Brief Announcement: It's not easy to relax:
liveness in chained BFT protocols

Ittai Abraham &

VMware Research, Herzliya, Israel

Natacha Crooks &=
UC Berkeley, CA, USA

Neil Giridharan' =
UC Berkeley, CA, USA

Heidi Howard =
Microsoft Research Cambridge, Cambridge, UK

Florian Suri-Payer =
Cornell University, Ithaca, NY, USA

—— Abstract

Modern chained BFT SMR, protocols have poor liveness under failures as they require multiple
consecutive honest leaders to commit a single block. Siesta, our proposed new BFT SMR protocol,
is instead able to commit a block that spans multiple non-consecutive honest leaders. Siesta reduces
the expected commit latency of HotStuff by a factor of three under failures, and the worst-case
latency by a factor of eight.
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1 Introduction

Blockchain systems add two constraints over traditional BFT SMR protocols: 1) only valid
operations should be committed and 2) operation ordering should be fair. To address these
concerns, recent blockchain protocols such as Casper FFG [2], HotStuff [5], DiemBFTv4 [4],
and Fast-Hotstuff [3] are structured around two key building blocks: Chaining and Leader-
Speaks-Once (LSO).

Chaining. To ensure validity, existing protocols evaluate proposed blocks against the full
sequential history of the chain and check application-level preconditions are satisfied. Most
BFT protocols require a (worst-case) minimum of two voting rounds (henceforth phases).
Each voting phase aims to establish a quorum certificate (QC) by collecting a set of signed
votes from a majority of honest replicas. Blockchain systems pipeline the voting phases of
consecutive proposals to avoid redundant coordination and cryptography: the system can
use the quorum certificate of the second voting phase of block i to certify the first phase of
block 7 + 1. Each block requires (on average) generating and verifying the signatures of a
single QC. This is especially important for large participant sets as QC sizes grow linearly
with the number of replicas, increasing cryptographic costs.
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It’s Not Easy to Relax: Liveness in Chained BFT

Leader-Speaks-Once (LSO). To minimize fairness concerns associated with leader-based
solutions and to decrease the influence of adaptive adversaries (adversaries who control the
network), BFT protocols targeted at blockchains adopt a leader-speak-once (LSO) model. In
LSO, each leader proposes and certifies a single block after which the leader is immediately
rotated out as part of a new view. Electing a different leader per block limits the leader’s
influence; it can manipulate transactions in the proposed block only. Traditional BFT
protocols, in contrast, adopt a stable-leader paradigm in which leaders are only replaced
if they fail to make progress through view change. View changes are intentionally costly
procedures and assumed to be infrequent. Complex view changes allow for a simpler and more
efficient failure-free steady state. LSO protocols instead perform view changes proactively in
each round, and thus are required to place the view change on the critical path of the system.

While a joint chained leader-speak-once (CLSO) approach is desirable for blockchains,
the combination of these two properties introduces a new liveness concern. We show in our
full paper [1] that faulty leaders can greatly reduce the throughput of any CLSO protocol.
Worse, this attack does not require any explicit equivocation; it suffices for a faulty leader
to delay responding, making it harder to detect. The root cause of the problem is simple:
CLSO protocols require the formation of £ QCs in consecutive views in order to commit a
block (where k € {2,3} depending on protocol). In the remainder of the paper, we refer to
this constraint as the consecutive honest leader condition (CHLC).

To the best of our knowledge, the aforementioned liveness concern is present in all
CLSO protocols today, and thus represents a significant exploit opportunity for a Byzantine
attacker. Even without malicious participants, expected network asynchrony can cause
spurious view-changes, precluding the system from committing blocks. Consequently, this
paper asks: is CHLC fundamental, or can it be relaxed?

2 Results

» Definition 1 (Gap-Tolerance). A BFT protocol achieves gap-tolerance if it requires k QCs
in non-consecutive views to commit an operation.

We observe that CLSO protocols can achieve gap-tolerance in some settings: commitment
with non-consecutive QCs is possible when failures comprise of omission faults only. This
observation can be coupled with the active detection of commission failures to determine
when to (and when not to) relax the CHLC constraint. We prove the following theorem:

» Theorem 2. There exists a CLSO protocol that is resilient to f < n/3 Byzantine replicas,
s safe under asynchrony, and achieves gap-tolerance when failures are omission only.
After GST and view synchronization, if views v < v’ < v" have honest leaders, and block
B is proposed in view v, then either block B will be committed in view v" or a previously
undetected faulty replica will be detected and slashed (excluded from any future participation).

In this paper we propose Siesta (complete description is in our full paper [1]), a new
consensus protocol that satisfies Theorem 2. Siesta either (i) allows blocks to commit in
non-consecutive views or (ii) immediately and reliably detects equivocation and slashes
(punishes and removes) a malicious leader.

Two fundamental ideas lie at the center of Siesta:

No-QC Proofs. 1t is safe to commit a block in non-consecutive views as long as one can

prove that no QC for a conflicting block could have formed in between views. Siesta

carefully designs such proofs to be efficient.
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Equivocation proofs. Many BFT protocols do not include phase one messages in view
changes as conflicting phase one messages can exist in the presence of malicious leaders.
Although these messages cannot be used to successfully commit a block, we observe that
they can be used as an explicit proof of equivocation to hold perpetrators accountable.

2.1 Performance Results and Complexity
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Figure 1 CDF of the number of views needed to commit an operation n = 100.

We quantify the performance gains made possible by relaxing the consecutive honest
leader condition (CHLC). We compare Siesta to 1) two-phase CLSO protocols and 2) three-
phase CLSO protocols. We assume a random leader election strategy; experiments with
round-robin election convey similar results. We simulate each protocol and report how many
rounds were necessary to satisfy each protocol’s commit rule.

In CLSO protocols, the number of rounds directly influences both latency and throughput.
If a round has latency z, then commit latency for an operation will be x * rounds while
throughput is calculated by dividing the batch size by the expected commit latency. We
write CHLC(4) for protocols requiring four consecutive honest leaders, CHLC(3) for three
consecutive honest leaders, and finally Relaxed for our own protocol Siesta. Figure 1 shows
the resulting commit latency CDF'. Siesta achieves an expected commit latency of 4.5 rounds;
CHLC(3) requires ~ 7 rounds. CHLC(4) has worst the expected performance, taking 12
rounds to commit. Worst-case commit latency is especially interesting: Siesta has relatively
low worst-case latency, with 18 rounds, while CHLC(3) protocols have a worst-case commit
time of 76 rounds. CHLC(4) has seven times worst latency, with a worst-case commit time
of 129 rounds.
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