Brief Announcement: Foraging in Particle Systems
via Self-Induced Phase Changes
Shunhao Oh &

School of Computer Science, Georgia Institute of Technology, Atlanta, GA, USA

Dana Randall &
School of Computer Science, Georgia Institute of Technology, Atlanta, GA, USA

Andréa W. Richa =
School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA

—— Abstract

The foraging problem asks how a collective of particles with limited computational, communication
and movement capabilities can autonomously compress around a food source and disperse when
the food is depleted or shifted, which may occur at arbitrary times. We would like the particles to
iteratively self-organize, using only local interactions, to correctly gather whenever a food particle
remains in a position long enough and search if no food particle has existed recently. Unlike previous
approaches, these search and gather phases should be self-induced so as to be indefinitely repeatable
as the food evolves, with microscopic changes to the food triggering macroscopic, system-wide
phase transitions. We present a stochastic foraging algorithm based on a phase change in the fixed
magnetization Ising model from statistical physics: Our algorithm is the first to leverage self-induced
phase changes as an algorithmic tool. A key component of our algorithm is a careful token passing
mechanism ensuring a dispersion broadcast wave will always outpace a compression wave.

2012 ACM Subject Classification Theory of computation — Self-organization; Theory of computa-
tion — Random walks and Markov chains

Keywords and phrases Foraging, self-organized particle systems, compression, phase changes
Digital Object Identifier 10.4230/LIPIcs.DISC.2022.51
Related Version Full Version: http://arxiv.org/abs/2208.10720

Funding Shunhao Oh: NSF award CCF-1733812 and ARO MURI award W911NF-19-1-0233
Dana Randall: NSF awards CCF-1733812 and CCF-2106687 and ARO MURI award W911NF-19-1-
0233

Andréa W. Richa: NSF awards CCF-1733680 and CCF-2106917 and ARO MURI award W911NF-
19-1-0233

1 The Foraging Problem

Collective behavior of interacting agents is a fundamental, nearly ubiquitous phenomenon
across fields, reliably producing rich and complex coordination. Examples at the micro- and
nano-scales include coordinating cells (including our own immune system or self-repairing
tissue and bacterial colonies), micro-scale swarm robotics, and interacting particle systems
in physics; at the macro scale it can represent flocks of birds, coordination of drones, and
societal dynamics such as segregation. Common properties of many of these disparate systems
is that they 1) respond to simple environmental conditions and 2) undergo phase changes
as parameters of the systems are slowly modified, allowing collectives to gracefully toggle
between two often dramatically different macroscopic states.

In the foraging problem, we consider a collective of “ants” (i.e., particles) with limited
computational, communication and movement capabilities that reside on the triangular
lattice, along with a food particle (i.e., any resource in the environment, e.g., an energy
source) that may be placed at any point, removed, or shifted at arbitrary times, possibly
adversarially. We would like the particles to consistently self-organize, using only local
? Shunhao Oh, Dana% Randall, and Andréa W. Richa;

37 icensed under Creative Commons License CC-BY 4.0
36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 51; pp. 51:1-51:3

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:ohoh@gatech.edu
mailto:randall@cc.gatech.edu
mailto:aricha@asu.edu
https://doi.org/10.4230/LIPIcs.DISC.2022.51
http://arxiv.org/abs/2208.10720
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

51:2

Foraging in Particle Systems via Self-Induced Phase Changes

interactions, such that if a food particle remains in a position long enough, the particles
should transition to a gather phase in which many collectively form a single large component
with small perimeter around the food. Alternatively, if no food particle has existed recently,
the particles should undergo a self-induced phase change and switch to a search phase in
which they distribute themselves randomly throughout the lattice region to search for food.
Unlike previous approaches, this process should be indefinitely repeatable, withstanding
overlapping waves of phase changes that may interfere with each other. Like a physical
phase change, microscopic changes such as the deletion or addition of a single food particle
should trigger these macroscopic, system-wide transitions. This foraging problem has several
fundamental application domains, including search-and-rescue operations in swarms of nano-
or micro-robots; health applications (e.g., a collective of nano-sensors that could search for,
identify, and gather around a foreign body to isolate or consume it, then resume searching,
etc.); and finding and consuming/deactivating hazards in a nuclear reactor or a minefield.

2 Model and Preliminaries

In this work, we consider an abstraction of a self-organizing particle system (SOPS), where
particles sit on vertices of a finite region of the triangular lattice. We assume particles have
constant-size memory, but lack global orientation or any other global information beyond a
common chirality. Particles communicate by sending tokens to their nearest neighbors in
the lattice, where a token is a constant-size piece of information. Individual particles are
activated according to their own Poisson clocks, possibly with different rates, and perform
instantaneous actions upon activation. Particles are aware of their own and their neighbors’
current states and when a particle is activated, it may do a bounded amount of computation,
send at most one token (not necessarily identical) to each of its neighbors, and choose one of
its six neighbors in the lattice to see if it is unoccupied and move there.!

Cannon et al. [1] introduced a related non-adaptive compression and expansion algorithm
based on an input parameter A\ that defines system-wide behavior. When X is sufficiently
small, the system is in an expansion phase, desirable to search for food, while when A is
large, the system will be in a compression phase, desirable when food has been discovered.?
More specifically, using insight from the Ising model in statistical physics, the authors proved
that adding a ferromagnetic attraction A between particles suffices to stochastically lead
the particles in a SOPS to an a-compressed configuration with high probability, where the
constant a > 1 determines an upper bound on the ratio of the configuration perimeter by the
minimum possible system perimeter. The Markov chain is defined so that each configuration
o appears with probability 7(c) = AMF(9)/Z at stationarity, where |E(c)| is the number of
edges in o and Z is the normalizing constant. It is rigorously shown that the SOPS will reach
an a-compressed configuration at stationarity, for some constant a > 1, if the attraction
force X is strong enough. Moreover, it is also shown that when the attraction forces are small,
the configurations will nearly maximize their perimeter and disperse if particles are allowed
to disconnect [2], as we do in our algorithm.

Our challenge here is to self-induce these system-wide behaviors upon the discovery or
depletion of a single food particle. When food is not present, particles communicate to
transition to the search phase by collectively lowering A\, and when food is discovered they
transition to the gather phase, collectively raising A to compress around the food.

L Our model can be seen as an abstraction of the (canonical) Amoebot model under a sequential scheduler.
2 A similar algorithm for the more general setting where particles are allowed to disconnect also provably
exhibits a bifurcation, but the notion of compression becomes more complicated [2].

S. Oh, D. Randall, and A. W. Richa

3 The Adaptive Foraging Algorithm

We present the first rigorous local distributed algorithm for solving the foraging problem, the
Adaptive a-Compression algorithm. There are two main (micro-level) states each particle
can be in at any point in time, dispersion or compression, corresponding to the macro-level
search and gather phases respectively. To switch to the search phase, particles are induced to
collectively transition to the dispersion state. Likewise, to switch to gather, particles are
induced to transition towards compression. Particles in the dispersion state move around
in a process akin to a simple exclusion process, where they perform a random walk while
avoiding two particles occupying the same site. Particles enter a compression state when food
is found and this information is propagated in the system, resulting in the system gathering
and forming a low-perimeter cluster (compressing) around the food. We prove the following:

» Theorem 1. Starting from any valid configuration, in the presence of a single food particle
that remains static for a sufficient amount of time, the Adaptive c-Compression algorithm
will converge to an a-compressed configuration, for any o > 1, connected to the food particle
at stationarity with high probability. Conversely, if there are no food particles in the system
for a sufficient amount of time, the system converges to a uniform distribution over all
possible assignments of particles to sites on the lattice.

We believe Adaptive a-Compression is the first adaptive algorithm to leverage a self-
induced phase change as an algorithmic tool. The challenge is to share information locally
and autonomously so that eventually most particles enter the correct state and the system
exhibits the appropriate phase behavior. We rely on token passing for the system to be able
to collectively transition between (multiple, possibly overlapping and interfering) gather and
search phases: Each particle locally adjusts its ferromagnetic bias parameter A to be high
when it receives compression tokens, which are continuously generated by any particle in
contact with the food source, and to be low when it receives dispersion tokens, which are
flooded through the network once a food particle disappears. In order to ensure that, our
token passing scheme needs to be carefully engineered so that when the food particle moves
or vanishes, the rate at which the compressed cluster around the food dissipates (via particles
returning to the dispersion state) outpaces the rate at which the cluster may continue to grow
(via particles joining the cluster in a compression state), and thus that the broadcast wave of
dispersion tokens will always outpace the broadcast wave of compression tokens, ensuring
that whenever we have a situation where two phase change waves compete, the dispersion
wave will be the one which wins out in the end. This is done via a novel potential function
argument that carefully sets the dispersion and compression token passing probabilities.

We note that while Adaptive a-Compression is very similar to the non-adaptive compres-
sion algorithm [1] in the presence of food, allowing particles to compress around a single
fixed point (the food particle), this is a nontrivial generalization. Even proving ergodicity
of the underlying Markov Chain in the presence of a fixed (food) point from which other
particles cannot disconnect is quite complicated and does not follow directly from [1].

—— References

1 Sarah Cannon, Joshua J. Daymude, Dana Randall, and Andréa W. Richa. A Markov chain
algorithm for compression in self-organizing particle systems. In Proceedings of the 2016 ACM
Symposium on Principles of Distributed Computing, PODC ’16, pages 279-288, 2016.

2 Shengkai Li, Bahnisikha Dutta, Sarah Cannon, Joshua J. Daymude, Ram Avinery, Enes Aydin,
Andréa W. Richa, Daniel I. Goldman, and Dana Randall. Programming active granular matter
with mechanically induced phase changes. Science Advances, 7(17):eabe8494, 2021.

51:3

DISC 2022

	1 The Foraging Problem
	2 Model and Preliminaries
	3 The Adaptive Foraging Algorithm

