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Abstract
The study of distributed interactive proofs was initiated by Kol, Oshman, and Saxena [PODC
2018] as a generalization of distributed decision mechanisms (proof-labeling schemes, etc.), and
has received a lot of attention in recent years. In distributed interactive proofs, the nodes of an
n-node network G can exchange short messages (called certificates) with a powerful prover. The
goal is to decide if the input (including G itself) belongs to some language, with as few turns of
interaction and as few bits exchanged between nodes and the prover as possible. There are several
results showing that the size of certificates can be reduced drastically with a constant number of
interactions compared to non-interactive distributed proofs.

In this brief announcement, we introduce the quantum counterpart of distributed interactive
proofs: certificates can now be quantum bits, and the nodes of the network can perform quantum
computation. The main result of this paper shows that by using quantum distributed interactive
proofs, the number of interactions can be significantly reduced. More precisely, our main result
shows that for any constant k, the class of languages that can be decided by a k-turn classical
(i.e., non-quantum) distributed interactive protocol with f(n)-bit certificate size is contained in the
class of languages that can be decided by a 5-turn distributed quantum interactive protocol with
O(f(n))-bit certificate size. We also show that if we allow to use shared randomness, the number
of turns can be reduced to 3-turn. Since no similar turn-reduction classical technique is currently
known, our result gives evidence of the power of quantum computation in the setting of distributed
interactive proofs as well.
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1 Introduction

In distributed computing, the topology of the communication network is fundamental
information and efficient verification of graph properties of the network is useful from both
theoretical and applied aspects. The study of this notion of verification in the distributed
setting has lead to the notion of “distributed NP” in analogy with the complexity class NP in
centralized computation: A powerful prover provides certificates to each node of the network
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48:2 Distributed Quantum Interactive Proofs

in order to convince that the network has a desired property; If the property is satisfied, all
nodes must output “accept”, otherwise at least one node must output “reject”. This concept
of “distributed NP” has been formulated in several ways, including proof-labeling schemes
(PLS) [5], non-deterministic local decision (NLD) [2], and locally checkable proofs (LCP) [3].

As a motivating example, consider the problem of verifying whether the network is
bipartite or not. While this problem cannot be solved in O(1) round without prover, it
can easily be solved with a prover telling to each node to each part it belongs to, which
requires only a 1-bit certificate per node, and then each node broadcasting this information
to its adjacent nodes (here the crucial point is that if the network is non-bipartite, then at
least one node will be able to detect it). On the other hand, it is known that there exist
properties that require large certificate size to decide: Göös and Suomela [3] have shown that
recognizing symmetric graphs (Sym) and non 3-colorable graphs (3Col) require Ω(n2)-bit
certificates per node in the framework of LCP (which is tight since all graph properties are
locally decidable by giving the O(n2)-bit adjacency matrix of the graph).

To reduce the length of the certificate for such problems, the notion of distributed
interactive proofs (also called distributed Arthur-Merlin proofs) was recently introduced by
Kol, Oshman and Saxena [4] as a generalization of distributed NP. In this model there are
two players, the prover (often called Merlin), who has unlimited computational power and
sees the entire network but is untrusted (i.e., can be malicious), and the verifier (often called
Arthur) representing all the nodes of the network, who can perform only local computation
and brief communication with adjacent nodes. Generalizing the concept of distributed NP,
the nodes are now allowed to engage in multiple turns of interaction with the prover. As for
distributed NP, there are two requirements of the protocol: if the input is legal (yes-instance)
then all nodes must accept with high probability (completeness), and if the input is illegal
then at least one node must reject with high probability (soundness).

In the setting of [4], each node has access to a private source of randomness, and sends
generated random bits to the prover in Arthur’s turn. For instance, a 2-turn protocol contains
two interactions: Arthur first queries Merlin by sending a random string from each node,
and then Merlin provides a certificate to each node. After that, nodes exchange messages
with adjacent nodes to decide their outputs. The main complexity measures when studying
distributed interactive protocols are the size of certificates provided to each node, the size of
the random strings generated at each node and the size of the messages exchanged between
nodes. Let us denote dAM[k](f(n)) the class of languages that have k-turn distributed
Arthur-Merlin protocols where Merlin provides O(f(n))-bit certificates, Arthur generates
O(f(n))-bit random strings at each node and O(f(n))-bit messages are exchanged between
nodes. Kol et al. [4] showed the power of interaction by giving a dAM[3](log n) protocol for
graph symmetry (Sym) and a dAM[4](n log n) protocol for graph non-isomorphism (GNI),
which are known to require Ω(n2)-bit certificate in LCP [3].

2 Our Results

In this paper we introduce the quantum counterpart of distributed interactive proofs, which
we call distributed quantum interactive proofs (or sometimes distributed quantum interactive
protocols) and write dQIP, and show their power. Roughly speaking, distributed quantum
interactive proofs are defined similarly to the classical distributed interactive proofs (i.e.,
distributed Arthur-Merlin proofs) defined above, but the messages exchanged between the
prover and the nodes of the network can now contain quantum bits (qubits), the nodes can
now do any (local) quantum computation (i.e., each node can apply any unitary transform
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to the registers it holds), and each node can now send messages consisting of qubits to its
adjacent nodes. In analogy to the classical case, the main complexity measures when studying
distributed quantum interactive protocols are the size of registers exchanged between the
prover and the nodes, and the size of messages exchanged between the nodes. We give the
formal definition of dQIP in the full version of our paper. The class dQIP[k](f(n)) is defined
as the set of all languages that can be decided by a k-turn dQIP protocol where both the size
of the messages exchanged between the prover and the nodes, and the size of the messages
exchanged between the nodes are O(f(n)) qubits.

Our first result is the following theorem.

▶ Theorem 1. For any constant k ≥ 1, dAM[k](f(n)) ⊆ dQIP[5](f(n)).

Theorem 1 shows that by using distributed quantum interactive proofs, the number of
interactions in distributed interactive proofs can be significantly reduced. To prove this
result, we develop a generic quantum technique for turn reduction in distributed interactive
proofs. Since no similar turn-reduction classical technique is currently known, our result
gives evidence of the power of quantum computation in the setting of distributed interactive
proofs as well.

We also show that if we allow to use randomness shared to all nodes (we denote this
model by dQIPsh), the number of turns can be further reduced to three turns.

▶ Theorem 2. For any constant k ≥ 1, dAM[k](f(n)) ⊆ dQIPsh[3](f(n)).

On the other hand, in the classical case, it is known that allowing shared randomness does
not change the class [1]: dAMsh[k](f(n)) ⊆ dAM[k](f(n)) for all k ≥ 3 (in fact, the authors
of [1] showed dAMsh[k](f(n)) ⊆ dAM[k](f(n) + log n) for all k ≥ 1 where the additional log n

comes from constructing a spanning tree, but for k ≥ 3, a spanning tree can be constructed
with O(1)-sized messages between the prover and the nodes in three turns [6]).

As mentioned above, for (classical) dAM protocols increasing the number of turns is
helpful to reduce the complexity (in particular, the certificate size) for many problems. Our
result thus shows if we allow quantum resource, such protocols can be simulated in five turns,
and in three turns if we allow shared randomness.
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