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Abstract
Recent decades have witnessed a surge in the development of concurrent data structures with an
increasing interest in data structures implementing concurrent sets (CSets). Microbenchmarking
tools are frequently utilized to evaluate and compare performance differences across concurrent
data structures. The underlying structure and design of the microbenchmarks themselves can
play a hidden but influential role in performance results. However, the impact of microbenchmark
design has not been well investigated. In this work, we illustrate instances where concurrent data
structure performance results reported by a microbenchmark can vary 10-100x depending on the
microbenchmark implementation details. We investigate factors leading to performance variance
across three popular microbenchmarks and outline cases in which flawed microbenchmark design can
lead to an inversion of performance results between two concurrent data structure implementations.
We further derive a prescriptive approach for best practices in the design and utilization of concurrent
data structure microbenchmarks.
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1 Introduction

An extensive variety of concurrent data structures have appeared over the past decade, with
a particular focus on data structures implementing concurrent sets (CSets). A CSet is an
abstract data type (ADT) which stores keys and provides three primary operations on keys:
search, insert, and delete. Insert and delete operations modify the CSet and are called update
operations. There are numerous concurrent data structures that can be used to implement
CSets, including trees, skip-lists, and linked-lists. Microbenchmarks are commonly used to
evaluate the performance of CSet data structures, essentially performing a stress test on the
CSet across varying search/update workloads and thread counts. A typical microbenchmark
runs an experimental loop bombarding the CSet with randomized operations performed by
threads until the duration of the experiment expires. Throughput, number of operations
performed by a CSet, is a key performance metric.

Multiple microbenchmarks exist to support CSet research. While CSet implementations
have been well studied [1-3], the popular microbenchmarks used to evaluate them have
not been scrutinized to the same degree. Microbenchmarking idiosyncrasies exist that can
significantly distort performance results across data structures.
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Figure 1 Throughput results across three microbenchmarks, Ascylib, Synchrobench and Setbench
executing on a 256-core system testing the lock-free BST [5]. Results displayed on a logarithmic
y-axis. Figure (a) results from unmodified microbenchmarks (as written by their authors). Figure (b)
equalize the data structure (DS) implementations only. Ascylib_DS and Synchro_DS are updated
with the imported lock-free BST implementation from Setbench. Figure (c) results for modified
versions of Synchrobench and Ascylib correcting for pitfalls in microbenchmark design.

2 Microbenchmark Idiosyncrasies

When testing a CSet implementation on three different microbenchmarks with identical
parameters, one would expect to observe similar performance results within a reasonable
margin of error. However, we found 10-100x performance differences on the same CSet data
structure tested across the Setbench [2], Ascylib [3], and Synchrobench [4] microbenchmarks.
These microbenchmarks are often employed for evaluation of high performance CSets.

In Figure 1(a) we observe a range of varying performance results on the popular lock-free
BST by Natarajan et al. [5] across the three microbenchmarks displayed using a logarithmic
y-axis in order to capture wide performance gaps on a single scale. We performed a systematic
review of the design intricacies within each microbenchmark. Our investigations led to the
discovery that seemingly minor differences in the architecture and experimental design
of a microbenchmark can cause a 10-100x performance boost erroneously indicating high
performance of the data structure when the underlying cause is the microbenchmark itself.
We perform successive updates to two of the microbenchmarks adjusting where errors or
discrepancies were discovered until performance is approximately equalized (Figure 1(c)). In
previous work by Arbel et al. [1], it was noted that data structure implementation differences
can account for varying performance results in microbenchmark experimentation. We adjusted
each microbenchmark to use a common lock-free BST implementation (Figure 1(b)) and still
observed large performance gaps. Adjustments to the microbenchmark design were necessary
to equalize results.

During our investigations, we found the following factors have the greatest impact
on microbenchmark performance: (1) Repeated benchmark code is prone to error. In
Synchrobench where the algorithm running performance experiments is duplicated for
each data structure, errors in the algorithm led Synchrobench results to exceed other
microbenchmarks by 100x. The microbenchmark testing algorithm should exist in one
centralized location and provide easy adaptation to new data structures. (2) Pseudo random
number generators (PRNGs) are typically used to generate random keys and operations.
The way that a PRNG is integrated into the microbenchmark can play a significant role in
experimental results. We investigate in detail in the full paper. (3) Microbenchmarks use
a variety of techniques for splitting the update rate between insert and delete operations.
For example, alternating between update operations, or flipping a biased coin to decide if
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the next update will be an insert or delete. This has a non-trivial impact on performance.
Recommended practice is to randomly distribute update operations between insert and
delete operations using per thread PRNGs. (4) Synchrobench introduced a setting to
enforce a specified rate of effective updates. An update operation is considered effective if
it successfully modifies the CSet. Enforcing effective updates is problematic because, for
example, in an almost full data structure, to perform an effective insert, one may need to
repeatedly attempt to insert many random keys until one succeeds. The attempts leading up
to the successful insert are essentially searches (which are faster than updates), and they are
counted towards throughput, inflating performance. (5) Memory reclamation can play an
influential role in performance results. The Ascylib microbenchmark memory reclamation
algorithm is leaking memory at higher thread counts. This may render some microbenchmark
experiments impracticable due to growth in memory usage. (6) Our recommended best
practice for microbenchmark design includes strategies to detect and mitigate errors in
the microbenchmark. We certainly recommend a checksum validation in microbenchmark
experiments: the sum of keys inserted minus the sum of keys deleted into the CSet during an
experiment should equal the final sum of keys contained in the CSet following the experiment.
In our work, adding checksum validation assisted in discovering microbenchmark and data
structure implementation errors. (7) We recommend a data structure prefilling step that
includes randomized insert and delete operations. This generates a prefilled CSet data
structure with a more realistic configuration, as opposed to a CSet that is produced by
insert-only operations.

2.1 PRNG Usage in Concurrent Microbenchmarks
PRNGs are heavily relied upon in microbenchmarks to generate randomized keys and/or
select randomized operations on a CSet. Researchers may be tempted to pre-generate a large
array of random numbers prior to an experiment, thereby moving the cost of generating
high quality randomness into the unmeasured setup phase of the experiment. We found
this approach to be counter productive due to the impact on processor caching. In our full
paper, we examine various PRNG methodologies and make practical recommendations for
generating fast, high quality randomness, using hardware support where available.
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