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Abstract
We analyze correctness of implementations of the snapshot data structure in terms of linearizability.
We show that such implementations can be verified in polynomial time. Additionally, we identify a
set of representative executions for testing and show that the correctness of each of these executions
can be validated in linear time. These results present a significant speedup considering that verifying
linearizability of implementations of concurrent data structures, in general, is EXPSPACE-complete
in the number of program-states, and testing linearizability is NP-complete in the length of the
tested execution. The crux of our approach is identifying a class of executions, which we call simple,
such that a snapshot implementation is linearizable if and only if all of its simple executions are
linearizable. We then divide all possible non-linearizable simple executions into three categories
and construct a small automaton that recognizes each category. We describe two implementations
(one for verification and one for testing) of an automata-based approach that we develop based on
this result and an evaluation that demonstrates significant improvements over existing tools. For
verification, we show that restricting a state-of-the-art tool to analyzing only simple executions saves
resources and allows the analysis of more complex cases. Specifically, restricting attention to simple
executions finds bugs in 27 instances, whereas, without this restriction, we were only able to find 14
of the 30 bugs in the instances we examined. We also show that our technique accelerates testing
performance significantly. Specifically, our implementation solves the complete set of 900 problems
we generated, whereas the state-of-the-art linearizability testing tool solves only 554 problems.
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1 Introduction

As concurrency is very effective for accelerating the performance of computer programs,
there is much scientific research and practical attention on the design, implementation, and
verification of data structures that allow parallel access. We focus on the well-known snapshot
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data structure which is an essential building block of distributed arrays [4,7, 9]. This data
structure allows asynchronous processes to write values to a shared array of single-writer
registers, by executing update operations, and to take instantaneous snapshots of the array
values, by executing scan operations. It is useful for allowing processes to share information
while maintaining a correct joint view of the data.

For proving the correctness of implementations of the snapshot data structure, we consider
the standard linearizability [31] condition. Roughly speaking, linearizability is the requirement
that for every execution of a given implementation, the procedure executions can be ordered
linearly such that (a) the resulting linear order is consistent with the definition of the data
structure; (b) it preserves the precedence of procedure executions in time. In the specific
case of snapshot, the definition of the data structure is that a sequential (linear) execution is
correct if every scan operation reports the value written by the last update operation of each
of the processes. Linearizability is widely accepted as a correctness criterion since, effectively,
it formulates the requirement that procedure executions are seen to a user as if they were
executed one after the other (i.e., atomically).

Automatic verification of linearizability is known to be computationally expensive. The
verification of finite-state implementations is EXPSPACE-complete in the number of program
states [5, 29] and undecidable for infinite-state implementations [14]. Testing linearizability,
i.e., deciding whether a given execution is linearizable, is NP-complete [28]. These complexities
do not stop the community from pursuing effective verification and testing techniques, because
it is very difficult to provide correct implementations of concurrent data structures; bugs
have been found in both academic and deployed implementations [18,20,42]. These made it
clear that there is an acute necessity for reliable verification and testing techniques.

One commonly used technique is the linearization points based verification approach, which
often does not work in the case of snapshot. A linearization point of a procedure execution is
an action that represents the moment at which the procedure “actually occurs”. Once fixed
linearization points are identified, verifying linearizability becomes PSPACE-complete [14].
Unfortunately, snapshot implementations do not usually admit fixed linearization points (e.g.,
all twelve published implementations listed in [35] do not admit such points). Researchers also
suggested using linearization points as an optimization: ask the user to provide them (whether
fixed or conditional) and use this information to accelerate verification [3, 6, 13, 50]. However,
practice shows that it is difficult to find and specify the linearization points of snapshot
implementations, even in a conditional manner. One difficulty is that the linearization points
of scan operations often belong to other, parallel, procedure executions (see [4, 11,46]).

In this paper, we propose an effective polynomial-time technique for verifying
snapshot implementations, and an effective linear-time technique for testing
snapshot executions. The crux of our techniques is an optimization approach that
exponentially reduces the number of reachable program states. Specifically, we prove that if
an algorithm is data-independent [54] then, in order to verify its correctness, it suffices to
consider only a small fraction of its executions which we call simple.

The simple executions that we focus on are those in which:
1. All but two processes invoke only update(v0) and scan operations, where v0 is the initial

value of the array segments. In other words, n−2 of the n processes are not allowed to
change the initial value in their segments;

2. Each of the two remaining processes may only change their data value once, to a
predetermined value: it executes only update(v0) and scan operations up to an arbitrary
point in the execution, after which it transitions to executing only update(v1) and scan
operations, where v1 ̸= v0 are fixed data values.

The focus on simple executions reduces the number of reachable states significantly, as n−2
entries of the array are essentially constants (see Section 3).
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After showing that it is enough to verify the correctness of simple executions, we continue
and show that every non-linearizable simple execution falls into one of three categories that we
identify. Moreover, we show that each of these three possible bug patterns can be recognized
by an automaton with at most n states and n2 transitions (see Section 4). This enables
verifying linearizability of snapshot implementations via a reachability check applied to the
graph product of the implementation and the automatons where the target states of the
reachability are the automatons’ accepting states. As there are O(n2) combinations to choose
the two excluded processes, snapshot implementations can be verified with this method in
time O(mn4) where m is the number of reachable states via simple executions (which is
significantly smaller than the number of reachable states via all executions). Furthermore,
by feeding a simple execution to these automatons, an execution of length l can be tested
in time O(l). As it is sufficient to consider simple executions, this effectively means that
snapshot executions can be tested in linear-time (see Section 5).

We have implemented and evaluated the proposed verification and testing techniques and
ran them against state-of-the-art tools. For verification, we compared with the PAT [44] model
checker. The results show that our approach allows deeper exploration of implementations
from the literature. This allowed us to detect 27 of 30 inserted bugs, compared to 16 found
by the baseline method. Furthermore, we managed to verify an algorithm by Bowman [17]
for three and four processes, whereas the baseline method failed to do so. For testing, we
compared with the linearizability testing tool proposed by Lowe [41]. The results show that
our testing technique is robust and scalable and that it can cope with much longer histories
than the baseline (see Section 7).

Due to lack of space, we give proof sketches and skip technical details. We provide a
full version with complete proofs, and means to reproduce the experiments in the paper
supporting materials [49].

2 Preliminaries

This section presents definitions and notations used throughout this paper. We provide further
definitions, required for all complete proofs, and extended discussions in the supporting
materials [49, Appendix A].

Let Vals be an infinite set of abstract data values, and let v0 ∈ Vals be the distinguished
value used to initialize the segments of a snapshot. For n ∈ N, let p0, . . . , pn−1 be processes.
We model an execution of a snapshot algorithm by the processes as a sequence of actions.
Among the actions the processes perform, we are interested in the invocations and responses
of procedure executions. For process pi and data values u, u0, . . . , un−1, inv.updatei(u),
res.updatei, inv.scani, res.scani(u0, . . . , un−1) are pi-actions. Let Σ be the set of all such
actions.

Throughout the paper, we refer to these actions using general terms such as: an update
invocation, a scan response, a pi-invocation etc., which are defined in a straightforward
manner. For example, we may say that the action res.scani(u0, . . . , un−1) is a scan response,
or a pi-action, etc.

A history is a word h over Σ that exhibits the following properties:
1. For every process pi, the first pi-action in h, if any, is a pi-invocation.
2. For every pi-update (respectively, scan) invocation in h, the following pi-action in h, if

any, is a pi-update (respectively, scan) response.
3. For every pi-response in h, the following pi-action, if any, is a pi-invocation.

DISC 2022
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inv.update0(x) inv.update1(y) res.update1 inv.scan1 res.scan1(x, y) inv.scan1

U1 = update0(x)
U2 = update1(y) S1 = scan1(x, y) S2 = scan1

time

Figure 1 A linearizable history. U2, S1 are complete, while U1, S2 are pending ops.

An operation is an execution of an update/scan procedure. We identify operations in
histories with their invocation and response actions. Operations that do not return are
identified by their invocation alone.

A complete operation in a history h = α0 · · · αm is a pair of actions, (αk, αl), where
k < l, αk is an updatei (respectively, scani) invocation, αl is an updatei (respectively, scani)
response, and there is no pi-action in between. A pending operation in h is a single action,
(αk), where αk is a pi-invocation, and there is no pi-action that follows αk in h.

Similarly to actions, we refer to operations using general terms: an operation O is, e.g., a
pi-operation, an update operation, a scani(u0, . . . , un−1) operation, etc. In a history h, for
an update(u) operation U , we write valh(U) = u, and for a scan(u0, . . . , un−1) operation S

and i < n, we write valh:i(S) = ui and valh(S) = (u0, . . . , un−1).
For a complete operation A = (αk, αl) and an operation B ∈ {(αm, αt), (αm)} in a history

h = α0α1 · · · , we write A <h B if l < m. Clearly, <h is a partial order over the operations
in h, in which pending operations are maximal elements. Figure 1 illustrates a two-process
history with pending and complete operations.

Linearizability [31] is the standard correctness condition for concurrent data structures.
Roughly speaking, a history h is linearizable if the partial ordering <h can be extended to a
linear ordering that satisfies the sequential specification of the snapshot data structure. That
is, each scan operation S returns in each entry i the value written by the maximal updatei

operation that precedes it. The extension should include all complete operations, and each
pending operation is either completed or omitted.

We now turn to define the linearizability condition formally:

▶ Definition 1. A history h is linearizable if it can be extended into a history h′ by appending
zero or more response events to h, such that there exists a linear ordering ≺h′ of the complete
operations in h′ that satisfies the following conditions:
1. For A, B ∈ h, if A <h B, then A ≺h′ B.
2. If S ∈ h′ is a scan operation and Ui ∈ h′ is the maximal updatei operation such that

Ui ≺h′ S, then valh(Ui) = valh:i(S). If no updatei operation precedes S in h′, then
valh:i(S) = v0.

Any ≺h′ that satisfies these conditions is said to be a linearization of h.

▶ Example 2. The history depicted in Figure 1 is linearizable by the order U1 ≺h U2 ≺h S1.
To obtain a linearization, we completed the pending operation U1, as its value is read by S1.
However, we chose to omit the pending scan operation S2.

Our main goal is to analyze the linearizability of snapshot algorithms, defined as follows:

▶ Definition 3 (Snapshot Linearizability). A snapshot algorithm is linearizable if all of its
histories are linearizable.
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The data independence property, proposed by Wolper [54], roughly means that the
behavior of an algorithm does not depend on the data values passed as arguments to the
procedure executions. The formal definition employs the notion of a renaming: a function
f : Vals−→Vals. An algorithm is data-independent if for a every history h of the algorithm
and a renaming f : (1) the history f(h), obtained by replacing each data value u with f(u),
is also a history of the algorithm; and (2) if h = f(h′), then h′ is a history of the algorithm.
See full version [49] for more details.

Data independence is natural to assume, as snapshot implementations synchronize accesses
to a shared resource and thus are expected to be value-agnostic. This is substantiated by all
twelve different published implementations [4, 7–11,26,34–36,46] listed in [35].

Finally, a history is differentiated if no two update operations in it were invoked with the
same data value.1 Abdulla et al. [1] showed that it is sufficient to consider differentiated
histories to prove linearizability of data-independent algorithms.

3 Simple Histories

In this section, we identify a set of histories, which we name simple. We then prove that
a data-independent snapshot implementation is linearizable if and only if all of its simple
histories are linearizable. Therefore, this section shows that it is sufficient to consider only
some histories to determine the linearizability of data-independent snapshot implementations.

In a simple history, the update operations are invoked with only two distinct values. The
first is the initial value v0, and without loss of generality, we take some other v1 ∈ Vals as
the second value. All but two processes invoke only update(v0) and scan operations. The
remaining two execute only update(v0) and scan operations, and at some (possibly different)
point, each of the two processes shifts to executing only update(v1) and scan operations.

▶ Definition 4 (Simple histories). A history h of n processes is (i, j)-simple for i < j < n, if
there are ri, rj ∈ N such that the following conditions hold:
1. Let U be the r-th updatei operation in h. If r < ri, then U is an updatei(v0) operation,

and if r ≥ ri, then U is an updatei(v1) operation.
2. In the same way, let U be the r-th updatej operation in h. If r < rj, then U is an

updatej(v0) operation, and if r ≥ rj, then U is an updatej(v1) operation.
3. Any updatek operation is an updatek(v0) operation, if k /∈ {i, j} .
A history h is simple if it is (i, j)-simple for some i < j < n.

We are ready to prove the sufficiency of focusing on simple histories. We provide a proof
sketch below, and give a rigorous proof in the full version [49].

▶ Theorem 5. A data-independent snapshot algorithm Sn¡�°� is linearizable if and only if all
its simple histories are linearizable.

Proof sketch. Anderson’s shrinking lemma identifies five properties that are equivalent to
the linearizability of a snapshot history [8]. To prove the non-trivial direction of theorem 5
(‘if’), we assume that Sn¡�°� is not linearizable. Consider some non-linearizable differentiated
history h. Since Sn¡�°� is not linearizable, h violates (at least) one of the shrinking lemma’s
properties. Based on the violated property, we construct a renaming f : Vals → {v0, v1}, and
apply it to h to obtain a non-linearizable simple history. ◀

1 For generating differentiated histories, a minor modification is required: we should allow different initial
values for the array segments. See comment in full version [49, Appendix B]

DISC 2022
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pk:

S

U0 U1 U2 U3 U4 U5{ }Ik(S)
time

Figure 2 The k-th interval of S, Ik(S).

▶ Remark 6. In the context of simple histories, scan operations return v0 in all entries
except for entries i and j. Thus, for the remainder of this paper, we use res.scank(ui, uj) as
shorthand for res.scank(v0, . . . , v0, ui, v0, . . . , v0, uj , v0, . . . , v0).

▶ Remark 7. From this point on, for readability, we will use 0 and 1 instead of v0 and v1,
respectively.

4 A Simple Condition for the Linearizability of Simple Histories

In this section, we formulate three properties that are equivalent to the linearizability of an
(i, j)-simple history. We then show that the negation of each property is regular, and present
a construction of a matching automaton. Before providing our properties (in upcoming
Theorem 10), we discuss each intuitively and explain why it is mandatory for linearizability.

Property 1: No Inversion. Assume that a scan operation S1 returns 0 at the ith entry (for
example), while S2 returns 1. This indicates that S2 read a more recent value from the ith
segment. Hence, in any linearization, S1 must precede S2. As the same reasoning goes for
the jth entry, it is forbidden for S1 to return 0 and 1 at the ith and jth entries, while S2
returns the opposite values.

Property 2: Non-Decreasing. If a scan operation S1 precedes a scan operation S2, then S2
must obtain more recent values from all array segments. Therefore, it is forbidden for S1 to
return 1 in entry k ∈ {i, j}, while S2 returns 0 in its kth entry.

Property 3: Appropriateness. We require that for each scan operation there are “appropri-
ate” update operations, Ui by pi and Uj by pj , that we can linearize before S. “Appropriate”
means that the next three conditions hold.

First condition. The timings of the update operations must not prevent them from being
linearized before S. For example, they must not succeed S. Formally, we require that
they belong to the interval of S, defined below and illustrated in Figure 2:
▶ Definition 8. Let S be a scan operation in a history h, and let k < n. The kth interval
of S, denoted Ik(S), is the set of updatek operations U ∈ h such that:
1. ¬(S <h U).
2. There is no updatek operation U ′ such that U <h U ′ <h S.

Second condition. The values of the update operations Ui and Uj are the values returned
by S in its corresponding entries.

Third condition. There is no, e.g., updatei operation between Ui and Uj . This is because
the existence of such an updatei operation, say Ui < U ′

i < Uj , would prevent us from
linearizing both Ui and Uj before S.
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We formalize the notion of appropriateness in the following definition:

▶ Definition 9. Let S be a complete scan operation in an (i, j)-simple history h. A pair
(Ui, Uj) where Ui is an updatei operation and Uj is an updatej operation, is said to be
S-appropriate, if:
1. Ui ∈ Ii(S) and Uj ∈ Ij(S).
2. (valh(Ui), valh(Uj)) = (valh:i(S), valh:j(S)).
3. There is no updatei operation U ′

i such that Ui < U ′
i < Uj, and there is no updatej

operation U ′
j such that Uj < U ′

j < Ui.

So far, we have presented our properties and explained intuitively why they form a
necessary condition for linearizability: i.e., why their negation prevents linearizability. The
main theorem of this section asserts a much stronger claim: these properties also constitute
a sufficient condition for linearizability. We provide a proof for Theorem 10 in the full
version [49, Appendix D].

▶ Theorem 10. An (i, j)-simple history h is linearizable if and only if the following properties
hold.
No Inversion. There are no complete scan operations S1 and S2 in h such that

(valh:i(S1), valh:j(S1)) = (0, 1) and (valh:i(S2), valh:j(S2)) = (1, 0).
Non-Decreasing. If S1 and S2 are two complete scan operations in h such that S1 <h S2,

then valh:i(S1) ≤ valh:i(S2) and valh:j(S1) ≤ valh:j(S2).
Appropriateness. For each complete scan operation S in h, there exists an S-appropriate

pair of update operations.

4.1 Detecting Incorrect Simple Histories
Finally, we show that the properties of Theorem 10 can be detected by an NFA. We provide
here proof sketches for most claims, and full proofs for all claims in the full version [49,
Appendix E].

▶ Theorem 11. For i < j < n, there exists an automaton M with O(n) states and O(n2)
transitions, such that an (i, j)-simple history h is not linearizable if and only if h ∈ L(M).

To prove Theorem 11, we construct automatons that detect violations of the three
properties presented in Theorem 10.

4.1.1 Detecting Violations of No-Inversion
▶ Proposition 12. There exists an automaton M1 such that, for any (i, j)-simple history h,
h violates No-Inversion if and only if h ∈ L(M1). Moreover, M1 has O(1) states and O(n)
transitions.

Proof sketch. We demonstrate the construction for the case that n = 2:

qini

q1

q0

qacc
res.scan0(1, 0), res.scan1(1, 0)

res.scan0(0, 1), res.scan1(0, 1)

Σ

Σ

Σ

res.scan0(0, 1), res.scan1(0, 1)

res.scan0(1, 0), res.scan1(1, 0)

Σ

◀
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4.1.2 Detecting Violations of Non-Decreasing
▶ Proposition 13. There exists an automaton M2 such that, for any (i, j)-simple history
h, h violates Non-Decreasing if and only if h ∈ L(M2). Moreover, M2 has O(n) states and
O(n2) transitions.

Proof sketch. As an illustrative demonstration, we present below a simpler automaton.
It detects the existence of a violation of Non-Decreasing, for n = 2, and S1 < S2 where
valh:i(S1) = 1.

qini q1

q2

q3

qacc

Σ res.scan0(1, 0)

res.scan0(1, 1)

res.scan1(1, 0)

res.scan1(1, 1)

inv.scan0

inv.scan1 res.scan1(0, 0)

res.scan1(0, 1)

res.scan0(0, 0)res.scan0(0, 1)Σ

Σ

Σ
Σ

◀

4.1.3 Detecting Violations of Appropriateness
It remains to construct an automaton that accepts all (i, j)-simple histories that violate
Appropriateness. To this end, we reformulate Appropriateness as a regular safety property;
a word is rejected if and only if it has a “bad”-prefix.

▶ Lemma 14. Let h be an (i, j)-simple history, and let S be a complete scan operation in
h. For l ∈ {i, j}, let Fl be the first updatel(1) operation in h, if exists. Then, there is no
S-appropriate pair in h if and only if any of the following holds:
1. For l ∈ {i, j}, Fl exists, valh:l(S) = 0, and Fl <h S.
2. For l ∈ {i, j}, valh:l(S) = 1, and either S <h Fl or Fl doesn’t exist.
3. (valh:i(S), valh:j(S)) = (0, 1) and Fi <h Fj.
4. (valh:i(S), valh:j(S)) = (1, 0) and Fj <h Fi.

▶ Proposition 15. There exists an automaton M3 such that, for any (i, j)-simple history
h, h violates Appropriateness if and only if h ∈ L(M3). Moreover, M3 has O(n) states and
O(n2) transitions.

Proof sketch. The automaton is a “union” of four automatons, such that the kth automaton
checks whether there exists a complete scan operation S for which the kth case of Lemma 14
holds. Below, we provide an automaton that identifies the first case where l = i and S is a
scan0 operation (for n = 2). Hence, in fact, the first case is a union of 2n automatons. We
leave it for the reader to verify that (rather simple) automatons exist for all other cases.

qini q1 q2 q3 qacc

Σ Σ Σ Σ Σ
inv.updatei(1) res.updatei inv.scan0 res.scan0(0, 0)

res.scan0(0, 1)

◀

▶ Corollary 16. Theorem 11 is trivially correct by propositions 12, 13, and 15.
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5 Verifying and Testing Linearizability

The results of the previous section allow us to both verify data-independent snapshot
implementations, and test the linearizability of simple snapshot histories, in polynomial time.

For verifying a data-independent snapshot implementation, by Theorem 5, it is sufficient
to verify that all of its simple histories are linearizable. Theorem 11 allows one to apply
model checking of regular properties [12, Chapter 4.2], i.e., one can check whether the
implementation admits an (i, j)-simple history accepted by the automaton (and thus not
linearizable). As there are O(n2) valuations for i and j, our first key result follows:

▶ Theorem 17 (Polynomial-time verification). Let Sn¡�°� be a data-independent snapshot
algorithm such that only finitely many states of Sn¡�°� are reachable by its simple histories.
Determining the linearizability of Sn¡�°� is decidable in O(mn4) time, where m is the size of
an automaton that accepts all simple histories of Sn¡�°�.

Moreover, Theorem 11 enables the testing of simple histories efficiently, by feeding the
automaton of Theorem 11 (or its determinization) with the (i, j)-simple histories to be tested.
The automaton will report acceptance once it identifies a non-linearizable prefix of the input
history h (which testifies that h is not linearizable). Hence, our second key result follows.

▶ Theorem 18 (Linear-time testing). For i < j < n, (i, j)-simple histories can be tested in
linear-time, i.e., in time O(|h|).

6 Optimization: Omitting Redundant Commands

The focus on simple histories yields an optimization that can significantly reduce the state
space of an examined snapshot algorithm, speeding up its verification. The optimization
relies on the observation that in the executions of (i, j)-simple histories, some commands are
vacuous. To elaborate, assume that register R stores the data value of process pk, k ̸= i, j.
In all executions of (i, j)-simple histories, R will only ever store the value 0. Thus, read and
write commands from and to R can be ignored, reducing the possible values of the program
counters. In some cases, we can even ignore R altogether, reducing the number of registers.

We use Bowman’s obstruction-free snapshot algorithm [17] (Algorithm 1) to demonstrate
the optimization. During an update operation, process pk writes its new value to register A[k]
(line 3). During a scan operation, the values stored in A[0], . . . , A[n−1] are read into the local
variables a[0], . . . , a[n−1] (lines 7-8). Let i < j be two process ids, and consider executions
of (i, j)-simple histories of Algorithm 1. In such executions, every write command to register
A[k], k /∈ {i, j}, writes 0. Hence, we may ignore and omit all registers A[k], k /∈ {i, j}.
This yields a simplified version of the algorithm, as shown in Algorithm 2, which has a
substantially smaller state space than Algorithm 1, as it employs fewer registers. Since we
omitted only vacuous commands (i.e. commands that always write and read 0) Algorithm 2
is linearizable if and only if all of Algorithm 1’s (i, j)-simple histories are linearizable.

7 Implementation and Evaluation

In this section, we describe implementations of the procedures described in Section 5, and the
experiments we performed to evaluate their efficiency. We provide the means to reproduce
all experiments in the paper’s supporting materials [49].
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Algorithm 1 Unoptimized algorithm.

1: procedure updatek(v)
2: Active ← ⊥
3: A[k]← v

4: procedure scank

5: repeat
6: Active ← k

7: for ℓ = 0, . . . , n−1 do
8: a[l]← A[l]
9: until Active = k

10: return (a[0], . . . , a[n−1])

Algorithm 2 Optimized for (i, j)-simple executions.

1: procedure updatek ▷ k /∈ {i, j}
2: Active ← ⊥

3: procedure updater(v) ▷ r ∈ {i, j}
4: Active ← ⊥
5: A[r]← v

6: procedure scanq ▷ q < n

7: repeat
8: Active ← q

9: a[i]← A[i]
10: a[j]← A[j]
11: until Active = q

12: return (0, . . . , 0, a[i], 0, . . . , 0, a[j], 0, . . . , 0)

Figure 3 Illustration of the redundant command omission optimization with Bowman’s algorithm.

7.1 Implementation of our Verification Procedures
We used the model checker PAT [44] as the basis for our two verification approaches. PAT
contains a system for checking the linearizability of a given concurrent algorithm against
an abstract specification, via refinement [38, 40]. We made use of this system in our first
verification approach: we encoded known snapshot algorithms from the literature (listed in
subsection 7.4), modified to admit only simple histories. We provided a matching abstract
simple-history snapshot specification.

For our second approach, we encoded the automaton from Theorem 11 in PAT. As that
automaton is a union of several automatons, we treated each one as a separate process,
and encoded the union as the parallel composition of these processes. We exploited PAT’s
reachability checker to encode the accepting states of the automaton. We then asked PAT to
check whether the algorithms listed in subsection 7.4 admit any simple histories that are
accepted by the automaton.

We note three sources of possible errors in our implementations: (1) We could have
encoded the snapshot algorithms incorrectly. (2) We could have encoded the automatons
or the abstract specification incorrectly. (3) PAT itself may have bugs. To mitigate the
first two threats, we used PAT’s linearizability system to ensure that the algorithms we
encoded are linearizable, that we manage to find several artificially-inserted bugs, and that
the reachability approach agrees with PAT’s standard refinement approach. We did not take
steps to mitigate the third threat, but as PAT is a widely used model checker which has itself
been partially model-checked [48], our confidence in its correctness is high., our confidence in
its correctness is high.

7.2 Implementation of our Testing Procedure
The testing procedure we implemented receives an (i, j)-simple history, and runs it through
an implementation of the automaton described in Theorem 11. The tool announces whether
the automaton accepts the history, indicating it is not linearizable, or it rejects the history,
indicating it is linearizable.
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To validate that our implementation has no bugs, we generated hundreds of random
simple histories, both linearizable and non-linearizable, and ensured our implementation
classified them correctly.

7.3 Research Questions
We start with research questions related to our verification technique. As we propose a model
checking approach, although polynomial, it still suffers from the state explosion problem [23].
This holds since the algorithms we check admit an enormous number of states, even when
we restrict ourselves to simple histories. Model-checking approaches are mainly evaluated
based on their feasibility; their ability to verify correctness/find bugs, perhaps only up
to a reasonable depth, measured in the number of operations each process executes, with
real-world resources: realistic time and space and limitations. Hence, we formulate the
following research questions:
RQ1 Does the focus on simple histories help to prove/disprove correctness, in terms of

feasibility/depth to be processed?
RQ2 Is our polynomial-time technique efficient for proving/disproving correctness, in terms

of feasibility/depth to be processed?

We use the following research question to evaluate our testing technique:
RQ3 Is our testing technique efficient, in terms of feasibility, and time and space consumption?

7.4 Corpus
To address RQ1 and RQ2, we constructed a corpus for our experiments that includes several
snapshot algorithms from the literature: An obstruction-free [30] algorithm by Bowman [17],
denoted BOWMAN; A snapshot algorithm by Jayanti [35], denoted JAYANTI; The bounded
and unbounded versions of Afek et al. [4], denoted AFEK1 and AFEK2, respectively; and A
snapshot algorithm by Riany et al [46], denoted RIANY.

For each algorithm and n ∈ {3, 4, 5, 6} processes, we encoded the original version (denoted
“full”), as well as a modified version which generates only (0, 1)-simple histories, with the
optimization detailed in Section 6 (denoted “simple-only”).Then, for n ∈ {3, 4, 5, 6, 8, 10},
we also encoded buggy versions thereof (denoted, “buggy-full” and “buggy-simple-only”,
respectively). Overall, we created 100 configurations of pairs of algorithm encoding with n

processes.
To address RQ3, we began by generating 25 linearizable histories of length l ∈

{200, 500, 1000} with n ∈ {5, 8, 11, 14, 17, 20} processes, by randomly executing an atomic
snapshot implementation, and recording its actions. We then generated 25 non-linearizable
histories of length l ∈ {50, 100, 200} with n ∈ {3, 4, 5, 6, 8, 10} processes as follows: we
generated a random linearizable history, and changed its 20-length suffix by randomly
changing the values of the scan responses. We repeated this process until we obtained
25 non-linearizable histories. In the context of RQ3, we refer to a choice of l, n, and
“linearizable/non-linearizable” as a configuration. This resulted in 900 histories, divided into
18 linearizable and 18 non-linearizable configurations, added to our corpus.

7.5 Experiments and Results
In this section, we detail the experiments we performed to tackle our research questions, and
report our results. All experiments were performed on a rather ordinary laptop with an Intel
Core i7-6820HK CPU and 32GB of DDR4 RAM, running Windows 10 21H1 and the WSL2
Ubuntu 20.04.2 image from Microsoft.
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Table 1 Results of bug detection in non-linearizable implementations. b: max bound on
#operation per process, t: time used (sec.), and s: memory used (GB).

test normal simple polynomial normal simple polynomial
b t s b t s b t s b t s b t s b t s

algorithm 3 processes 4 processes
BOWMAN ∞ 11 0.64 ∞ 2 0.1 ∞ 2 0.3 3 168 12.0 ∞ 60 0.5 ∞ 54 0.6
JAYANTI 14 272 22.8 23 393 25.1 3 72 0.7 3 149 11.9 6 218 16.0 3 98 0.7
AFEK1 - - - 2 242 1.9 2 417 1.8 - - - 2 305 2.0 2 506 2.3
AFEK2 2 50 0.5 4 422 4.3 3 215 1.4 2 163 2.0 4 522 7.0 3 255 2.1
RIANY 6 285 4.1 9 445 5.4 27 595 2.0 3 172 12.1 6 275 17 24 512 1.9

algorithm 5 processes 6 processes
BOWMAN 1 9 0.4 3 290 18.4 40 575 4.4 1 66 3.8 1 7 0.5 35 507 3.3
JAYANTI 1 141 0.9 3 253 18.4 3 118 0.7 1 302 4.6 2 590 28.1 3 142 0.7
AFEK1 - - - 2 417 4.0 - - - - - - - - - - - -
AFEK2 1 21 0.4 3 441 18.4 3 298 2.6 1 95 4.2 1 7 0.5 3 326 2.8
RIANY - - - - - - 23 579 1.8 - - - - - - 21 508 2.2

algorithm 8 processes 10 processes
BOWMAN - - - 1 288 15.6 33 554 2.7 - - - - - - 30 558 2.9
JAYANTI - - - 1 386 15.6 3 197 0.7 - - - - - - 3 267 1.1
AFEK1 - - - - - - - - - - - - - - - - - -
AFEK2 - - - 1 256 15.7 3 402 3.2 - - - - - - 3 491 3.6
RIANY - - - - - - 19 502 2.2 - - - - - - 18 586 3.0

7.5.1 Verification Experiments
To address RQ1 and RQ2, we used PAT to verify the correctness of our configurations. We
ran three different types of linearizability experiments:
normal. Using PAT’s standard linearizability checker with full and buggy-full configurations.
simple. Using PAT’s standard linearizability checker with simple-only and buggy-simple-only

configurations.
polynomial. Using PAT’s reachability checker with simple-only and buggy-simple-only configu-

rations, in parallel to the automaton threads that detect bugs.

Furthermore, for each configuration and matching experiment type, we limited the number
of operations that each process was allowed to perform. As some algorithms employ infinite
data types (e.g. integers), at least in those cases, the bound is mandatory for PAT to
terminate. We set a timeout of 10 min. for buggy implementations, and 1 hr. for correct
implementations. We repeated each experiment with various bounds until we found the
maximal bound for which each experiment terminated in the allotted time.

▶ Remark 19. For simple configurations, we checked only (0, 1)-simple histories. For full
verification, it is required to test all (i, j)-histories. Nevertheless, this observation does not
affect the feasibility of the approach, since the tests for (i0, j0) and (i1, j1) simple histories
are independent, and can even run on separate machines. Furthermore, symmetry arguments
may increase confidence even when checking only (0, 1)-simple histories.

▶ Remark 20. We also tried to use Cave [21, 50] and its extension Poling [45, 55], static
analysis-based linearizability verifiers. Unfortunately, despite our best efforts, we could not
make either tool work for the algorithms we tried to encode. Even for toy correct and



G. Amram, A. Hayoun, L. Mizrahi, and G. Weiss 5:13

Table 2 Results of verification of linearizable implementations. b: max bound on #operation
per process, t: time used (sec.), and s: memory used (GB).

test normal simple polynomial normal simple polynomial
b t s b t s b t s b t s b t s b t s

algorithm 3 processes 4 processes
BOWMAN 2 47 0.7 ∞ 3 0.1 ∞ 11 0.1 1 29 0.6 ∞ 134 1.8 ∞ 460 0.7
JAYANTI - - - - - - - - - - - - - - - - - -
AFEK1 1 113 1.0 1 15 0.2 1 31 0.3 - - - - - - - - -
AFEK2 1 12 0.2 2 2627 19.5 2 2675 7.5 - - - 1 154 1.9 1 269 1.5
RIANY - - - - - - - - - - - - - - - - - -

algorithm 5 processes 6 processes
BOWMAN - - - 1 158 1.4 1 121 0.5 - - - - - - - - -
JAYANTI - - - - - - - - - - - - - - - - - -
AFEK1 - - - - - - - - - - - - - - - - - -
AFEK2 - - - - - - - - - - - - - - - - - -
RIANY - - - - - - - - - - - - - - - - - -

incorrect algorithms that operate atomically, Cave reported errors, and Poling returned
unexpected responses. Perhaps the snapshot object deviates from the types of data structures
that these tools aim to handle. To the best of our knowledge, PAT, Cave, and Poling are
the only available tools that verify linearizability automatically, without requiring additional
input.

We present the bug-detection results in Table 1, and the verification results in Table 2.
For each configuration and linearizability experiment type, we report the maximal bound
on the number of operations per process, for which the experiment terminated before the
timeout. If the experiment terminated without imposing a bound, we report the value ∞.
Furthermore, for the max bound we found, we report time and space consumption by the
corresponding linearizability experiment. As an example, for RIANY buggy-simple-only with
4 processes, when we ran the polynomial linearizability experiment, we found the bug while
limiting each process to 24 operations. The execution took 512 sec. and consumed 1.9
GB. Accordingly, in the upper part of Table 1, the cells on the row titled “RIANY” and the
columns titled “polynomial; 4 processes” read: b:24, t:512, and s:1.9.

7.5.2 Testing Experiments

To address RQ3, we tested all linearizable and non-linearizable generated histories, applying
two methods: our implemented method, and a tool by Lowe [37,41], with a 10 min. timeout.
For each configuration and each tool, we report the percentage of tests that successfully
terminated within the allotted time. Furthermore, for the terminated executions, we report
the median running time and space consumption. Table 3 presents results for linearizable
configurations, and Table 4 for non-linearizable configurations. As an example, when we
applied our method to linearizable histories of length 500 with 20 processes, 100% of the tests
were successful, the median running time was 0.15sec, and the median space consumption
was 150MB. Hence, in Table 3, the cells on the rows titled “500:terminated”, “500;median
time”, and “500;median space” with the column titled “20;This paper” read 100%, 0.15, and
150, respectively.
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Table 3 Linearizable simple history testing results. Terminated tests (%), median time used
(sec.), and median memory used (MB).

#processes 5 8 11 14 17 20

len.
mth. This

paper Lowe This
paper Lowe This

paper Lowe This
paper Lowe This

paper Lowe This
paper Lowe

200
term. 100% 100% 100% 100% 100% 100% 100% 84% 100% 52% 100% 32%
time 0.02 0.20 0.02 0.22 0.02 0.28 0.02 1.34 0.02 1.11 0.03 2.08
space 130 336 131 352 131 360 131 456 131 444 132 1228

500
term. 100% 100% 100% 100% 100% 100% 100% 80% 100% 48% 100% 16%
time 0.04 0.20 0.06 0.22 0.09 0.30 0.12 1.45 0.16 12.57 0.15 0.21
space 132 216 136 336 140 352 144 492 150 2414 150 346

1000
term. 100% 100% 100% 100% 100% 100% 100% 72% 100% 44% 100% 16%
time 0.07 0.21 0.14 0.21 0.21 0.33 0.33 1.36 0.40 3.29 0.56 0.85
space 136 344 146 336 156 352 171 482 182 1620 203 398

Table 4 Non-linearizable simple history testing results. Terminated tests (%), median time used
(sec.), and median memory used (MB).

#processes 3 4 5 6 8 10

len.
mth. This

paper Lowe This
paper Lowe This

paper Lowe This
paper Lowe This

paper Lowe This
paper Lowe

50
term. 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
time 0.06 0.28 0.06 0.32 0.06 0.34 0.06 0.35 0.06 0.65 0.06 1.19
space 129 336 129 348 129 336 129 344 129 368 129 440

100
term. 100% 100% 100% 100% 100% 84% 100% 52% 100% 32% 100% 8%
time 0.03 0.48 0.03 1.45 0.03 3.76 0.03 24.61 0.03 61.93 0.03 179.80
space 129 340 129 508 129 2784 129 17896 129 12996 129 12192

200
term. 100% 36% 100% 4% 100% 0% 100% 0% 100% 0% 100% 0%
time 0.03 30.78 0.03 5.11 0.03 - 0.03 - 0.03 - 0.03 -
space 129 20392 129 3216 129 - 129 - 129 - 129 -

7.6 Analysis of the Results

Focusing on simple histories is beneficial, as both simple and polynomial outperform the normal
linearizability method of PAT for finding bugs. In addition, overall, polynomial performs
better than simple (see Table 1). normal found the bug in 14/30 cases, with up to 6 processes.
simple succeeded in 3 additional cases with up to 8 processes, with polynomial succeeding
in 26/30 cases with up to 10 processes. Importantly, simple allows for larger bounds than
normal in 16/17 cases, and the same bound in the remaining case. polynomial allows for larger
bounds than simple in 16 cases, and smaller bounds in 5 cases. This indicates that polynomial
enables deeper exploration than simple, and thus we conclude that it is more efficient. Both
polynomial and simple manage to explore implementations significantly deeper than normal.
We also observe that polynomial consumes less space, which is the main bottleneck of model
checking, than simple. The peak memory consumption we recorded for polynomial was 4.4GB,
whereas the peak we recorded for simple was 25.1GB, and 9/20 executions with more than
10GB. While the peak we recorded for normal was 22.8GB, it scaled much worse than simple
and failed to cope with the more challenging configurations.

In Table 2, we see that simple and polynomial enable the verification of BOWMAN with 3
and 4 processes. To the best of our knowledge, this is the first time that this algorithm has
been verified to some extent. Model-checking techniques are complete and mainly efficient for
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bug detection. Verifying a concurrent algorithm for 4 processes is noteworthy (compare, e.g.,
to the results of [39]). Yet, excluding these results, although both methods perform better
than normal, we did not manage to verify other implementations. We mention that, in some
old evaluations we performed, we used a prototype tool we wrote that uses simple histories
(but does not employ the automatons of Section 4.1), and managed to verify JAYANTI with
3 processes within 21 sec. (reference hidden for double-blind review). As this deviates from
what Table 2 illustrates, we believe that further investigation is required.

Tables 3 and 4 show that our testing technique outperforms [41] by several orders of
magnitude, mainly and most importantly, in terms of feasibility. Our tool easily handled all
900 histories, while the competitor failed to cope with challenging configurations, successfully
handling only 554/900 histories. We also observe that our technique is scalable. The
differences in time and space consumption between extremum values are negligible.

Moreover, we note that our technique is insensitive to the correctness of the tested
history. In contrast, our competitor quickly fails over non-linearizable histories. To gain more
confidence in this observation, we further generated 25 non-linearizable histories of length
1000 for 20 processes, with a linearizable prefix of length at least 980. Our tool handled all
with a median running time of 0.55sec. Note that our competitor failed almost entirely over
non-linearizable histories of length 200, with 3-10 processes.

8 Related Work

Alur et al. proposed an EXPSPACE-technique for verifying linearizability [5], and Hamza
proved EXPSPACE-completeness [29]. Bouajjani et al. proved the undecidability of lineariz-
ability of infinite-state systems, and the PSPACE-completeness of linearizability with fixed
linearization points [14].

Due to the high complexity of the problem, sound and complete model-checking techniques
manage to perform limited verification with up to 3 processes [19,39,52]. [39] also verifies a
stack implementation for 4 processes, but only by limiting the stack size to two data values.
Hsu et al. [33] proposed a bounded model checking technique for hyper-LTL, and used it to
rediscover known bugs (see [25]) in the “Snark” dequeue implementation [24].

Static analysis efforts are incomplete, but can work for infinite-state implementations.
However, most ask for additional information from the user. The works [3, 6, 13, 50] ask
for linearization points, some in a conditional manner. The work [2] asks for linearization
policies. The work [47] asks for the specification of sub-operations and relations between
them. Cave [21,51] and Poling [55] work without further information. However, as we report
in Section 7, we did not manage to work with these tools. Perhaps the snapshot object
deviates from the types of data structures that these tools aim to handle.

The way we employ the data independence property resembles Abdulla et al. [1]. They ran
automatons in parallel to queue and stack implementations to detect bugs. Their approach
is incomplete, but works for infinite-state implementations. However, their automatons
detect incorrect sequential histories, in contrast to concurrent histories as we do, and thus
their approach requires specifying linearization points. It is rather simple to construct an
automaton that detects incorrect sequential snapshot histories, hence their approach can be
applied to the snapshot object straightforwardly. But, as linearization points of snapshot
implementations are evasive, the benefit of doing so is questionable.

Other works also focused on specific data structures. Bouajanni et al. [15] prove that ver-
ification of data-independent queue, stack, register, and mutex implementations is PSPACE-
complete for a fixed number of processes, and EXPSPACE-complete for infinitely many
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processes. In [16], Bouajjani et al. extend the latter result to data-independent and
projection-closed priority queues. To the best of our knowledge, those techniques have
not been implemented or evaluated. Chakraborty et al. [22] identified conditions that are
equivalent to the linearizability of data-independent queue implementations, and use them to
automatically verify Herlihy and Wing’s queue [31]. Abdulla et al. [3] used those conditions
and the results of [22] to extend their static analysis technique [2] to verify stack and queue
implementations without linearization points.

Wing and Gong considered the problem of testing linearizability, and gave an exponential-
time algorithm [53]. Gibbons and Korach proved NP-completeness [28], and further showed
that register-histories with k processes can be tested in time O(n2O(k)+n log n). Lowe [41]
suggested optimizations for the algorithm of [53]. Horn and Kroening suggested an optimiza-
tion that applies to set implementations [32]. Emmi and Enea [27] identified a class of data
structures for which a polynomial-time testing algorithm exists. This class includes queue,
stack, set, and map, but does not include snapshot.

9 Conclusion

We proved that a data-independent snapshot algorithm is linearizable if and only if all of its
simple histories are linearizable. This gives rise to an optimization for proving/disproving
the correctness of snapshot implementations, i.e, examining only simple histories. This opti-
mization can exponentially reduce the number of reachable states to inspect. Moreover, we
proved that non-linearizable simple histories are identified by a polynomial-sized automaton.
This enables a polynomial-time technique for verifying the linearizability of snapshot imple-
mentations, and a linear-time technique for testing the linearizability of snapshot histories.
We implemented our techniques, and reported on evaluations that support the efficiency of
our methods over existing techniques.

Future Work

We wonder if the notion of simple histories can be replicated to other data structures. In
particular, it would be interesting to investigate whether such an adaptation would admit
automata-based verification/testing techniques similar to those we presented for the snapshot
object. The automatons presented in [14] seem like a good place to begin in order to define
simple histories geared at queues and stacks. Another future direction is to extend our results
to multi-writer snapshots, and to implementations that are strongly linearizable [43].
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