
Brief Announcement: Null Messages, Information
and Coordination
Raïssa Nataf #

Technion, Haifa, Israel

Guy Goren #

Technion, Haifa, Israel

Yoram Moses #

Technion, Haifa, Israel

Abstract
This paper investigates how null messages can transfer information in fault-prone synchronous systems.
The notion of an f-resilient message block is defined and is shown to capture the fundamental
communication pattern for knowledge transfer. In general, this pattern combines both null messages
and explicit messages. It thus provides a fault-tolerant extension of the classic notion of a message-
chain. Based on the above, we provide tight necessary and sufficient characterizations of the
generalized communication patterns that can serve to solve the distributed tasks of (nice-run)
Signalling and Ordered Response.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Computing
methodologies → Reasoning about belief and knowledge

Keywords and phrases null messages, fault tolerance, coordination, information flow

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.49

Related Version Full Version: https://arxiv.org/abs/2208.10866

Funding Guy Goren: Guy Goren was partly supported by a grant from the Technion Hiroshi
Fujiwara cyber security research center and the Israel cyber bureau, as well as by a Jacobs fellowship.
Yoram Moses: Yoram Moses is the Israel Pollak academic chair at the Technion. Both his work and
that of Raïssa Nataf were supported in part by the Israel Science Foundation under grant 2061/19.

1 Introduction

In synchronous models with a global clock, it may be possible to transmit information by
not sending a message, which Lamport termed sending a null message in [7]. While null
messages have been successfully employed to optimize communication in useful protocols
(see, e.g., [1, 6] for early examples), the question of how null messages convey information,
and what information they convey, has only been partly addressed. In addition, when failures
can occur, the use of null messages can become rather challenging. If i does not receive a
message from j in such a setting, i might not be able to distinguish whether this is because j

purposely refrained from sending, or because j failed. Nevertheless, recent work [4] has
shown that when the number of failures is bounded (by f , say), it is still possible to use
null messages to transmit information. Very roughly speaking, their “Silent Choir” theorem
implies that in a failure-free execution, the only way that a process j can learn i’s value
without receiving an explicit message chain from i is for there to be a set of f + 1 processes
that received such a chain from i do not send a message to j. However, this is far from being
sufficient. Our purpose in this paper is to initiate a systematic analysis of the role of null
messages, and obtain sharper characterizations of their use when processes can fail.

© Raïssa Nataf, Guy Goren, and Yoram Moses;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 49; pp. 49:1–49:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:raissa.nataf@campus.technion.ac.il
mailto:sgoren@campus.technion.ac.il
mailto:moses@ee.technion.ac.il
https://doi.org/10.4230/LIPIcs.DISC.2022.49
https://arxiv.org/abs/2208.10866
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

49:2 Null Messages, Information and Coordination

We consider the standard synchronous message-passing model with crash failures. We
assume a finite set P of processes that are connected via a communication network, and all
start at time 0. Moreover, messages are reliably delivered in one time step. We call one of
the processes the “source,” and denote it by s. For simplicity, we restrict our attention to the
case in which s has a binary initial value vs ∈ {0, 1}, while every process i ̸= s has a unique
initial state (with a fixed initial value, say 0). We assume a bound of f on the number of
processes that can crash in any given run. Finally, we focus on deterministic protocols, so
a protocol Q describes what messages a process sends and what decisions it takes, as a
function of its local state. In particular, a protocol Q has a single run in which vs = 1 and no
failures occur. We call this run Q’s nice run, and denote it by r̂(Q), or simply by r̂ when Q

is clear from context. A process is said to be active at time m if it has not crashed by time
m − 1 and it correctly follows its protocol at time m. For more about our formal model, see
[8]. Our analysis makes use of a formal theory of knowledge to capture how null messages
affect what processes do or do not learn. See [3] for more details and a general introduction
to the topic.

When the model is synchronous, it is common to consider the event that i did not send
its neighbor j a message at time t in a given run as if i sent j a null message there. Of course,
j will be able to observe at time t + 1 that no message was received. Notice, however, that
if i never sends j a message at time t then this will not provide j any information whatsoever.
We say that i sends j a genuine null message at time t in a run r if, in addition, there is some
run r′ ̸= r in which i does send a message to j at time t. From here on, all null messages will
assumed to be genuine. To capture the information conveyed by a null message, we use the
following:

▶ Definition 1 (Null message sent in case φ). We say that in protocol Q process i sends a
null message to j at time t in case φ if for every run r of Q in which i is active at time t, it
does not send a message to j at time t in r if and only if φ holds at time t in r.

Clearly, in a failure-free system (i.e., if f = 0) if i sends j a null message at time t then, at
time t + 1 process j comes to know that φ was true. In the presence of failures, however, j is
not guaranteed to know this, and a more subtle analysis is required. We begin by considering
the problem of transmitting information about the initial value vs of the source process to
another process j ̸= s. More precisely, we define a problem called nice-run signalling (NS) in
the following manner. Following [2], we use the notation ⟨i, t⟩, which we call a process-time
node to stand for process i at time t. A protocol Q is said to solve nice-run signalling (NS)
between ⟨s, 0⟩ and ⟨j, m⟩ if Kj(vs = 1) holds at time m in Q’s nice run r̂(Q). Instances of
NS often appear when optimizing the communication costs of protocols that solve other
distributed tasks (e.g., optimizing the good-case costs of Consensus [5]).

2 f -resilient message block

We now turn to study the communication patterns that protocols solving NS and related
problems can use in their nice runs. We focus on “communication graphs,” denoted by
CGQ(r) = (V, Em, En, Eℓ), that account for the messages and the null messages that are sent
in a run r of a given protocol Q. The set V of nodes of the graph consists of all process-time
nodes θ = ⟨i, t⟩, with t ≥ 0. The set Em consists of directed edges (θ, θ′) such that a message
is sent in r at θ and delivered to θ′, while En consists of directed edges (θ, θ′) such that a
(genuine) null message is sent in r from θ to θ′. Finally, Eℓ consists of all edges of the form
(⟨i, t⟩, ⟨i, t + 1⟩), i ∈ P and t ≥ 0, between consecutive nodes along the timeline of a process.

R. Nataf, G. Goren, and Y. Moses 49:3

In general, a path in the communication graph CGQ(r) records a chain consisting of both
actual messages and null messages. We therefore refer to it as a weak message chain. We are
now ready to define a primitive that plays an essential role in solutions to NS.

▶ Definition 2 (f -resilient message block). Let θ, θ′ ∈ P × N be two nodes. An f -resilient
message block from θ to θ′ in CGQ(r) is a set Γ of paths between θ and θ′ such that for all
sets B ⊂ P with |B| ≤ f there is a path in CGQ(r) that does not contain null messages sent
by processes in B.

Notice that a path that does not contain null messages sent by a process j can still contain
messages sent by j. As a result, if the adversary crashes j, this path may still convey
information. In a precise sense, f -resilient message blocks are both necessary and sufficient
for solving nice-run signalling, and we can obtain a tight characterization of the communication
patterns needed for solving NS:

▶ Theorem 3.
(Necessity) If a protocol Q solves NS from θs = ⟨s, 0⟩ to θj = ⟨j, m⟩, then there must be
an f -resilient message block from θs to θj in CGQ(r̂). (Recall that r̂ is Q’s nice run.)
(Sufficiency) If a communication graph CG contains an f -resilient message block between
θs = ⟨s, 0⟩ and θj = ⟨j, m⟩, then there exists a protocol Q with CGQ(r̂) = CG. that solves
NS between θs and θj.

Beyond direct information transfer as captured by the NS problem, we proceed in [8]
to consider a coordination problem called Ordered Response (OR) in which processes must
perform actions in a linear temporal order as a reaction to a spontaneous event (See [2]).
Namely, each process ih ∈ {i1, i2, . . . , ik} has a specific action ah to perform, and these
actions should be performed only if initially vs = 1. Moreover, they need to be performed in
temporal order. I.e., denoting by th the time at which ih performs ah, it is required that
t1 ≤ t2 ≤ · · · ≤ tk. Finally, we consider the variant in which all actions are performed in the
nice run. One way to solve this while ensuring no OR violation in any run is, roughly speaking,
to create f -resilient message blocks in CG(r̂), i.e., solving NS between each consecutive
pair of processes in the order, to inform ih+1 that ih has acted. This would be governed
by Theorem 3. However, information may also be transferred indirectly: for instance, if
process i3 knows that i2 knows that vs = 1 and that f processes – not including i2 have
failed – then it can infer that a2 has been performed, and so i3 can “safely” perform a3. For
characterizations of the communication patterns used in solutions to OR, see [8].

References
1 Eugene S. Amdur, Samuel M. Weber, and Vassos Hadzilacos. On the message complexity of

binary byzantine agreement under crash failures. Distributed Computing, 5(4):175–186, 1992.
2 Ido Ben-Zvi and Yoram Moses. Beyond Lamport’s happened-before: On time bounds and the

ordering of events in distributed systems. Journal of the ACM (JACM), 61(2):1–26, 2014.
3 Ronald Fagin, Joseph Y Halpern, Yoram Moses, and Moshe Y Vardi. Reasoning About

Knowledge. MIT Press, 1995. doi:10.7551/mitpress/5803.001.0001.
4 Guy Goren and Yoram Moses. Silence. J. ACM, 67:3:1–3:26, 2020. doi:10.1145/3377883.
5 Guy Goren and Yoram Moses. Optimistically tuning synchronous Byzantine consensus: another

win for null messages. Distributed Computing, 34(5):395–410, 2021.
6 Vassos Hadzilacos and Joseph Y. Halpern. Message-optimal protocols for byzantine agreement.

Mathematical Systems Theory, 26(1):41–102, 1993.
7 Leslie Lamport. Using time instead of timeout for fault-tolerant distributed systems. ACM

Trans. Program. Lang. Syst., 6:254–280, 1984. doi:10.1145/2993.2994.
8 Raïssa Nataf, Guy Goren, and Yoram Moses. Null messages, information and coordination:

Preliminary report. CoRR, abs/2208.10866, 2022. arXiv:2208.10866.

DISC 2022

https://doi.org/10.7551/mitpress/5803.001.0001
https://doi.org/10.1145/3377883
https://doi.org/10.1145/2993.2994
http://arxiv.org/abs/2208.10866

	1 Introduction
	2 f-resilient message block

