detector (P) is the weakest realistic failure detector to solve consensus.
Building upon this result, Schiper and Pedone [34] shows that P is sufficient to implement
genuine atomic multicast. However, P is the weakest only when messages are addressed to all
the processes in the system. The present paper generalizes this result and the characterization
given in [25] (see Table 1). It establishes the weakest failure detector to solve genuine atomic
multicast for any set of destination groups.

Primer on the findings. Let G be all the destination groups and F be the cyclic families in
it, that is the subsets of G whose intersection graph is hamiltonian. This paper shows that the
weakest failure detector to solve genuine atomic multicast is µ = (∧g,h∈G Σg∩h)∧(∧g∈G Ωg)∧γ,
where ΣP and ΩP are the quorum and leader failure detectors restricted to the processes in
P , and γ is a new failure detector that informs the processes in a cyclic family f ∈ F when f

is faulty. Our results regarding γ are established wrt. realistic failure detectors.
This paper also studies two classical variations of the atomic multicast problem. The

strict variation requires that message delivery follows the real-time order. In this case, we
prove that µ must be strengthen with 1g∩h, the indicator failure detector that informs each

P. Sutra 35:3

process in g ∪ h when g ∩ h is faulty. The strongly genuine variation requires a message to
be delivered when its destination group runs in isolation. In that case, the weakest failure
detector is at least µ ∧ (∧g,h∈G Ωg∩h). This value is attained when F = ∅.

Outline of the paper. §2 introduces the atomic multicast problem and the notion of
genuineness. We present the candidate failure detector in §3. §4 proves that this candidate is
sufficient. Its necessity is established in §5. §6 details the results regarding the two variations
of the problem. We cover related work and discuss our results in §7. §8 closes this paper.
Due to space constraints, all the proofs are deferred to the extended version [37].

2 The Atomic Multicast Problem

2.1 System Model
In [9], the authors extend the usual model of asynchronous distributed computation to include
failure detectors. The present paper follows this model with the simplifications introduced in
[23, 22]. This model is recalled in [37].

2.2 Problem Definition
Atomic multicast is a group communication primitive that allows to disseminate messages
between processes. This primitive is used to build transactional systems [11, 36] and partially-
replicated (aka., sharded) data stores [17, 32]. In what follows, we consider the most standard
definition for this problem [4, 26, 12]. In the parlance of Hadzilacos and Toueg [26], it is
named uniform global total order multicast. Other variations are studied in §6.

Given a set of messages M, the interface of atomic multicast consists of operations
multicast(m) and deliver(m), with m ∈ M. Operation multicast(m) allows a process to
multicast a message m to a set of processes denoted by dst(m). This set is named the
destination group of m. When a process executes deliver(m), it delivers message m, typically
to an upper applicative layer.

Consider two messages m and m′ and some process p ∈ dst(m) ∩ dst(m′). Relation
m

p7→ m′ captures the local delivery order at process p. This relation holds when, at the time
p delivers m, p has not delivered m′. The union of the local delivery orders gives the delivery
order, that is 7→= ∪p∈P

p7→. The runs of atomic multicast must satisfy:

(Integrity) For every process p and message m, p delivers m at most once, and only if p

belongs to dst(m) and m was previously multicast.
(Termination) For every message m, if a correct process multicasts m, or a process delivers

m, eventually every correct process in dst(m) delivers m.
(Ordering) The transitive closure of 7→ is a strict partial order over M.

Integrity and termination are two common properties in group communication literature.
They respectively ensure that only sound messages are delivered to the upper layer and
that the communication primitive makes progress. Ordering guarantees that the messages
could have been received by a sequential process. A common and equivalent rewriting of this
property is as follows:

(Ordering) Relation 7→ is acyclic over M.

DISC 2022

35:4 The Weakest Failure Detector for Genuine Atomic Multicast

If the sole destination group is P , that is the set of all the processes, the definition above is
the one of atomic broadcast. In what follows, G ⊆ 2P is the set of all the destinations groups,
i.e., G = {g : ∃m ∈ M. g = dst(m)}. For some process p, G(p) denotes the destination groups
in G that contain p. Two groups g and h are intersecting when g ∩ h ̸= ∅.

What can be sent and to who. The process that executes multicast(m) is the sender of
m, denoted src(m). As usual, we consider that processes disseminate different messages
(i.e., src is a function). A message holds a bounded payload payload(m), and we assume
that atomic multicast is not payload-sensitive. This means that for every message m, and
for every possible payload x, there exists a message m′ ∈ M such that payload(m′) = x,
dst(m′) = dst(m) and src(m′) = src(m).

Dissemination model. In this paper, we consider a closed model of dissemination. This
means that to send a message to some group g, a process must belong to it (i.e., src(m) ∈
dst(m)). In addition, we do not restrict the source of a message. This translates into the
fact that for every message m, for every process p in dst(m), there exists a message m′ with
dst(m) = dst(m′) and src(m′) = p. Under the above set of assumptions, the atomic multicast
problem is fully determined by the destination groups G.

2.3 Genuineness
At first glance, atomic multicast boils down to the atomic broadcast problem: to disseminate
a message it suffices to broadcast it, and upon reception only messages addressed to the
local machine are delivered. With this approach, every process takes computational steps to
deliver every message, including the ones it is not concerned with. As a consequence, the
protocol does not scale [31, 35], even if the workload is embarrassingly parallel (e.g., when
the destinations groups are pairwise disjoint).

Such a strategy defeats the core purpose of atomic multicast and is thus not satisfying
from a performance perspective. To rule out this class of solutions, Guerraoui and Schiper [25]
introduce the notion of genuine atomic multicast. These protocols satisfy the minimality
property defined below.

(Minimality) In every run R of A, if some correct process p sends or receives a (non-null)
message in R, there exists a message m multicast in R with p ∈ dst(m).

All the results stated in this paper concern genuine atomic multicast. To date, this is the
most studied variation for this problem (see, e.g., [30, 20, 10]).

3 The Candidate Failure Detector

This paper characterizes the weakest failure detector to solve genuine atomic multicast.
Below, we introduce several notions related to failure detectors then present our candidate.

Family of destination groups. A family of destination groups is a set of (non-repeated)
destination groups f = (gi)i. For some family f, cpaths(f) are the closed paths in the
intersection graph of f visiting all its destination groups.1 Family f is cyclic when its
intersection graph is hamiltonian, that is when cpaths(f) is non-empty. A cyclic family f is
faulty at time t when every path π ∈ cpaths(f) visits an edge (g, h) with g ∩ h faulty at t.

1 The intersection graph of a family of sets (Si)i is the undirected graph whose vertices are the sets Si,
and such that there is an edge linking Si and Sj iff Si ∩ Sj ̸= ∅.

P. Sutra 35:5

p1 p2

p3

p4p5

(a)

g1

g2

g3

{p2}

{p1}

{p3}

(b)

g1 g3

g4

{p1}

{p1}
{p1, p4}

(c)

Figure 1 From left to right: the four groups g1, g2, g3 and g4, and the intersection graphs of the
two cyclic families f = {g1, g2, g3} and f′ = {g1, g3, g4}.

In what follows, F denotes all the cyclic families in 2G . Given a destination group g, F(g)
are the cyclic families in F that contain g. For some process p, F(p) are the cyclic families f

such that p belongs to some group intersection in f (that is, ∃g, h ∈ f. p ∈ g ∩ h).
To illustrate the above notions, consider Figure 1. In this figure, P = {p1, . . . , p5}

and we have four destination groups: g1 = {p1, p2}, g2 = {p2, p3}, g3 = {p1, p3, p4} and
g4 = {p1, p4, p5}. The intersection graphs of f = {g1, g2, g3} and f′ = {g1, g3, g4} are depicted
respectively in Figures 1b and 1c. These two families are cyclic. This is also the case of
f′′ = G = {g1, g2, g3, g4} whose intersection graph is the union of the two intersection graphs
of f and f′. This family is faulty when g2 ∩ g1 = {p2} fails. Group g2 belongs to two cyclic
families, namely F(g2) = {f, f′′}. Process p1 belongs to all cyclic families, that is F(p1) = F .
Differently, since p5 is part of no group intersection, F(p5) = ∅.

Failure detectors of interest. Failure detectors are grouped into classes of equivalence that
share common computational power. Several classes of failure detectors have been proposed
in the past. This paper makes use of two common classes of failure detectors, Σ and Ω,
respectively introduced in [15] and [8]. We also propose a new class γ named the cyclicity
failure detector. All these classes are detailed below.

The quorum failure detector (Σ) captures the minimal amount of synchrony to implement
an atomic register. When a process p queries at time t a detector of this class, it returns
a non-empty subset of processes Σ(p, t) ⊆ P such that:
(Intersection) ∀p, q ∈ P. ∀t, t′ ∈ N. Σ(p, t) ∩ Σ(q, t′) ̸= ∅
(Liveness) ∀p ∈ Correct. ∃τ ∈ N. ∀t ≥ τ. Σ(p, t) ⊆ Correct
The first property states that the values of any two quorums taken at any times intersect.
It is used to maintain the consistency of the atomic register. The second property ensures
that eventually only correct processes are returned.
Failure detector Ω returns an eventually reliable leader [16]. In detail, it returns a value
Ω(p, t) ∈ P satisfying that:
(Leadership) Correct ̸= ∅ ⇒ (∃l ∈ Correct. ∀p ∈ Correct. ∃τ ∈ N. ∀t ≥ τ. Ω(p, t) = l)
Ω is the weakest failure detector to solve consensus when processes have access to a shared
memory. For message-passing distributed systems, Ω ∧ Σ is the weakest failure detector.
The cyclicity failure detector (γ) informs each process of the cyclic families it is currently
involved with. In detail, failure detector γ returns at each process p a set of cyclic families
f ∈ F(p) such that:
(Accuracy) ∀p ∈ P. ∀t ∈ N. (f ∈ F(p) ∧ f /∈ γ(p, t)) ⇒ f faulty at t

(Completeness) ∀p ∈ Correct. ∀t ∈ N. (f ∈ F(p) ∧ f faulty at t) ⇒ ∃τ ∈ N. ∀t′ ≥ τ. f /∈
γ(p, t′)

DISC 2022

35:6 The Weakest Failure Detector for Genuine Atomic Multicast

Accuracy ensures that if some cyclic family f is not output at p and p belongs to it, then
f is faulty at that time. Completeness requires that eventually γ does not output forever
a faulty family at the correct processes that are part of it. Hereafter, γ(g) denotes the
groups h such that g ∩ h ̸= ∅ and g and h belong to a cyclic family output by γ.

To illustrate the above definitions, we may consider again the system depicted in Figure 1.
Let us assume that Correct = {p1, p4, p5}. The quorum failure detector Σ can return g1 or
g3, then g4 forever. Failure detector Ω may output any process, then at some point in time,
one of the correct processes (e.g., p1) ought to be elected forever. At processes p1, γ returns
initially {f, f′, f′′}. Then, once families f and f′′ are faulty – this should happen as p2 is faulty
– the output eventually stabilizes to {f′}. When this happens, γ(g1) = {g3, g4}.

Conjunction of failure detectors. We write C ∧D the conjunction of the failure detectors C

and D [23]. For a failure pattern F , failure detector C ∧ D returns a history in D(F) × C(F).

Set-restricted failure detectors. For some failure detector D, DP is the failure detector
obtained by restricting D to the processes in P ⊆ P. This failure detector behaves as D for
the processes p ∈ P , and it returns ⊥ at p /∈ P . In detail, let F ∩ P be the failure pattern F

obtained from F by removing the processes outside P , i.e., (F ∩ P)(t) = F (t) ∩ P . Then,
DP (F) equals D(F ∩ P) at p ∈ P , and the mapping p × N → ⊥ elsewhere. To illustrate this
definition, Ω{p} is the trivial failure detector that returns p at process p. Another example is
given by Σ{p1,p2} which behaves as Σ over P = {p1, p2}.

The candidate. Our candidate failure detector is µG = (∧g,h∈G Σg∩h) ∧ (∧g∈G Ωg) ∧ γ.
When the set of destinations groups G is clear from the context, we shall omit the subscript.

4 Sufficiency

This section shows that genuine atomic multicast is solvable with the candidate failure
detector. A first observation toward this result is that consensus is wait-free solvable in
g using Σg ∧ Ωg. Indeed, Σg permits to build shared atomic registers in g [15]. From
these registers, we may construct an obstruction-free consensus and boost it with Ωg [24].
Thus, any linearizable wait-free shared objects is implementable in g [27]. Leveraging these
observations, this section depicts a solution built atop (high-level) shared objects.

Below, we first introduce group sequential atomic multicast (§4.1). From a computability
perspective, this simpler variation is equivalent to the common atomic multicast problem.
This is the variation that we shall implement hereafter. We then explain at coarse grain
how to solve genuine atomic multicast in a fault-tolerant manner using the failure detector
µ (§4.2). Further, the details of our solution are presented and its correctness informally
argued (§4.3).

4.1 A simpler variation
Group sequential atomic multicast requires that each group handles its messages sequentially.
In detail, given two messages m and m′ addressed to the same group, we write m ≺ m′

when src(m′) delivers m before it multicasts m′. This variation requires that if m and m′

are multicast to the same group, then m ≺ m′, or the converse, holds. Proposition 1 below
establishes that this variation is as difficult as (vanilla) atomic multicast. Building upon
this insight, this section depicts a solution to group sequential atomic multicast using failure
detector µ.

P. Sutra 35:7

▶ Proposition 1. Group sequential atomic multicast is equivalent to atomic multicast.

4.2 Overview of the solution
First of all, we observe that if the groups are pairwise disjoint, it suffices that each group
orders the messages it received to solve atomic multicast. To this end, we use a shared log
LOGg per group g. Then, consider that the intersection graph of G is acyclic, i.e., F is empty,
yet groups may intersect. In that case, it suffices to add a deterministic merge procedure in
each group intersection, for instance, using a set of logs LOGg∩h when g ∩ h ̸= ∅.

Now, to solve the general case, cycles in the order built with the shared logs must be
taken into account. To this end, we use a fault-tolerant variation of Skeen’s solution [5, 21]:
in each log, the message is bumped to the highest initial position it occupies in all the logs.
In the original algorithm [5], as in many other approaches (e.g., [20, 10]), such a procedure is
failure-free, and processes simply agree on the final position (aka., timestamp) of the message
in the logs. In contrast, our algorithm allows a disagreement when the cyclic family becomes
faulty. This disagreement is however restricted to different logs, as in the acyclic case.

4.3 Algorithm
Algorithm 1 depicts a solution to (group sequential) genuine atomic multicast using failure
detector µ. To the best of our knowledge, this is only algorithm with [34] that tolerates
arbitrary failures. Algorithm 1 is composed of a set of actions. An action is executable once
its preconditions (pre:) are true. The effects (eff:) of an action are applied sequentially until
it returns. Algorithm 1 uses a log per group and per group intersection. Logs are linearizable,
long-lived and wait-free. Their sequential interface is detailed below.

Logs. A log is an infinite array of slots. Slots are numbered from 1. Each slot contains one
or more data items. A datum d is at position k when slot k contains it. This position is
obtained through a call to pos(d); 0 is returned if d is absent. A slot k is free when it contains
no data item. In the initial state, every slot is free. The head of the log points to the first
free slot after which there are only free slots (initially, slot 1). Operation append(d) inserts
datum d at the slot pointed by the head of the log then returns its position. If d is already
in the log, this operation does nothing. When d is in the log, it can be locked with operation
bumpAndLock(d, k). This operation moves d from its current slot l to slot max(k, l), then
locks it. Once locked, a datum cannot be bumped anymore. Operation locked(d) indicates if
d is locked in the log. We write d ∈ L when datum d is at some position in the log L. A log
implies an ordering on the data items it contains. When d and d′ both appear in L, d <L d′

is true when the position of d is lower than the position of d′, or they both occupy the same
slot and d < d′, for some a priori total order (<) over the data items.

Variables. Algorithm 1 employs two types of shared objects at a process. First, for any
two groups h and h′ to which the local process belongs, Algorithm 1 uses a log LOGh∩h′

(line 2). Notice that, when h = h′, the log coincides with the log of the destination group h,
i.e., LOGh. Second, to agree on the final position of a message, Algorithm 1 also employs
consensus objects (line 3). Consensus objects are both indexed by messages and group
families. Given some message m and appropriate family f, Algorithm 1 calls CONSm,f

(lines 20 and 21). Two processes call the same consensus object at line 21 only if both
parameters match. Finally, to store the status of messages addressed to the local process,
Algorithm 1 also employs a mapping phase (line 4). A message is initially in the start
phase, then it moves to pending (line 15), commit (line 24), stable (line 33) and finally the
deliver (line 37) phase. Phases are ordered according to this progression.

DISC 2022

35:8 The Weakest Failure Detector for Genuine Atomic Multicast

Algorithm 1 Solving atomic multicast with failure detector µ – code at process p.

1: variables:
2: (LOGh∩h′)h,h′∈G(p)
3: (CONSm,f)m∈M,f⊆G

4: phase[m]← λm.start

5: multicast(m) := // g = dst(m) ∧ g ∈ G(p)
6: pre: phase[m] = start
7: eff: LOGg.append(m)

8: pending(m) :=
9: pre: phase[m] = start

10: m ∈ LOGg

11: ∀m′ <LOGg m. phase[m′] ≥ commit
12: eff: for all h ∈ G(p) do
13: i← LOGg∩h.append(m)
14: LOGg.append(m, h, i)
15: phase[m]← pending

16: commit(m) :=
17: pre: phase[m] = pending
18: ∀h ∈ γ(g). (m, h,−) ∈ LOGg

19: eff: let k = max{i : ∃(m,−, i) ∈ LOGg},
20: let f = {h : ∃f′ ∈ F(p). g, h ∈ f′ ∧ g ∩ h ̸= ∅}
21: k ← CONSm,f.propose(k)
22: for all h ∈ G(p) do
23: LOGg∩h.bumpAndLock(m, k)
24: phase[m]← commit

25: stabilize(m, h) :=
26: pre: phase[m] = commit
27: h ∈ G(p)
28: ∀m′ <LOGg∩h m. phase[m′] ≥ stable
29: eff: LOGg.append(m, h)

30: stable(m) :=
31: pre: phase[m] = commit
32: ∀h ∈ γ(g). (m, h) ∈ LOGg

33: eff: phase[m]← stable

34: deliver(m) :=
35: pre: phase[m] = stable
36: ∀m′ <LOGg∩h m. phase[m′] = deliver
37: eff: phase[m]← deliver

Algorithmic details. We now detail Algorithm 1 and jointly argue about its correctness.
For clarity, our argumentation is informal – the full proof appears in [37].

To multicast some message m to g = dst(m), a process adds m to the log of its destination
group (line 7). When p ∈ g observes m in the log, p appends m to each LOGg∩h with
p ∈ g ∩ h (line 13). Then, p stores in the log of the destination group of m the slot occupied
by m in LOGg∩h (line 14). This moves m to the pending phase.

Similarly to Skeen’s algorithm [5], a message is then bumped to the highest slot it occupies
in the logs. This step is executed at lines 16-24. In detail, p first agrees with its peers on
the highest position k occupied by m (lines 19-21). Observe here that only the processes

P. Sutra 35:9

in g that share some cyclic family with p take part to this agreement (line 20). Then, for
each group h in G(p), p bumps m to slot k in LOGg∩h and locks it in this position (line 23).
This moves m to the commit phase.

The next steps of Algorithm 1 compute the predecessors of message m. With more details,
once m reaches the stable phase and is ready to be delivered, the messages that precede it
in the logs at process p cannot change anymore.

If g does not belong to any cyclic family, stabilizing m is immediate: the precondition at
line 32 is always vacuously true. In this case, m is delivered in an order consistent with the
order it is added to the logs (line 28). This comes from the fact that when F = ∅ ordering
the messages reduces to a pairwise agreement between the processes.

When F ≠ ∅, stabilizing m is a bit more involved. Indeed, messages can be initially in
cyclic positions, e.g., C = m1 <LOGg1∩g2

m2 <LOGg2∩g3
m3 <LOGg3∩g1

m1, preventing them
to be delivered. As in [5], bumping messages helps to resolve such a situation.

The bumping procedure is executed globally. A process must wait that the positions in
the logs of a message are cycle-free before declaring it stable. Waiting can cease when the
cyclic family is faulty (line 32). This is correct because messages are stabilized in the order
of their positions in the logs (lines 25-29). Hence, if a cycle C exists initially in the positions,
either (i) not all the messages in C are delivered, or (ii) the first message to get stable in C

has no predecessors in C in the logs. In other words, for any two messages m and m′ in C, if
m 7→ m′ then m is stable before m′.

A process indicates that message m with g = dst(m) is stabilized in group h with a pair
(m, h) in LOGg (line 29). When this holds for all the groups h intersecting with g such that
there exists a correct family f with f ∈ F(p) and g, h ∈ f, m is declared stable at p (line 32).
Once stable, a message m can be delivered (lines 34-37).

Algorithm 1 stabilizes then delivers messages according to their positions in the logs. To
maintain progress, these positions must remain acyclic at every correct process. Furthermore,
this should also happen globally when a cyclic family is correct. Both properties are ensured
by the calls to consensus objects (line 21).

Implementing the shared objects. In each group g, consensus is solvable since µ provides
Σg ∧ Ωg. This serves to implement all the objects (CONSm,f)m,f when dst(m) = g. Logs
that are specific to a group, namely (LOGg)g∈G , are also built atop consensus in g using a
universal construction [27].

Failure detector µ does not offer the means to solve consensus in g ∩ h. Hence we must
rely on either g or h to build LOGg∩h. Minimality requires processes in a destination group
to take steps only in the case a message is addressed to them. To achieve this, we have to
slightly modify the universal construction for LOGg∩h, as detailed next.

First, we consider that this construction relies on an unbounded list of consensus objects.2
Each consensus object in this list is contention-free fast [2]. This means that it is guarded
by an adopt-commit object (AC) [19] before an actual consensus object (CONS) is called.
Upon calling propose, AC is first used and if it fails, that is “adopt” is returned, CONS
is called. Adopt-commit objects are implemented using Σg∩h, while consensus objects are
implemented atop some group, say g, using Σg ∧ Ωg. This modification ensures that when
processes execute operations in the exact same order, only the adopt-commit objects are
called. As a consequence, when no message is addressed to either g or h during a run, only
the processes in g ∩ h executes steps to implement an operation of LOGg∩h.

2 In the failure detector model, computability results can use any amount of shared objects.

DISC 2022

35:10 The Weakest Failure Detector for Genuine Atomic Multicast

Algorithm 2 Emulating Σ∩g∈Gg – code at process p.

1: variables:
2: (Ag,x)g∈G,x⊆g.p∈x

3: (Qg)g∈G ← λg.{g}
4: (qrg)g∈G ← λg.g

5: for all g ∈ G, x ⊆ g : p ∈ x do
6: let m such that dst(m) = g ∧ payload(m) = p

7: Ag,x.multicast(m)
8: when Ag,x.deliver(−)
9: Qg ← Qg ∪ {x}

10: when query
11: if p /∈

⋂
g∈G

g then
12: return ⊥
13: for all g ∈ G do
14: qrg ← choose arg max

y∈Qg

rank(y)

15: return (
⋃

g∈G
qrg) ∩ (

⋂
g∈G

g)

5 Necessity

Consider some environment E, a failure detector D and an algorithm A that uses D to solve
atomic multicast in E. This section shows that D is stronger than µ in E. To this end, we
first use the fact that atomic multicast solves consensus per group. Hence µ is stronger
than ∧g∈G (Ωg ∧ Σg). §5.1 proves that D is stronger than Σg∩h for any two groups g, h ∈ G.
Further, in §5.2, we establish that D is stronger than γ. This last result is established when
D is realistic. The remaining cases are discussed in §7.

5.1 Emulating Σg∩h

Atomic multicast solves consensus in each destination group. This permits to emulate ∧g∈GΣg.
However, for two intersecting groups g and h, Σg ∧ Σh is not strong enough to emulate
Σg∩h.3 Hence, we must build the failure detector directly from the communication primitive.
Algorithm 2 presents such a construction. This algorithm can be seen as an extension of the
work of Bonnet and Raynal [6] to extract Σk when k-set agreement is solvable. Algorithm 2
emulates Σ∩g∈Gg, where G ⊆ G is a set of at most two intersecting destination groups.

At a process p, Algorithm 2 employs multiple instances of algorithm A. In detail, for
every group g ∈ G and subset x of g, if process p belongs to x, then p executes an instance
Ag,x (line 2). Variable Qg stores the responsive subsets of g, that is the sets x ⊆ g for which
Ag,x delivers a message. Initially, this variable is set to {g}.

Algorithm 2 uses the ranking function defined in [6]. For some set x ⊆ P , function rank(x)
outputs the rank of x. Initially, all the sets have rank 0. Function rank ensures a unique
property: a set x is correct if and only if it ranks grows forever. To compute this function,
processes keep track of each others by exchanging (asynchronously) “alive” messages. At a
process p, the number of “alive” messages received so far from q defines the rank of q. The
rank of a set is the lowest rank among all of its members.

3 The two detectors may return forever non-intersecting quorums.

P. Sutra 35:11

At the start of Algorithm 2, a process atomic multicasts its identity for every instance
Ag,x it is executing (line 7). When, Ag,x delivers a process identity, x is added to variable
Qg (line 9). Thus, variable Qg holds all the instances Ag,x that progress successfully despite
that g \ x do not participate. From this set, Algorithm 2 computes the most responsive
quorum using the ranking function (line 14). As stated in Theorem 2 below, these quorums
must intersect at any two processes in ∩g∈Gg.

▶ Theorem 2. Algorithm 2 implements Σ∩g∈Gg in E.

5.2 Emulating γ

Target systems. A process p is failure-prone in environment E when for some failure pattern
F ∈ E, p ∈ Faulty(F). By extension, we say that P ⊆ P is failure-prone when for some
F ∈ E, P ⊆ Faulty(F). A cyclic family f is failure-prone when one of its group intersections
is failure-prone. Below, we consider that E satisfies that if a process may fail, it may fail at
any time (formally, ∀F ∈ E. ∀p ∈ Faulty(F). ∃F ′ ∈ E. ∀t ∈ N. ∀t′ < t. F ′(t′) = F (t′)∧F ′(t) =
F (t) ∪ {p}). We also restrict our attention to realistic failure detectors, that is they cannot
guess the future [14].

Additional notions. Consider a cyclic family f. Two closed paths π and π′ in cpaths(f)
are equivalent, written π ≡ π′, when they visit the same edges in the intersection graph.
A closed path π in cpaths(f) is oriented. The direction of π is given by dir(π). It equals
1 when the path is clockwise, and −1 otherwise (for some canonical representation of the
intersection graph). To illustrate these notions, consider family f in Figure 1b. The sequence
π = g3g1g2g3 is a closed path in its intersection graph, with |π| = 4 and π[0] = π[|π|−1] = g3.
The direction of this path is 1 since it is visiting clockwise the intersection graph of f in the
figure. Path π is equivalent to the path π′ = g1g3g2g1 which visits f in the converse direction.

Construction. We emulate failure detector γ in Algorithm 3. For each closed path π ∈
cpaths(f) with π[0]∩π[1] failure-prone in E, Algorithm 3 maintains two variables: an instance
Aπ of the multicast algorithm A, and a flag failed[π]. Variable Aπ is used to detect when a
group intersection visited by π is faulty. It this happens, the flag failed[π] is raised. When for
every path π ∈ cpaths(f), some path equivalent to π is faulty, Algorithm 3 ceases returning
the family f (line 16).

In Algorithm 3, for every path π ∈ cpaths(f), the processes in π[0] ∩ π[1] multicast their
identities to π[0] using instance Aπ (lines 4 and 5). In this instance of A, all the processes
in f but the intersection π[0] ∩ π[|π| − 2] participate (line 2). As the path is closed, this
corresponds to the intersection with the last group preceding the first group in the path.

When p ∈ π[i] ∩ π[i + 1] delivers a message (−, i), it signals this information to the other
members of the family (line 9). Then, p multicasts its identity to π[i + 1] (line 10). This
mechanism is repeated until the antepenultimate group in the path is reached (line 8). When
such a situation occurs, the flag failed[π] is raised (line 12). This might also happen earlier
when a message is received for some path π′ equivalent to π and visiting f in the converse
direction (line 13).

Below, we claim that Algorithm 3 is a correct emulation of failure detector γ.

▶ Theorem 3. Algorithm 3 implements γ in E.

DISC 2022

35:12 The Weakest Failure Detector for Genuine Atomic Multicast

Algorithm 3 Emulating γ – code at process p.

1: variables:
2: (Aπ)π // ∀f ∈ F(p). ∀π ∈ cpaths(f). p /∈ π[0] ∩ π[|π| − 2]
3: failed[π]← λπ.false

4: for all Aπ : p ∈ π[0] ∩ π[1] do
5: Aπ.multicast(p, 0) to π[0]

6: signal(π, i) :=
7: pre: Aπ.deliver(−, i)
8: i < |π| − 2 ∧ p ∈ π[i + 1]
9: eff: send(π, i) to f

10: Aπ.multicast(p, i + 1) to π[i + 1]

11: update(π) :=
12: pre: ∃π′ ≡ π. rcv(π, j) ∧ ∨ j = |π| − 3
13: ∨ (rcv(π′, 0) ∧ π[j] = π′[0] ∧ dir(π) = −dir(π′))
14: eff: failed[π]← true

15: when query
16: return {f ∈ F(p) : ∃π ∈ cpaths(f). ∀π′ ≡ π. failed[π′] = false}

6 Variations

This section explores two common variations of the atomic multicast problem. It shows that
each variation has a weakest failure detector stronger than µ. The first variation requires
messages to be ordered according to real time. This means that if m is delivered before
m′ is multicast, no process may deliver m′ before m. In this case, we establish that the
weakest failure detector must accurately detect the failure of a group intersection. The second
variation demands each group to progress independently in the delivery of the messages. This
property strengthens minimality because in a genuine solution a process may help others
as soon as it has delivered a message. We show that the weakest failure detector for this
variation permits to elect a leader in each group intersection.

6.1 Enforcing real-time order
Ordering primitives like atomic broadcast are widely used to construct dependable services [7].
The classical approach is to follow state-machine replication (SMR), a form of universal
construction. In SMR, a service is defined by a deterministic state machine, and each replica
maintains its own local copy of the machine. Commands accessing the service are funneled
through the ordering primitive before being applied at each replica on the local copy.

SMR protocols must satisfy linearizability [28]. However, as observed in [3], the common
definition of atomic multicast is not strong enough for this: if some command d is submitted
after a command c get delivered, atomic multicast does not enforce c to be delivered before d,
breaking linearizability. To sidestep this problem, a stricter variation must be used. Below,
we define such a variation and characterize its weakest failure detector.

6.1.1 Definition
We write m⇝ m′ when m is delivered in real-time before m′ is multicast. Atomic multicast
is strict when ordering is replaced with: (Strict Ordering) The transitive closure of (7→ ∪⇝)
is a strict partial order over M. Strictness is free when there is a single destination group.

P. Sutra 35:13

Algorithm 4 Emulating 1g∩h – code at process p ∈ g ∪ h.

1: variables:
2: B ← if (p ∈ g \ h) then Ag else if (p ∈ h \ g) then Ah else ⊥ // Ag and Ah are distinct

instances of A

3: failed ← false

4: if B ̸= ⊥ then
5: B.multicast(p)
6: wait until B.deliver(−)
7: send(failed) to g ∪ h

8: when rcv(failed)
9: failed ← true

10: when query
11: return failed

Indeed, if p delivers m before q broadcasts m′, then necessarily m
p7→ m′. This explains why

atomic broadcast does not mention such a requirement. In what follows, we prove that strict
atomic multicast is harder than (vanilla) atomic multicast.

6.1.2 Weakest failure detector
Candidate. For some (non-empty) group of processes P , the indicator failure detector 1P

indicates if all the processes in P are faulty or not. In detail, this failure detector returns a
boolean which ensures that:

(Accuracy) ∀p ∈ P. ∀t ∈ N. 1P (p, t) ⇒ P ⊆ F (t)
(Completeness) ∀p ∈ Correct. ∀t ∈ N. P ⊆ F (t) ⇒ ∃τ ∈ N. ∀t′ ≥ τ. 1P (p, t′)

For simplicity, we write 1g∩h the indicator failure detector restricted to the processes in
g ∪ h (that is, the failure detector 1g∩h

g∪h). This failure detector informs the processes outside
g ∩ h when the intersection is faulty. Notice that for the processes in the intersection, 1g∩h

does not provide any useful information. This comes from the fact that simply returning
always true is a valid implementation at these processes.

Our candidate failure detector is µ ∧ (∧g,h∈G 1g∩h). One can establish that ∧g,h∈G1g∩h

is stronger than γ (see Proposition 4 below). As a consequence, this failure detector can be
rewritten as (∧g,h∈G Σg∩h ∧ 1g∩h) ∧ (∧g∈G Ωg).

▶ Proposition 4. ∧g,h∈G 1g∩h ≤ γ

Necessity. An algorithm to construct 1g∩h is presented in Algorithm 4. It relies on an
implementation A of strict atomic multicast that makes use internally of some failure detector
D. Proposition 5 establishes the correctness of such a construction.

▶ Proposition 5. Algorithm 4 implements 1g∩h.

Sufficiency. The solution to strict atomic multicast is almost identical to Algorithm 1. The
only difference is at line 32 when a message moves to the stable phase. Here, for every
destination group h with h ∩ g ̸= ∅, a process waits either that 1g∩h returns true, or that
a tuple (m, h) appears in LOGg. From Proposition 4, we know that the indicator failure
detector 1g∩h provides a better information than γ regarding the correctness of g ∩ h. As a
consequence, the modified algorithm solves (group sequential) atomic multicast.

DISC 2022

35:14 The Weakest Failure Detector for Genuine Atomic Multicast

Now, to see why such a solution is strict, consider two messages m and m′ that are
delivered in a run, with g = dst(m) and h = dst(m′). We observe that when m′ ⇝ m or
m′ 7→ m, m′ is stable before m, from which we deduce that strict ordering holds.

With more details, in the former case (m′ ⇝ m), this comes from the fact that to be
delivered a message must be stable first (line 35). In the later (m′ 7→ m), when message m

is stable at some process p, p must wait a message (m, h) in LOGg, or that 1g∩h returns
true. If (m, h) is in LOGg, then line 29 was called before by some process q. Because
both messages are delivered and m′ 7→ m, m′ must precedes m in LOGg∩h. Thus the
precondition at line 28 enforces that m′ is stable at q, as required. Now, if the indicator
returns true at p, m′ 7→ m tells us that a process delivers m′ before m and this must happen
before g ∩ h fails.

6.2 Improving parallelism
As motivated in the Introduction, genuine solutions to atomic multicast are appealing from
a performance perspective. Indeed, if messages are addressed to disjoint destination groups
in a run, they are processed in parallel by such groups. However, when contention occurs,
a message may wait for a chain of messages to be delivered first. This chain can span
outside of the destination group, creating a delay that harms performance and reduces
parallelism [17, 1]. In this section, we explore a stronger form of genuineness, where groups
are able to deliver messages independently. We prove that, similarly to the strict variation,
this requirement demands more synchrony than µ from the underlying system.

6.2.1 Definition
As standard, a run R is fair for some correct process p when p executes an unbounded amount
of steps in R. By extension, R is fair for P ⊆ Correct(R), or for short P -fair, when it is fair
for every p in P . If P is exactly the set of correct processes, we simply say that R is fair.

(Group Parallelism) Consider a message m and a run R. Note P = Correct(R) ∩ dst(m).
If m is delivered by a process, or atomic multicast by a correct process in R, and R is
P -fair, then every process in P delivers m in R.

Group parallelism bears similarity with x-obstruction freedom [38], in the sense that the
system must progress when a small enough group of processes is isolated. A protocol is said
strongly genuine when it satisfy both the minimality and the group parallelism properties.

6.2.2 About the weakest failure detector
Below, we establish that (∧g,h∈G Ωg∩h) is necessary. It follows that the weakest failure
detector for this variation is at least µ ∧ (∧g,h∈G Ωg∩h).

Emulating ∧g,h∈G Ωg∩h. Consider some algorithm A that solves strongly genuine atomic
multicast with failure detector D. Using both A and D, each process may emulate Ωg∩h, for
some intersecting groups g, h ∈ G. The emulation follows the general schema of CHT [8]. We
sketch the key steps below. The full proof appears in [37].

Each process constructs a directed acyclic graph G by sampling the failure detector D

and exchanging these samples with other processes. A path π in G induces multiple runs
of A that each process locally simulates. A run starts from some initial configuration. In
our context, the configurations I = {I1, . . . , In≥2} of interest satisfy (i) the processes outside

P. Sutra 35:15

g ∩ h do not atomic multicast any message, and (ii) the processes in g ∩ h multicast a single
message to either g or h. For some configuration Ii ∈ I, the schedules of the simulated runs
starting from Ii are stored in a simulation tree Υi. There exists an edge (S, S′) when starting
from configuration S(Ii), one may apply a step s = (p, m, d) for some process p, message m

transiting in S(Ii) and sample d of D such that S′ = S · s.
Every time new samples are received, the forest of the simulation trees (Υi)i is updated.

At each such iteration, the schedules in Υi are tagged using the following valency function:
S is tagged with g (respectively, h) if for some successor S′ of S in Υi a process in g ∩ h

delivers first a message addressed to g (resp. to h) in configuration S′(Ii). A tagged schedule
is univalent when it has a single tag, and bivalent otherwise.

As the run progresses, each root of a simulation tree has eventually a stable set of tags.
If the root of Υi is g-valent, the root of Υj is h-valent and they are adjacent, i.e., all the
processes but some p ∈ g ∩ h are in the same state in Ii and Ij , then p must be correct.
Otherwise, there exists a bivalent root of some tree Υi such that for g (respectively, h) a
correct process multicasts a message to g (resp., h) in Ii. In this case, similarly to [8], there
exists a decision gadget in the simulation tree Υi. This gadget is a sub-tree of the form
(S, S′, S′′), with S bivalent, and S′ g-valent and S′′ h-valent (or vice-versa). Using the group
parallelism property of A, we may then show that necessarily the deciding process in the
gadget, that is the process taking a step toward either S′ or S′′ is correct and belongs to the
intersection g ∩ h.

Solution when F = ∅. In this case, Algorithm 1 just works. To attain strong genuineness,
each log object LOGg∩h is implemented with Σg∩h ∧ Ωg∩h through standard universal
construction mechanisms. When F = ∅, µ ∧ (∧g,h∈G Ωg∩h) is thus the weakest failure
detector. The case F ̸= ∅ is discussed in the next section.

7 Discussion

Several definitions for atomic multicast appear in literature (see, e.g., [12, 26] for a survey).
Some papers consider a variation of atomic multicast in which the ordering property is
replaced with: (Pairwise Ordering) If p delivers m then m′, every process q that delivers
m′ has delivered m before. Under this definition, cycles in the delivery relation (7→) across
more than two groups are not taken into account. This is computably equivalent to F = ∅.
Hence the weakest failure detector for this variation is (∧g,h∈G Σg∩h) ∧ (∧g∈G Ωg).

In [25], the authors show that failure detectors of the class U2 are too weak to solve the
pairwise ordering variation. These detectors can be wrong about (at least) two processes. In
detail, the class Uk are all the failure detectors D that are k-unreliable, that is they cannot
distinguish any pair of failure patterns F and F ′, as long as the faulty processes in F and
F ′ are members of a subset W of size k (the “wrong” subset). The result in [25] is a corner
case of the necessity of Σg∩h when g ∩ h = {p, q} and both processes are failure-prone in
E. Indeed, Σ{p,q} /∈ U2. To see this, observe that if q is faulty and p correct, then {p} is
eventually the output of Σ{p,q} at p. A symmetrical argument holds for process q in runs
where q is correct and p faulty. In the class U2, such values can be output in runs where
both processes are correct, contradicting the intersection property of Σ{p,q}.

Most atomic multicast protocols [30, 17, 20, 10, 31, 29, 13, 33] sidestep the impossibility
result in [25] by considering that destination groups are decomposable into a set of disjoint
groups, each of these behaving as a logically correct entity. This means that there exists a
partitioning P(G) ⊆ 2P satisfying that (i) for every destination group g ∈ G, there exists

DISC 2022

35:16 The Weakest Failure Detector for Genuine Atomic Multicast

(gi)i ⊆ P(G) with g = ∪igi, (ii) each g ∈ P(G) is correct, and (iii) for any two g, h in P(G),
g ∩ h is empty. Since ∧g∈P(G) (Σg ∧ Ωg) ⪰ µ, we observe that solving the problem over P(G)
is always as difficult as over G. It can also be more demanding in certain cases, e.g., if two
groups intersect on a single process p, then p must be reliable. In Figure 1, this happens
with process p2. In contrast, to these prior solutions, Algorithm 1 tolerates any number of
failures. This is also the case of [34] which relies on a perfect failure detector.

Regarding strongly genuine atomic multicast, §6.2 establishes that µ ∧ (∧g,h∈G Ωg∩h) is
the weakest when F = ∅. The case F ̸= ∅ is a bit more intricate. First of all, we may
observe that in this case the problem is failure-free solvable: given a spanning tree T of the
intersection graph of G, we can deliver the messages according to the order <T , that is, if
m is addressed to g intersecting with h, h′, . . . with h <T h′ <T . . ., then g ∩ h delivers first
m, followed by g ∩ h′, etc.4 A failure-prone solution would apply the same logic. This is
achievable using µ ∧ (∧g,h∈G Ωg∩h) ∧ (∧g,h∈F 1g∩h), where g ∈ F holds when for some family
f ∈ F , we have g ∈ f. We conjecture that this failure detector is actually the weakest.

8 Conclusion

This paper presents the first solution to genuine atomic multicast that tolerates arbitrary
failures without using system-wide perfect failure detection. It also introduces two new
classes of failure detectors: (γ) which tracks when a cyclic family of destination groups is
faulty, and (1g∩h) that indicates when the group intersection g ∩ h is faulty. Building upon
these new abstractions, we identify the weakest failure detector for genuine atomic multicast
and also for several key variations of this problem. Our results offer a fresh perspective on the
solvability of genuine atomic multicast in crash-prone systems. In particular, they question
the common assumption of partitioning the destination groups. This opens an interesting
avenue for future research on the design of fault-tolerant atomic multicast protocols.

References
1 Tarek Ahmed-Nacer, Pierre Sutra, and Denis Conan. The convoy effect in atomic multicast.

In 35th IEEE Symposium on Reliable Distributed Systems Workshops, SRDS 2016 Workshop,
Budapest, Hungary, September 26, 2016, pages 67–72. IEEE Computer Society, 2016. doi:
10.1109/SRDSW.2016.22.

2 Hagit Attiya, Rachid Guerraoui, and Petr Kouznetsov. Computing with reads and writes
in the absence of step contention. In Pierre Fraigniaud, editor, Distributed Computing, 19th
International Conference, DISC 2005, Cracow, Poland, September 26-29, 2005, Proceedings,
volume 3724 of Lecture Notes in Computer Science, pages 122–136. Springer, 2005. doi:
10.1007/11561927_11.

3 Carlos Eduardo Benevides Bezerra, Fernando Pedone, and Robbert van Renesse. Scalable
state-machine replication. In 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2014, Atlanta, GA, USA, June 23-26, 2014, pages 331–342. IEEE
Computer Society, 2014. doi:10.1109/DSN.2014.41.

4 Kenneth Birman, André Schiper, and Pat Stephenson. Lightweight causal and atomic group
multicast. ACM Trans. Comput. Syst., 9(3):272–314, August 1991. doi:10.1145/128738.
128742.

5 Kenneth P. Birman and Thomas A. Joseph. Reliable Communication in the Presence of Failures.
ACM Transactions on Computers Systems, 5(1):47–76, January 1987. doi:10.1145/7351.7478.

4 Strictly speaking, a spanning tree is required per connected component of the intersection graph.

https://doi.org/10.1109/SRDSW.2016.22
https://doi.org/10.1109/SRDSW.2016.22
https://doi.org/10.1007/11561927_11
https://doi.org/10.1007/11561927_11
https://doi.org/10.1109/DSN.2014.41
https://doi.org/10.1145/128738.128742
https://doi.org/10.1145/128738.128742
https://doi.org/10.1145/7351.7478

P. Sutra 35:17

6 François Bonnet and Michel Raynal. Looking for the weakest failure detector for k-set
agreement in message-passing systems: Is πk the end of the road? In Stabilization, Safety,
and Security of Distributed Systems, 11th International Symposium, SSS 2009, Lyon, France,
November 3-6, 2009. Proceedings, pages 149–164, 2009. doi:10.1007/978-3-642-05118-0_11.

7 Tushar Deepak Chandra, Robert Griesemer, and Joshua Redstone. Paxos made live: an
engineering perspective. In Indranil Gupta and Roger Wattenhofer, editors, Proceedings of
the Twenty-Sixth Annual ACM Symposium on Principles of Distributed Computing, PODC
2007, Portland, Oregon, USA, August 12-15, 2007, pages 398–407. ACM, 2007. doi:10.1145/
1281100.1281103.

8 Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure detector for
solving consensus. J. ACM, 43(4):685–722, July 1996. doi:10.1145/234533.234549.

9 Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225–267, 1996. doi:10.1145/226643.226647.

10 Paulo R. Coelho, Nicolas Schiper, and Fernando Pedone. Fast atomic multicast. In 47th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN
2017, Denver, CO, USA, June 26-29, 2017, pages 37–48. IEEE Computer Society, 2017.
doi:10.1109/DSN.2017.15.

11 James A. Cowling and Barbara Liskov. Granola: Low-overhead distributed transaction
coordination. In Gernot Heiser and Wilson C. Hsieh, editors, 2012 USENIX Annual
Technical Conference, Boston, MA, USA, June 13-15, 2012, pages 223–235. USENIX As-
sociation, 2012. URL: https://www.usenix.org/conference/atc12/technical-sessions/
presentation/cowling.

12 Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast and multicast
algorithms: Taxonomy and survey. ACM Comput. Surv., 36(4):372–421, December 2004.
doi:10.1145/1041680.1041682.

13 Carole Delporte-Gallet and Hugues Fauconnier. Fault-tolerant genuine atomic multicast to
multiple groups. In Franck Butelle, editor, Procedings of the 4th International Conference
on Principles of Distributed Systems, OPODIS 2000, Paris, France, December 20-22, 2000,
Studia Informatica Universalis, pages 107–122. Suger, Saint-Denis, rue Catulienne, France,
2000.

14 Carole Delporte-Gallet, Hugues Fauconnier, and Rachid Guerraoui. A realistic look at failure
detectors. In 2002 International Conference on Dependable Systems and Networks (DSN
2002), 23-26 June 2002, Bethesda, MD, USA, Proceedings, pages 345–353. IEEE Computer
Society, 2002. doi:10.1109/DSN.2002.1028919.

15 Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, Vassos Hadzilacos, Petr
Kouznetsov, and Sam Toueg. The weakest failure detectors to solve certain fundamen-
tal problems in distributed computing. In Proceedings of the Twenty-Third Annual ACM
Symposium on Principles of Distributed Computing, PODC 2004, St. John’s, Newfoundland,
Canada, July 25-28, 2004, pages 338–346, 2004. doi:10.1145/1011767.1011818.

16 Swan Dubois, Rachid Guerraoui, Petr Kuznetsov, Franck Petit, and Pierre Sens. The weakest
failure detector for eventual consistency. In Proceedings of the 2015 ACM Symposium on
Principles of Distributed Computing, PODC ’15, pages 375–384, New York, NY, USA, 2015.
Association for Computing Machinery. doi:10.1145/2767386.2767404.

17 Vitor Enes, Carlos Baquero, Alexey Gotsman, and Pierre Sutra. Efficient replication via
timestamp stability. In Antonio Barbalace, Pramod Bhatotia, Lorenzo Alvisi, and Cristian
Cadar, editors, EuroSys ’21: Sixteenth European Conference on Computer Systems, Online
Event, United Kingdom, April 26-28, 2021, pages 178–193. ACM, 2021. doi:10.1145/3447786.
3456236.

18 Felix C. Freiling, Rachid Guerraoui, and Petr Kuznetsov. The failure detector abstraction.
ACM Comput. Surv., 43(2), February 2011. doi:10.1145/1883612.1883616.

19 Eli Gafni. Round-by-round fault detectors (extended abstract): Unifying synchrony and
asynchrony. In Proceedings of the Seventeenth Annual ACM Symposium on Principles of
Distributed Computing, PODC ’98, pages 143–152, New York, NY, USA, 1998. ACM. doi:
10.1145/277697.277724.

DISC 2022

https://doi.org/10.1007/978-3-642-05118-0_11
https://doi.org/10.1145/1281100.1281103
https://doi.org/10.1145/1281100.1281103
https://doi.org/10.1145/234533.234549
https://doi.org/10.1145/226643.226647
https://doi.org/10.1109/DSN.2017.15
https://www.usenix.org/conference/atc12/technical-sessions/presentation/cowling
https://www.usenix.org/conference/atc12/technical-sessions/presentation/cowling
https://doi.org/10.1145/1041680.1041682
https://doi.org/10.1109/DSN.2002.1028919
https://doi.org/10.1145/1011767.1011818
https://doi.org/10.1145/2767386.2767404
https://doi.org/10.1145/3447786.3456236
https://doi.org/10.1145/3447786.3456236
https://doi.org/10.1145/1883612.1883616
https://doi.org/10.1145/277697.277724
https://doi.org/10.1145/277697.277724

35:18 The Weakest Failure Detector for Genuine Atomic Multicast

20 Alexey Gotsman, Anatole Lefort, and Gregory V. Chockler. White-box atomic multicast. In
49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN
2019, Portland, OR, USA, June 24-27, 2019, pages 176–187. IEEE, 2019. doi:10.1109/DSN.
2019.00030.

21 R. Guerraoui and A. Schiper. Total order multicast to multiple groups. In Proceedings
of 17th International Conference on Distributed Computing Systems, pages 578–585, 1997.
doi:10.1109/ICDCS.1997.603426.

22 Rachid Guerraoui, Vassos Hadzilacos, Petr Kuznetsov, and Sam Toueg. The weakest failure
detectors to solve quittable consensus and nonblocking atomic commit. SIAM J. Comput.,
41(6):1343–1379, 2012. doi:10.1137/070698877.

23 Rachid Guerraoui, Maurice Herlihy, Petr Kouznetsov, Nancy Lynch, and Calvin Newport. On
the weakest failure detector ever. In Proceedings of the Twenty-sixth Annual ACM Symposium
on Principles of Distributed Computing, PODC ’07, pages 235–243, New York, NY, USA, 2007.
ACM. doi:10.1145/1281100.1281135.

24 Rachid Guerraoui and Michel Raynal. The alpha of indulgent consensus. Comput. J., 50(1):53–
67, 2007. doi:10.1093/comjnl/bxl046.

25 Rachid Guerraoui and André Schiper. Genuine atomic multicast in asynchronous distributed
systems. Theor. Comput. Sci., 254(1-2):297–316, 2001. doi:10.1016/S0304-3975(99)00161-9.

26 Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant broadcasts and
related problems. Technical report, Cornell University, 1994.

27 Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages
and Systems, 11(1):124–149, January 1991. doi:10.1145/114005.102808.

28 Maurice Herlihy and Jeannette Wing. Linearizability: a correcteness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems, 12(3):463–492, July
1990. doi:10.1145/78969.78972.

29 Udo Fritzke Jr., Philippe Ingels, Achour Mostéfaoui, and Michel Raynal. Consensus-based
fault-tolerant total order multicast. IEEE Trans. Parallel Distributed Syst., 12(2):147–156,
2001. doi:10.1109/71.910870.

30 Long Hoang Le, Mojtaba Eslahi-Kelorazi, Paulo R. Coelho, and Fernando Pedone. Ramcast:
Rdma-based atomic multicast. In Kaiwen Zhang, Abdelouahed Gherbi, Nalini Venkata-
subramanian, and Luís Veiga, editors, Middleware ’21: 22nd International Middleware
Conference, Québec City, Canada, December 6 - 10, 2021, pages 172–184. ACM, 2021.
doi:10.1145/3464298.3493393.

31 Parisa Jalili Marandi, Marco Primi, and Fernando Pedone. Multi-ring paxos. In Robert S.
Swarz, Philip Koopman, and Michel Cukier, editors, IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN 2012, Boston, MA, USA, June 25-28, 2012, pages
1–12. IEEE Computer Society, 2012. doi:10.1109/DSN.2012.6263916.

32 Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang Li. Consolidating concurrency control
and consensus for commits under conflicts. In Kimberly Keeton and Timothy Roscoe, editors,
12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016,
Savannah, GA, USA, November 2-4, 2016, pages 517–532. USENIX Association, 2016. URL:
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/mu.

33 Luís E. T. Rodrigues, Rachid Guerraoui, and André Schiper. Scalable atomic multicast. In
Proceedings of the International Conference On Computer Communications and Networks (IC-
CCN 1998), October 12-15, 1998, Lafayette, Louisiana, USA, pages 840–847. IEEE Computer
Society, 1998. doi:10.1109/ICCCN.1998.998851.

34 Nicolas Schiper and Fernando Pedone. Solving atomic multicast when groups crash. In
Theodore P. Baker, Alain Bui, and Sébastien Tixeuil, editors, Principles of Distributed
Systems, 12th International Conference, OPODIS 2008, Luxor, Egypt, December 15-18, 2008.
Proceedings, volume 5401 of Lecture Notes in Computer Science, pages 481–495. Springer,
2008. doi:10.1007/978-3-540-92221-6_30.

https://doi.org/10.1109/DSN.2019.00030
https://doi.org/10.1109/DSN.2019.00030
https://doi.org/10.1109/ICDCS.1997.603426
https://doi.org/10.1137/070698877
https://doi.org/10.1145/1281100.1281135
https://doi.org/10.1093/comjnl/bxl046
https://doi.org/10.1016/S0304-3975(99)00161-9
https://doi.org/10.1145/114005.102808
https://doi.org/10.1145/78969.78972
https://doi.org/10.1109/71.910870
https://doi.org/10.1145/3464298.3493393
https://doi.org/10.1109/DSN.2012.6263916
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/mu
https://doi.org/10.1109/ICCCN.1998.998851
https://doi.org/10.1007/978-3-540-92221-6_30

P. Sutra 35:19

35 Nicolas Schiper, Pierre Sutra, and Fernando Pedone. Genuine versus non-genuine atomic
multicast protocols for wide area networks: An empirical study. In 28th IEEE Symposium on
Reliable Distributed Systems (SRDS 2009), Niagara Falls, New York, USA, September 27-30,
2009, pages 166–175. IEEE Computer Society, 2009. doi:10.1109/SRDS.2009.12.

36 Nicolas Schiper, Pierre Sutra, and Fernando Pedone. P-store: Genuine partial replication in
wide area networks. In 29th IEEE Symposium on Reliable Distributed Systems (SRDS 2010),
New Delhi, Punjab, India, October 31 - November 3, 2010, pages 214–224. IEEE Computer
Society, 2010. doi:10.1109/SRDS.2010.32.

37 Pierre Sutra. The weakest failure detector for genuine atomic multicast (extended version),
2022. doi:10.48550/ARXIV.2208.07650.

38 Gadi Taubenfeld. Contention-sensitive data structures and algorithms. Theoretical Computer
Science, 677:41–55, 2017. doi:10.1016/j.tcs.2017.03.017.

DISC 2022

https://doi.org/10.1109/SRDS.2009.12
https://doi.org/10.1109/SRDS.2010.32
https://doi.org/10.48550/ARXIV.2208.07650
https://doi.org/10.1016/j.tcs.2017.03.017

	1 Introduction
	2 The Atomic Multicast Problem
	2.1 System Model
	2.2 Problem Definition
	2.3 Genuineness

	3 The Candidate Failure Detector
	4 Sufficiency
	4.1 A simpler variation
	4.2 Overview of the solution
	4.3 Algorithm

	5 Necessity
	5.1 Emulating Sigma_{g inter h}
	5.2 Emulating gamma

	6 Variations
	6.1 Enforcing real-time order
	6.1.1 Definition
	6.1.2 Weakest failure detector

	6.2 Improving parallelism
	6.2.1 Definition
	6.2.2 About the weakest failure detector

	7 Discussion
	8 Conclusion

