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Abstract
We present several new proofs of lower bounds for the space-stretch tradeoff in labeled network
routing.

First, we give a new proof of an important result of Cyril Gavoille and Marc Gengler that any
routing scheme with stretch < 3 must use Ω(n) bits of space at some node on some network with
n vertices, even if port numbers can be changed. Compared to the original proof, our proof is
significantly shorter and, we believe, conceptually and technically simpler. A small extension of the
proof can show that, in fact, any constant fraction of the n nodes must use Ω(n) bits of space on
some graph.

Our main contribution is a new result that if port numbers are chosen adversarially, then stretch
< 2k + 1 implies some node must use Ω

(
n

1
k log n

)
bits of space on some graph, assuming a girth

conjecture by Erdős.
We conclude by showing that all known methods of proving a space lower bound in the labeled

setting, in fact, require the girth conjecture.
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1 Introduction

Network routing is an important subject in the field of distributed algorithms. Given a
network of nodes (routers) connected arbitrarily, the goal is to be able to transmit information
between any two nodes in the network. A network data packet must usually traverse multiple
routers in order to reach its destination, and these intermediate routers must be able to make
a decision as to where to forward the packet next based only on the packet and some local
information. This local information is usually referred to as a routing table or, more precisely,
a routing program, and one of the goals is to bound its size. This is particularly important in
practice since the memory inside a router must be fast and is therefore expensive. Another
goal one might pursue is the quality of the routes chosen by the routers. The route quality is
commonly characterized by the stretch factor defined as the ratio between the length of the
route and the shortest distance between the two nodes. In practice, it corresponds to latency
in a network that does not experience congestion.

In this paper we consider the problem of labeled routing: what is the best possible tradeoff
between routing program sizes and the stretch factor given that we are allowed to assign
arbitrary (but not long) labels to nodes which the sender must include in the routing header?
Although this model is of little practical interest since one doesn’t want to reconfigure the
labels each time the network changes, labeled routing schemes often serve as an ingredient in
name-independent routing: first a label is retrieved from a distributed dictionary after which
a labeled routing scheme is used [12, 5, 4, 1]. Additionally, the lower bounds for the labeled
routing setting imply the same lower bounds for the name-independent setting, where node
labels are chosen adversarially.
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1.1 Some general notation
For a natural number n, define [n] = {1, 2, ..., n}. For any vertex v, denote N (v) to be the
set of neighbors of v. Define deg(v) =

∣∣N (v)
∣∣, the degree of v.

1.2 Model
We deal with undirected connected graphs G with n nodes (routers). Let G = (V, E) where
V = [n]. Each x ∈ V possesses a unique label (name) lx ∈ {0, 1}∗, as well as a routing
program Rx. The goal of a (distributed) routing algorithm is to route data from any node x

to any node y given only the destination’s label ly. Routers are allowed to attach an arbitrary
header to messages and modify the header at each hop. Each router x has network ports
numbered {1, 2, ..., deg(x)} to which edges are attached. This port-edge relation is a bijection:
each edge is assigned exactly one port and each port is assigned exactly one edge. For x ∈ V

and 1 ≤ t ≤ deg(x) define τx(t) = y where y is the node such that {x, y} is the edge assigned
to port t at node x. So, τx : [deg(x)] → N (x) is a bijection. The routing program Rx at
node x accepts the header of the incoming message and the incoming port number as input
and outputs the new header and the outgoing port number: if Rx(h, q) = (h′, p), a message
with header h that comes in through port q leaves the router with header h′ through port p.

Formally, a routing scheme for G with node labels L = (l1, l2, ..., ln) and port functions
T = (τ1, τ2, ..., τn) is a collection of programs R = (R1, R2, ..., Rn) such that for all x, y ∈ V

there exists a finite walk x = v0, v1, ..., vt = y in G, a sequence h0, h1, ..., ht of headers, and
two sequences q0, ..., qt and p1, ..., pt+1 of port numbers such that:

for all 0 ≤ i < t:
Rvi

(hi, qi) = (hi+1, pi+1)
τvi

(pi+1) = vi+1
τvi+1(qi+1) = vi

h0 = ly
q0 = 0
Rvt(ht, qt) = (ϵ, 0)

This model can take different variations depending on whether the node labels and
the port assignment are adversarially chosen or not. In the most adversarial setting, both
assignments are given as part of the input and the goal is to construct a correct routing
scheme. In the least adversarial setting, only the graph G is given, and the goal is to generate
a routing scheme along with node labels and a port assignment. Models where only one
assignment is adversarial can also be considered. Generally, minimizing the size of routing
programs, node labels and headers is desirable. In this paper, we work with two models: one
has non-adversarial port assignment, and the other has adversarial port assignment. Both,
however, are models for labeled routing; i.e., node labels are non-adversarial.

Finally, we formally define routing stretch. We say a routing scheme has stretch s if for
all x, y, dR(x, y) ≤ s · dG(x, y) where dR(x, y) is the length of the path from x to y taken by
the routing scheme, and dG(x, y) is the distance between x and y in G.

1.3 Known results
Many routing schemes have been proposed in the literature. The state of the art for labeled
routing includes [17] by Thorup and Zwick who for every integer k ≥ 1 describe a scheme
that uses Õ

(
n

1
k

)
bits of space at every node and has stretch 4k − 5, [8] by Chechik who

shows a scheme using Õ
(
n

1
k log D

)
bits of space at every node and having stretch c · k for
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some c < 4 for sufficiently large integer k, and [15] by Roditty and Tov who show a routing
scheme using Õ

( 1
ϵ n

1
k log D

)
bits of space at each node and having stretch 4k− 7 + ϵ for every

integer k ≥ 1; D is defined to be the normalized network diameter.

Surprisingly, there are also name-independent routing schemes with similar characteristics.
An optimal stretch-3 name-independent routing scheme that stores Õ

(√
n

)
bits at each node

is known [4]. Additionally, [3] constructs a routing scheme with O(k) stretch that uses Õ
(
n

1
k

)
bits of space at each node.

Lower bounds for routing schemes also exist and are the focus of this paper. The first
such lower bound appeared in the work of Peleg and Upfal [14] who showed that for any
s ≥ 1, any stretch-s routing scheme with adversarial port assignment on n nodes must use a
total of Ω

(
n1+ 1

s+2
)

bits, and thus Ω
(
n

1
s+2

)
bits at some node. Gavoille and Perennes [11]

prove that Ω
(
n2 log n

)
total bits is needed for shortest path routing, even when port numbers

can be chosen by the designer; however, node labels are assumed to be [n]. Buhrman et
al. [7] explore upper and lower bounds under various routing models. In the standard model,
that we consider here, they prove that shortest path routing requires Ω

(
n2)

bits of total
state, even when ports can be chosen by the designer, and labels can be arbitrary (short) bit
strings. Gavoille and Gengler [10] achieve the same lower bound under the same model, but
for any stretch s < 3. Finally, Thorup and Zwick [17] claim a lower bound of Ω

(
n1+ 1

k

)
total

bits of space for stretch s < 2k + 1 when the port assignment is adversarial, but their proof
idea does not seem to work in the standard model. We discuss their claim and proof idea
in the next subsection, and present a proof which works under the standard model, with a
log n factor improvement. Table 1 demonstrates known results for labeled routing. Note that
a lower bound that works for the non-adversarial port assignment implies the same lower
bound for the adversarial port assignment.

Table 1 Known lower bounds for labeled routing.

(a) Non-adversarial (+ adversarial) ports.

Work Stretch Total memory (bits) Local memory (bits) Notes
Gavoille and Perennes [11] < 5/3 Ω

(
n2 log n

)
Ω(n log n) on Ω(n) nodes Node labels are [n]

Buhrman et al. [7] 1 Ω
(
n2)

Ω(n) on Ω(n) nodes
Gavoille and Gengler [10] < 3 Ω

(
n2)

Ω(n)
This paper < 3 Ω

(
n2)

Ω(n) on cn nodes, ∀0 < c < 1

(b) Adversarial ports.

Work Stretch Total memory (bits) Local memory (bits) Notes
Peleg and Upfal [14] s ≥ 1 Ω

(
n1+ 1

s+2
)

Ω
(
n

1
s+2

)
Thorup and Zwick [17] < 2k + 1 Ω

(
n1+ 1

k

)
Ω

(
n

1
k

)
Works in a different model

This paper < 2k + 1 Ω
(
n1+ 1

k log n
)

Ω
(
n

1
k log n

)

All known lower bound proofs for stretch s > 1 (Peleg and Upfal [14], Thorup and
Zwick [17], our proof in section 3) rely on dense graphs of large girth. In an unweighted graph
where all cycles have length > s + 1, routing with stretch s between neighbor vertices x and
y must involve the edge {x, y}. Thus, x must “know” its neighbor y, and this is what proofs
rely on. Currently, however, the existence of dense graphs of large girth is an open question.
It is worth noting that Abraham et al. [2] overcome this conjecture in the name-independent
model and unconditionally show a Ω

(
(n log n) 1

k

)
-bit local memory requirement if weighted

networks are allowed.

DISC 2022
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1.4 Our contribution
1.4.1 Lower bounds with non-adversarial port numbers
Our first contribution is a simpler proof of the result of Gavoille and Gengler ([10], with
the full proof in their research report [9]) that shows that any routing scheme with stretch
< 3 must use a total of Ω

(
n2)

bits of routing state, and thus Ω(n) bits at some node, on
some network with n nodes, even if nodes and port numbers are allowed to be renamed. Our
proof, presented in section 2, is three times shorter and, we believe, significantly simpler.
This is due to a simpler class of graphs considered, easier reasoning and calculations.

With a bit of additional effort, we are also able to show that, in fact, any constant fraction
of the n nodes must use Ω(n) bits of space on some graph. Previously, similar results were
obtained in [11] and [7] for shortest path routing.

[11] proves a total memory requirement of Ω
(
n2 log n

)
bits with local memory requirement

of Ω(n log n) bits on Ω(n) nodes. We note that Ω
(
n2 log n

)
-bit total memory requirement

implies Ω(n log n) bits on Ω(n) nodes using the following informal generic argument. Suppose
the total memory requirement is c0n2 log n bits, the shortest path routing table can be
described in c1n log n bits at each node, and there are x nodes that store > c2n log n bits.
Then x · c1n log n + (n−x) · c2n log n ≥ c0n2 log n which implies x ≥ c0−c2

c1−c2
n. Setting c2 = c0

2
achieves the result. The same reasoning can be used to show that the Ω

(
n2)

total memory
proved implies Ω(n) bits at Ω

(
n

log n

)
nodes, but this is the best possible generic argument.

Indeed, you could have O
(

n
log n

)
nodes storing O(n log n) bits and all other nodes storing 0

bits. To show that more nodes must store Ω(n) bits, one needs a deeper argument.
[7] proves a local memory requirement of Ω(n) bits on Ω(n) nodes which can easily be

extended to any constant fraction of all nodes. It uses a Kolmogorov random graph and
assuming too many nodes have small routing programs reaches a contradiction.

It also seems that Gavoille and Gengler’s proof [10] can be extended to show a local
memory requirement of Ω(n) bits on any constant fraction of all nodes. We provide an
extension in the context of our proof for completeness.

1.4.2 Lower bounds with adversarial port numbers
Our second contribution is a proof of a claim by Thorup and Zwick that if ports are assigned
adversarially, for any integer k ≥ 1, any labeled routing scheme with stretch < 2k +1 requires
a total of Ω

(
n1+ 1

k

)
bits of space, and so Ω

(
n

1
k

)
bits of space at some node, in the worst case,

assuming a well-known conjecture by Erdős regarding the existence of dense graphs with
large girth. This claim deserves special discussion.

In [17], Thorup and Zwick make this claim, deferring the full proof to the full version of
the paper which never appeared. It was stated, however, that the result should follow easily
from their other paper [16] about compact distance oracles. A compact distance oracle is a
small data structure for a graph that for any vertices u and v is able to return an approximate
distance (up to some constant factor) between them. Their lower bound for distance oracles
is now a standard incompressibility argument, perhaps first introduced by Matoušek [13],
and it goes as follows. Take a graph with m edges and girth 2k + 2 and consider all 2m

subgraphs. For any two subgraphs, there must be an edge {u, v} in one that is absent in the
other. If the distance oracle satisfies stretch < 2k + 1, then it must return distance [1, 2k + 1)
for u, v in the first graph, and distance ≥ 2k + 1 in the second graph. Thus, each subgraph
must have a distinct distance oracle data structure, one of them of size m bits. So, it appears
that the lower bound proof for routing that Thorup and Zwick had in mind is assuming the
existence of a routing scheme with stretch < 2k + 1 of total size < m bits, and constructing
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distance oracle data structures: given a graph with a compact routing scheme, construct
a program that for any vertices u, v traces the route from u to v returned by the routing
scheme and reports the length of the route. Clearly, if a routing scheme can be encoded with
< m bits, then < 2m routing schemes are needed to satisfy all graphs, and < 2m distance
oracle programs are needed, a contradiction. The problem with this argument is that one
cannot trace the route from u to v given the routing scheme alone. Each routing program
returns the port toward the next node, but we do not know what the next node is, and
encoding the port assignment takes at least m bits which would break the proof.

Obviously, however, this argument works in the model where the port must equal to the
node label it leads to, or if the ports are log n bit strings chosen adversarially, but this is less
natural than providing the router with a port in

{
1, ..., |N (v)|

}
, and is perhaps more suited

for wireless networks. Given that this lower bound was mentioned in the context of the
standard model in so many works ([12, 2, 5, 4, 1, 8]), we set out to close this gap and prove
the result in the standard, more natural, model. Instead of considering many graphs of large
girth, we fix one such dense graph, consider all possible port assignments, and show that a
single routing scheme cannot satisfy many of them; thus many routing schemes are needed.
Our bound is also slightly stronger: assuming Erdős’ conjecture, stretch < 2k + 1 requires
a total of Ω

(
n1+ 1

k log n
)

bits of space. This implies that the stretch-3 routing scheme of
Thorup and Zwick [17] has optimal up to

√
log n factor per-node space requirement.

To the best of our knowledge, the best previous lower bound for stretch s ≥ 3 routing
with adversarial ports in the standard model is given by Peleg and Upfal who showed a total
memory requirement of Ω

(
n1+ 1

s+2
)

[14]. Their proof is based on a probabilistic algorithm
for constructing dense graphs with large girth. In contrast, our proof decouples the existence
of such graphs and the lower bound argument, which lets us use the best known results
regarding the existence of such graphs. In particular, the graph construction in [14] can be
used in conjunction with the proof in this paper to obtain the lower bound result in [14], but
better graph constructions are available.

1.4.3 Known techiques require girth conjecture
Finally, in section 4 we show that all known methods for proving a space lower bound, that
is, finding the number of distinct routing schemes necessary, actually require the existence of
dense graphs with large girth.

2 Lower bounds with non-adversarial port numbers

We are interested in the complexity of a routing scheme defined by max
{
|Rv| : v ∈ V

}
– the

size of the largest routing algorithm.
The idea of the lower bound, as in [10], is to consider a family of graphs of girth 4 (where

all cycles have length ≥ 4) and show that 2Ω(n2) configurations of routing programs R are
needed to satisfy all graphs in the family with stretch < 3. From this it follows that at least
one routing program must have size Ω(n) bits, as shown by the following lemma.

▶ Lemma 1. Let n be a positive integer, and let S ⊆
(
{0, 1}∗)n be a collection of n-tuples

of binary strings with |S| > 0. Then some string must have length ≥ log |S|
n − 1.

Proof. Suppose all strings have length < log |S|
n − 1. Then all strings have length ≤ L =⌊ log |S|

n −1
⌋
. But then |S| ≤

(
2L+1−1

)n
<

(
2L+1)n ≤

(
2

log |S|
n

)n = |S| which is a contradiction.
◀

DISC 2022
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▶ Theorem 2. There exists a function f(n) ∈ Ω(n) such that if node labels have size ≤ f(n)
bits, then there exists an unweighted graph with n nodes for which any routing scheme with
stretch < 3 contains a routing program of size Ω(n) bits.

Proof. Let n = 2q + 2 (the case where n is odd is analogous), V = A ∪ B where A =
{a0, a1, ..., aq} and B = {b0, b1, ..., bq}. Define G to be the set of all bipartite unweighted
graphs with parts A and B in which a0 has an edge to all vertices in B and b0 has an edge
to every vertex in A. The purpose of nodes a0 and b0 is to keep all graphs in G connected.
Bipartiteness implies that all graphs in G have girth 4 and |G| = 2q2 .

We will now bound the number of graphs in G that a single routing scheme can support.
This will give a lower bound on the number of different routing schemes for G.

Fix any routing scheme R and node labels L. For any node v ∈ A \ {a0}, consider the
map X : B → [deg(v)] defined by X(u) =

(
Rv(lu, 0)

)
2, i.e., the port number at v through

which a message originating from v to u is sent. Note that if {v, u} ∈ E then the port X(u)
at v should lead to u; otherwise, the path taken will have length ≥ 3 violating the stretch
requirement. We will now use this constraint to limit the number of different graphs in G
that can be supported by R and L assuming the port assignments T can be varied.

Define M = max{X(u) : u ∈ B}. First, observe that deg(v) ≥M because if deg(v) < M ,
then routing to u with X(u) = M will fail. Also observe that for each 1 ≤ i ≤ deg(v),
routing to the node behind port i will necessarily send the message directly to that node:
X(τv(i)) = i. Otherwise, routing to that node will traverse a different node and violate the
stretch requirement. Hence, M = deg(v) and X(u) partitions all nodes in B based on the
outgoing port number, each partition being non-empty.

For all 1 ≤ i ≤ M , define si to be the size of i’s partition: si =
∣∣{u ∈ B : X(u) = i

}∣∣.
We know that

∑M
i=1 si = |B| = q + 1 and that τv(i) has si possible values. Therefore, the

neighbors of v can take at most
∏M

i=1 si possible values, or in other words, N (v) is one of
at most

∏M
i=1 si possible configurations. It is known that the geometric average of a set of

non-negative numbers cannot exceed their arithmetic average. Hence,
∏M

i=1 si ≤
(

q+1
M

)M .
Differentiating the logarithm with respect to M , we find that the value is maximized when
M = q+1

e and thus
∏M

i=1 si ≤ e
q+1

e . Hence, the routing scheme R with labels L satisfies
at most e

q+1
e ·q graphs in G. I.e., if for a graph G, routing scheme R, labels L, and port

assignment T we define the predicate Sat(G,R,L, T ) to be true if and only if (R,L, T )
satisfy G with routing stretch < 3, then∣∣∣{G ∈ G : ∃T , Sat(G,R,L, T )

}∣∣∣ ≤ e
q+1

e ·q.

Since the labels have size at most f(n) bits, the number of possible configurations of labels
L is at most (2f(n)+1 − 1)n < 2(f(n)+1)n. Hence, the number of graphs in G that R can
satisfy is∣∣∣{G ∈ G : ∃(T ,L), Sat(G,R,L, T )

}∣∣∣ < e
q+1

e ·q · 2(f(n)+1)n.

Therefore, the number of routing schemes necessary to satisfy each graph in G is larger
than

|G|
e

q+1
e ·q · 2(f(n)+1)n

= 2q2

e
q+1

e ·q · 2(f(n)+1)n
.
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Since

log 2q2

e
q+1

e ·q · 2(f(n)+1)n
= q2 − log e

e
q(q + 1)−

(
f(n) + 1

)
n =(n

2 − 1
)2
− log e

2e
n

(n

2 − 1
)
−

(
f(n) + 1

)
n =(1

4 −
log e

4e

)
n2 −

(
f(n) + 1

)
n +

( log e

2e
− 1

2

)
n + 1 ∈ Ω(n2)

for an appropriate f(n), one of the graphs in G requires Ω(n) bits of state at some node by
lemma 1. ◀

A small modification of this argument lets us prove a slightly stronger statement, that
any constant fraction of n nodes must have Ω(n) bits of state on some graph. Using the same
family of graphs G, simple counting manipulations, and the bound on the number of possible
neighbor sets of a given node from above, we count the number of possible graphs possessing
a routing scheme with too many small routing programs. We find that this number is less
than |G| implying that at least one graph must not have too many small routing programs.

▶ Theorem 3. For any 0 < c < 1 there exist functions f(n), g(n) ∈ Ω(n) (f depends on c)
such that if node labels have size ≤ f(n) bits, then there exists an unweighted graph with n

nodes for which any routing scheme with stretch < 3 contains ≥ cn routing programs of size
≥ g(n) bits.

Proof. Let 0 < c < 1, f(n) = 1−c
40 n, g(n) = n

8 , and define k =
⌊ 1−c

2 n− 1
⌋
. We consider the

same set of graphs G as in the previous theorem.
Fix node labels L and let A′ ⊆ A \ {a0} such that |A′| = k. Now suppose for all v ∈ A′,

|Rv| < g(n), v’s routing program is smaller than g(n) bits. Then there are less than 2g(n)+1

different routing programs for each node in A′. By the argument in the previous theorem,
each node in A′ can have < e

q+1
e · 2g(n)+1 distinct sets of neighbors. Trivially, all other

nodes in A can have at most 2q distinct sets of neighbors. Therefore, the number of possible
graphs is∣∣∣{G ∈ G : ∃(T ,R),

(
∀v ∈ A′, |Rv| < g(n)

)
∧ Sat(G,R,L, T )

}∣∣∣ <(
e

q+1
e · 2g(n)+1)k ·

(
2q

)q−k
.

Therefore, if A′ can be arbitrary, the number of possible graphs is∣∣∣{G ∈ G : ∃(T ,R), Sat(G,R,L, T ) ∧
∣∣{v ∈ A \ {a0} : |Rv| < g(n)

}∣∣ ≥ k
}∣∣∣ =∣∣∣{G ∈ G : ∃(T ,R, A′),

(
∀v ∈ A′, |Rv| < g(n)

)
∧ Sat(G,R,L, T )

}∣∣∣ <(
e

q+1
e · 2g(n)+1)k ·

(
2q

)q−k · 2q

(assuming ∃A′ means A′ is taken from A \ {a0} such that |A′| = k).
If, in addition, the node labels can be varied, the number of possible graphs is∣∣∣{G ∈ G : ∃(T ,R,L), Sat(G,R,L, T ) ∧

∣∣{v ∈ A \ {a0} : |Rv| < g(n)
}∣∣ ≥ k

}∣∣∣ <(
e

q+1
e · 2g(n)+1)k ·

(
2q

)q−k · 2q · 2(f(n)+1)n.

DISC 2022
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This is less than 2q2
/2 since

log
((

e
q+1

e · 2g(n)+1)k · (2q)q−k · 2q · 2(f(n)+1)n
)

=

k
(q + 1

e
· log e + g(n) + 1

)
+ q(q − k) + q + (f(n) + 1)n =

−k
(

q − log e

e
(q + 1)− g(n)− 1

)
+ q2 + q + nf(n) + n =

−
⌊1− c

2 n− 1
⌋(n

2 − 1− log e

2e
n− n

8 − 1
)

+ n

2

(n

2 − 1
)

+ 1− c

40 n2 + n <

−
(1− c

2 n− 2
)( n

10 − 2
)

+ n

2

(n

2 − 1
)

+ 1− c

40 n2 + n =(1
4 −

1− c

40

)
n2 + O(n) <

(n

2 − 1
)2
− 1 = q2 − 1.

By symmetry, the number of possible graphs with a routing scheme having many small
programs in B \ {b0}∣∣∣{G ∈ G : ∃(T ,R,L), Sat(G,R,L, T ) ∧

∣∣{v ∈ B \ {b0} : |Rv| < g(n)
}∣∣ ≥ k

}∣∣∣ < 2q2
/2.

Hence, there are less than 2q2 graphs which have a routing scheme with at least k small
programs in A \ {a0} or B \ {b0}:∣∣∣{G ∈ G : ∃(T ,R,L), Sat(G,R,L, T )∧(
|{v ∈ A \ {a0} : |Rv| < g(n)}| ≥ k ∨ |{v ∈ B \ {b0} : |Rv| < g(n)}| ≥ k

)}∣∣∣ < 2q2
.

So at least one graph G must have < k small routing programs in both parts of the graph
(excluding special vertices a0 and b0):

∀(T ,R,L), Sat(G,R,L, T )→∣∣{v ∈ A \ {a0} : |Rv| < g(n)
}∣∣ < k ∧

∣∣{v ∈ B \ {b0} : |Rv| < g(n)
}∣∣ < k.

It follows that the number of large programs must exceed n− 2− 2k ≥ cn. ◀

We note that it’s not true that all nodes must store Ω(n) bits of information. One can
choose a node v and include in the label for each node u v’s port toward u. This adds
O(log n) bits to each node label and v can have constant size state.

3 Lower bounds with adversarial port numbers

3.1 Stretch < 3
We will now prove an obvious fact which we haven’t seen elsewhere: if the port assignment
T are adversarially chosen and node labels are not, then some node must have Ω(n log n)
bits of state. Note the additional log n factor compared to the previous theorems. This
implies that the trivial shortest paths routing scheme has optimal space up to a constant.
Our main theorem in this section is strictly more general; however, this smaller result serves
as a warmup and also lets us prove an Ω(n log n) bit space lower bound for any constant
fraction of nodes, similar to theorem 3.

▶ Theorem 4. There exists a function f(n) ∈ Ω(n log n) such that if node labels have size
≤ f(n) bits, then there exists an unweighted graph with n nodes for which any routing scheme
with adversarial port assignment and stretch < 3 contains a routing program of size Ω(n log n)
bits.
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Proof. Let n = 2q (for odd n the proof is similar) and define f(n) = log(q!)
2 ∈ Ω(n log n).

We consider only one graph G = Kq,q, a full bipartite graph with parts of size q, and vary
the port assignments T . Let T̃ be the set of all possible port assignments for G. Then
|T̃ | = (q!)n.

Because the stretch must be less than 3, routing from a node u in one part of G to a
node v in the other part must traverse the edge {u, v}. Thus if we fix the node labels L,
every port assignment T requires a distinct routing scheme R. Then if node labels L are
varied, same routing scheme R can support at most 2(f(n)+1)n port assignments:∣∣∣{T ∈ T̃ : ∃L, Sat(G,R,L, T )

}∣∣∣ ≤ 2(f(n)+1)n.

Then there must be at least

|T̃ |
2(f(n)+1)n

= (q!)n

2( log(q!)
2 +1)n

distinct routing schemes to support all possible port assignments.
Since

log (q!)n

2( log(q!)
2 +1)n

= n log(q!)−
( log(q!)

2 + 1
)

n ∈ Ω(n2 log n),

some routing program must have size Ω(n log n) bits. ◀

Using the techniques in the proof of theorem 3, one can prove this space lower bound for
any constant fraction of nodes.

▶ Theorem 5. For any 0 < c < 1 there exist functions f(n), g(n) ∈ Ω(n log n) (f depends
on c) such that if node labels have size ≤ f(n) bits, then there exists an unweighted graph
with n nodes for which any routing scheme with adversarial port assignment and stretch < 3
contains ≥ cn routing programs of size ≥ g(n) bits.

3.2 Stretch < 2k + 1
We would like to show for any integer k ≥ 1 that when port assignment is adversarial, the
worst case per-node space complexity of a routing scheme of stretch < 2k + 1 is Ω

(
n

1
k log n

)
.

We are able to show this only assuming a well-known girth conjecture by Erdős.

▶ Definition 6. We say that an unweighted undirected graph G has girth s if and only if all
cycles in G have length ≥ s.

▶ Definition 7. For any integers s, n ≥ 1, define Ms(n) to be the largest m such that there
exists a graph with n vertices, m edges and girth s.

It is known that any graph with n nodes and n1+ 1
k edges must have a cycle of length at

most 2k. So, M2k+2(n) ∈ O
(
n1+ 1

k

)
. However, M2k+2(n) ∈ Ω

(
n1+ 1

k

)
has only been proven

for k = 1, 2, 3, 5; for other k it remains an open question. Also, M2k+1(n) ∈ Θ
(
M2k+2(n)

)
since any graph with n vertices, m edges and girth 2k + 1 must contain a bipartite subgraph
with ≥ m

2 edges (which necessarily has girth 2k + 2). For an overview of the best known
lower bounds for Ms(n), refer to [16]. We note that most constructions of large graphs with
some fixed girth rely on finite fields, and the number of vertices n is thus required to be some
polynomial of a prime or a prime power. To prove a lower bound for all sufficiently large n,
and thus justify the use of Ω, one can employ Bertrand’s postulate which states that for all
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natural numbers i, pi+1 < 2pi, where pi is the i-th prime number. Justification of Ω easily
follows from here: given an integer n, we construct a dense large girth graph with pi vertices
where n

2 < pi ≤ n, and add missing n− pi vertices along with n− pi edges keeping the final
graph connected.

Having a graph G with n vertices and Ω
(
n1+ 1

k

)
edges lets us show that there must be

at least 2Ω(n
1+ 1

k log n) routing schemes to satisfy all possible node labels T for G. Hence, at
least some node must use Ω

(
n

1
k log n

)
bits of space in the worst case. Weaker lower bounds

for M2k+2(n) give corresponding weaker results.

▶ Theorem 8. Let k ≥ 1 be an integer constant. If port numbers are adversarially chosen,
m
n is sufficiently large, there exists a graph with n vertices, m edges and girth 2k + 2, and all

node labels have size ≤ L = 1
16k · log m

n ·
m
n − 1, then there also exists a port assignment T

for G such that any routing scheme for (G, T ) of stretch < 2k + 1 requires 1
32k · log m

n ·
m
n

bits of space at some node.

Proof. Let G = (V, E) be a graph with n vertices, m edges and girth 2k + 2, where V = [n].
For any pair of neighbors {x, y} ∈ E, the route from x to y chosen by a routing scheme of
stretch < 2k + 1 must be of length ≤ 2k. Therefore, during routing from x to y, x must send
the packet to y, most likely as the last step; otherwise, there would be a cycle in G of length
≤ 2k + 1 which violates the girth requirement. This doesn’t, however, mean that routing
from x to y must take the shortest path. x might send the message to some other neighbor z

which returns the message to x (with a modified header) which now sends the message to y.
In general, if you trace the message from x to y, the visited nodes and traversed edges form
an arbitrary tree (see figure 1).

x

y

1

2

3

4

56

7

Figure 1 Routing with stretch < 2k + 1 in a graph with girth 2k + 2.

We consider only a single graph G and all possible port assignments T for G. Define
mi = deg(i). Then the number of all possible port assignments for G is

∏n
i=1 mi!. As

in theorem 2, we will argue that any routing scheme cannot satisfy many distinct port
assignments.

Fix the node labels L (as the proof of theorem 2 shows, they do not have much of an
effect) and a routing scheme R. Here is the main idea of the proof. Take any pair of neighbors
{x, y} ∈ E. Then the port p = Rx(y, 0)2 through which x will send the message toward y is
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determined. The neighbor behind port p can be arbitrary, but if we fix it, say z, and we fix
z’s port to x, then the next hop is determined and the next out port through which z will
forward the message will also be determined. We can keep tracing the packet through the
network fixing the ports along the way. Eventually, however, node x must send the packet to
node y, and this is where we can “extract” a port assignment from the routing programs.
Hence, the routing scheme must “store” approximately every 4k-th port assignment.

To formalize this argument, we describe a program that, given node labels L, a routing
scheme R, port assignment on vertices with small degrees S =

{
x ∈ V : mx < m

n

}
, and a

bit string, can recover the port assignment T on all vertices. The program will iteratively
pick neighbor vertices x and y such that the port at x toward y is undefined, and try to
simulate the routing as in the example above reading the number of hops until the edge
{x, y} is traversed and unknown port assignments along the path from the bit string. We
will then argue that this bit string does not need to be long, which intuitively implies that
the routing scheme R must contain much information.

The program will work with a list of partial functions, one for each vertex, signifying
which ports have already been fixed. Denote the set of all possible such lists by P , and define
P⃗ ∈ P if and only if P⃗ = (P1, P2, ..., Pn) where each Pi ⊆ [mi] × N (i) such that for each
p ∈ [mi] there is at most one j such that (p, j) ∈ Pi and for each j there is at most one p

such that (p, j) ∈ Pi.
We now formally describe the program which has access to L = {li}i∈[n], R = {Ri}i∈[n]

and P⃗ such that ∀i ∈ S, |P⃗i| = mi and ∀i ∈ V \ S, |P⃗i| = 0, and reads bits from the input bit
string.

while ∃x ∈ [n], |P⃗x| < mx do
X ← {i ∈ [n] : |P⃗i| < mi}
M ← max{mi : i ∈ X}
x← min{i ∈ X : mi = M}
y ← min{i ∈ N (x) : (P⃗x)−1(i) is undefined}
r ← read ⌈log(2k − 1)⌉-bit number ▷ read the number of hops
h← ly
pin ← 0
for r times do

pout ← Rx(h, pin)2
h← Rx(h, pin)1
if P⃗x(pout) is undefined then

i← read ⌈log mx⌉-bit number ▷ read the “ID” of the neighbor behind port pout
P⃗x ← P⃗x ∪ {(pout,N (x)(i))} ▷ update the known port assignments

end if
z ← P⃗x(pout) ▷ next visited node
if (P⃗z)−1(x) is undefined then

p← read ⌈log mz⌉-bit number ▷ read the port we are entering through at z

P⃗z ← P⃗z ∪ {(p, x)}
end if
pin ← (P⃗z)−1(x)
x← z

end for
pout ← Rx(h, pin)2
P⃗x ← P⃗x ∪ (pout, y) ▷ learn this port assignment “for free”

end while
return P⃗
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We will now bound the length of the bit string needed for this program to run correctly.
The following outer loop invariant is claimed: if b is the number of bits read so far, then

b ≤
∑

i∈V \S

∣∣P⃗i

∣∣ · (⌈log(2k)⌉+
(
1− 1

4k

)
⌈log mi⌉

)
.

It is correct before the loop starts since b = 0. Assume it is correct after some number of
iterations, and let b′ be the number of bits read and P⃗ ′ be the updated port assignment at
the end of the iteration. We need to prove that

b′ ≤
∑

i∈V \S

∣∣P⃗ ′
i

∣∣ · (⌈log(2k)⌉+
(
1− 1

4k

)
⌈log mi⌉

)
.

Let t be the number of individual port assignments discovered through reading from the
bit string, and let z1, ..., zt be the nodes that own those ports. Notice that t ≤ 4k − 2 since
after 4k− 2 traversed ports, the next port must lead from x directly to y and we do not read
it from the bit string. Also notice that the degrees of the nodes z1, ..., zt do not exceed that
of x, the source node. This is because the algorithm picks x with the largest degree among
those that have free ports. Then∑

i∈V \S

∣∣P⃗ ′
i

∣∣ · (⌈log(2k)⌉+
(
1− 1

4k

)
⌈log mi⌉

)
=

∑
i∈V \S

∣∣P⃗i

∣∣ · (⌈log(2k)⌉+
(
1− 1

4k

)
⌈log mi⌉

)
+

t∑
i=1

(
⌈log(2k)⌉+

(
1− 1

4k

)
⌈log mzi

⌉
)

+

(
⌈log(2k)⌉+

(
1− 1

4k

)
⌈log mx⌉

)
≥

b + ⌈log(2k)⌉+
(
1− 1

4k

)( t∑
i=1
⌈log mzi⌉+ ⌈log mx⌉

)
=

b + ⌈log(2k)⌉+
t∑

i=1
⌈log mzi⌉+ ⌈log mx⌉ −

1
4k

( t∑
i=1
⌈log mzi⌉+ ⌈log mx⌉

)
[≥]

Since in this iteration of the outer loop we read ⌈log(2k − 1)⌉+
∑t

i=1⌈log mzi⌉ bits,

[≥]b′ + ⌈log mx⌉ −
1
4k

( t∑
i=1
⌈log mzi

⌉+ ⌈log mx⌉
)
≥

b′ + ⌈log mx⌉ −
1
4k

(
(4k − 2)⌈log mx⌉+ ⌈log mx⌉

)
≥ b′.

Hence, the loop invariant holds and the algorithm reads at most a total of B bits where

B =
∑

i∈V \S

mi

(
⌈log(2k)⌉+ (1− 1

4k
)⌈log mi⌉

)
≤

∑
i∈V \S

mi

(
(1− 1

4k
) log mi + log k + 3

)
.

Since node labels have size ≤ L = 1
16k · log m

n ·
m
n − 1, the number of all possible L is(

2L+1 − 1
)n ≤ 2(L+1)n = 2 1

16k ·log m
n ·m. Then, defining Sat(G,R,L, T ) true if and only if

R is a correct routing scheme with stretch < 2k + 1 for graph G with labels L and port
assignment T ,∣∣∣{T : ∃L, Sat(G,R,L, T )

}∣∣∣ ≤ 2 1
16k ·log m

n ·m ·
∏
i∈S

mi! · 2B .
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Therefore, the number of routing schemes necessary to satisfy all port assignments is at
least ∏n

i=1 mi!
2 1

16k ·log m
n ·m ·

∏
i∈S mi! · 2B

.

We now calculate the logarithm of this expression.

log
∏n

i=1 mi!
2 1

16k ·log m
n ·m ·

∏
i∈S mi! · 2B

= log
∏

i∈V \S mi!
2 1

16k ·log m
n ·m · 2B

=

∑
i∈V \S

log
(
mi!

)
− 1

16k
· log m

n
·m−B[≥]

Using Stirling’s approximation,

[≥]
∑

i∈V \S

(mi log mi − cmi)−
1

16k
· log m

n
·m−B =

∑
i∈V \S

(mi log mi − cmi)−
1

16k
· log m

n
·m−

∑
i∈V \S

mi

((
1− 1

4k

)
log mi + log k + 3

)
=

∑
i∈V \S

mi

(
log mi − c−

(
1− 1

4k

)
log mi − log k − 3

)
− 1

16k
· log m

n
·m =

∑
i∈V \S

mi

( 1
4k

log mi − c− log k − 3
)
− 1

16k
· log m

n
·m[≥]

If i ∈ V \ S, then mi ≥ m
n . Thus,

[≥]
∑

i∈V \S

mi

( 1
4k

log m

n
− c− log k − 3

)
− 1

16k
· log m

n
·m[≥]

Assuming m
n is sufficiently large,

[≥]
∑

i∈V \S

1
8k

mi log m

n
− 1

16k
· log m

n
·m =

1
8k
· log m

n
·

∑
i∈V \S

mi −
1

16k
· log m

n
·m =

1
8k
· log m

n
·
(

2m−
∑
i∈S

mi

)
− 1

16k
· log m

n
·m ≥

1
8k
· log m

n
·
(

2m− n · m

n

)
− 1

16k
· log m

n
·m ≥

1
8k
· log m

n
·m− 1

16k
· log m

n
·m =

1
16k
· log m

n
·m.

By lemma 1, there is a port assignment on which some node must use 1
16k · log m

n ·
m
n −1 ≥

1
32k · log m

n ·
m
n bits of space. ◀

▶ Corollary 9. Let k ≥ 1 be an integer constant. If M2k+2(n) ∈ Ω(n1+ 1
k ) and node labels

have size ≤ Ω(n 1
k log n), then for any n there is a graph G on n nodes and a port assignment

T for G such that any routing scheme for (G, T ) of stretch < 2k + 1 requires Ω(n 1
k log n)

bits of space at some node.
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4 Known techniques require girth conjecture

All known proofs of lower bounds for space complexity of non-shortest path routing schemes
in the labeled setting, such as the ones in [14], [10] or this paper, consist of proving that
a large number of routing schemes are necessary to satisfy all possible graphs and port
assignments (if adversarially chosen). Then it follows that some graph and port assignment
requires a large number of bits stored at some node.

We note that proving that a large number of routing schemes is necessary must require
existence of graphs with large girth and many edges. Therefore, if one wishes to not use
a girth conjecture, some other technique, such as the one in [2] for the name-independent
setting, is needed.

We utilize spanners with low stretch and large girth.

▶ Definition 10. Let G be a graph with n vertices. We call a subgraph S of G a t-spanner if
and only if for any two vertices u, v connected in G, dS(u, v) ≤ t · dG(u, v) (distance in S is
stretched at most t times compared to the distance in G).

The following lemma is proved in [6], but we provide the proof for completeness.

▶ Lemma 11. Let G be a graph with n vertices. There exists a t-spanner S of G with girth
t + 2.

Proof. We construct a spanner S similarly to Kruskal’s minimum spanning tree algorithm.
Go through all edges in G, and for each edge {u, v}, add it to S if and only if there isn’t a
path between u and v in S of length ≤ t.

Clearly, at the end of the algorithm, for any edge {u, v} in G, dS(u, v) ≤ t. Therefore, S

is a t-spanner.
We only need to show that S has girth t + 2. Suppose during the algorithm we add an

edge and create a cycle of length l ≤ t + 1. Then there was already a path between the
endpoints of length l − 1 ≤ t, and we shouldn’t add an edge. ◀

▶ Theorem 12. Suppose n ≥ 2 and s ≥ 2 are integers, and N routing schemes are necessary
to satisfy all graphs with n vertices and all port assignments with stretch < s. Then
Ms+1(n) ≥ log N

4 log n − 1; i.e., there exists a graph with ≥ log N
4 log n − 1 edges and girth s + 1.

Proof. Suppose Ms+1(n) < log N
4 log n − 1; i.e., all graphs with girth s + 1 have < log N

4 log n − 1
edges. We want to show that then less than N routing schemes are sufficient to satisfy all
graphs and port assignments.

Given a graph G and a port assignment T , we simply encode in each node’s routing
program its ID, an (s− 1)-spanner S of G with girth s + 1 which exists by lemma 11, and
the port assignment T . All this information allows for stretch s− 1 routing.

It is easy to see that there are at most (n2)m graphs with n vertices and m edges. Also,
for each such graph there are at most (n2)m port assignments. Therefore, the number of
such routing schemes is at most

Ms+1(n)∑
i=0

(
n2)i ·

(
n2)i =

Ms+1(n)∑
i=0

(
n4)i =

(
n4)Ms+1(n)+1 − 1

n4 − 1 <
(
n4)Ms+1(n)+1

.

Since log
((

n4)Ms+1(n)+1
)

= 4
(
Ms+1(n)+1

)
log n < 4

(
log N
4 log n

)
log n = log N, less than N

routing schemes can satisfy all graphs with n vertices and all port assignments with stretch
< s. This is a contradiction. ◀
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▶ Corollary 13. Let k ≥ 1 be an integer constant. If 2Ω(n
1+ 1

k log n) routing schemes are
necessary to satisfy all graphs with n vertices and all port assignments with stretch < 2k + 1,
then M2k+2 ∈ Ω

(
n1+ 1

k

)
.
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