Almost Universally Optimal Distributed Laplacian
Solvers via Low-Congestion Shortcuts*

Ioannis Anagnostides &

Carnegie Mellon University, Pittsburgh, PA, USA

Christoph Lenzen &
CISPA Helmholtz Center for Information Security, Saarbriicken, Germany

Bernhard Haeupler =
ETH Ziirich, Switzerland

Goran Zuzic &
ETH Ziirich, Switzerland

Themis Gouleakis &
National University of Singapore, Singapore

—— Abstract

In this paper, we refine the (almost) existentially optimal distributed Laplacian solver recently
developed by Forster, Goranci, Liu, Peng, Sun, and Ye (FOCS ‘21) into an (almost) universally
optimal distributed Laplacian solver.

Specifically, when the topology is known (i.e., the Supported-CONGEST model), we show
that any Laplacian system on an n-node graph with shortcut quality SQ(G) can be solved after
n°MSQ(G) log(1/¢) rounds, where ¢ is the required accuracy. This almost matches our lower
bound that guarantees that any correct algorithm on G requires ﬁ(SQ(G)) rounds, even for a crude
solution with € < 1/2. Several important implications hold in the unknown-topology (i.e., standard
CONGEST) case: for excluded-minor graphs we get an almost universally optimal algorithm that
terminates in D - n°® log(1/¢) rounds, where D is the hop-diameter of the network; as well as
n°M log(1/e)-round algorithms for the case of SQ(G) < n°), which holds for most networks of
interest. Conditioned on improvements in state-of-the-art constructions of low-congestion shortcuts,
the CONGEST results will match the Supported-CONGEST ones.

Moreover, following a recent line of work in distributed algorithms, we consider a hybrid
communication model which enhances CONGEST with limited global power in the form of the
node-capacitated clique (NCC) model. In this model, we show the existence of a Laplacian solver
with round complexity n°") log(1/e).

The unifying thread of these results, and our main technical contribution, is the study of a novel
p-congested generalization of the standard part-wise aggregation problem. We develop near-optimal
algorithms for this primitive in the Supported-CONGEST model, almost-optimal algorithms in
(standard) CONGEST (with the additional overhead due to standard barriers), as well as a simple
algorithm for bounded-treewidth graphs with a quadratic dependence on the congestion p. This
primitive can be readily used to accelerate the Laplacian solver of Forster, Goranci, Liu, Peng, Sun,
and Ye, and we believe it will find further independent applications in the future.
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1 Introduction

The Laplacian paradigm has emerged as one of the cornerstones of modern algorithmic graph
theory. Integrating techniques from combinatorial optimization with powerful machinery
from numerical linear algebra, it was originally pioneered in [47] who established the first
nearly-linear time solvers for a (linear) Laplacian system. Thereafter, there has been a
considerable amount of interest in providing simpler and more efficient solvers [34, 33, 37].
Indeed, this framework has led to some state of the art algorithms for a wide range of
fundamental graph-theoretic problems; e.g., see [5, 40, 10, 48, 32, 43, 4], and references
therein. In the distributed setting, a major breakthrough was very recently made in [18]. In
particular, the authors developed a distributed algorithm that solves any Laplacian system
on an n-node graph after n°Y)(\/n + D) log(1/¢) rounds of the standard CONGEST model,
where D represents the hop-diameter of the underlying network and € > 0 is the error of
the solver. Moreover, they showed that their algorithm is existentially optimal, up to the
n°() factor, establishing a lower bound of ﬁ(\/ﬁ + D) rounds via a reduction from the s —¢
connectivity problem [13].

This existential lower bound in the CONGEST model of distributed computing should
hardly come as any surprise. Indeed, it is well-known by now that a remarkably wide range
of global optimization problems, including minimum spanning tree (MST), minimum cut
(Min-Cut), maximum flow, and single-source shortest paths (SSSP), require Q(y/n 4 D)
rounds® [41, 15, 13]. The same limitation generally applies to any non-trivial approximation
and even under randomization. Nonetheless, these lower bounds are constructed on some
pathological graph instances that arguably do not occur in practice. This begs the question:
Can we obtain more refined performance guarantees based on the underlying topology of
the communication network? The framework of low-congestion shortcuts, introduced by
[20], demonstrated that bypassing the notorious (y/n) lower bound is possible: MST and
Min-Cut on planar graphs can be solved in 5(D) rounds. This is crucial, given that in many
graphs of practical significance the diameter is remarkably small; e.g., D = polylog(n) (as is
folklore, this holds for most social networks), implying exzponential improvements over generic
algorithms used for general graphs. In the context of the distributed Laplacian paradigm, we
raise the following question:

Is there a faster distributed Laplacian solver under “non-worst-case” families of
graphs in the CONGEST model?

The only known technique in distributed computing for designing algorithms that go
below the /n-bound is the low-congestion shortcut framework of Ghaffari and Haeupler [20],
and the large ecosystem of tools built around it [25, 26, 29, 21, 50, 23, 27]. However, the “p-
congested minor” primitive introduced and extensively used in the novel distributed Laplacian

1 As usual, we use the notation 5() and ﬁ() to suppress polylogarithmic factors on n.
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solver [18] is out of reach from the current set of tools available in the low-congestion shortcut
framework. We address this issue by introducing an analogous primitive called p-congested
part-wise aggregation, which greatly simplifies the interface used by [18]. We then extend the
low-congestion shortcut framework with new techniques that enables it to near-optimally solve
this primitive: we provide both an algorithm that utilizes the very recent hop-constrained
expander decompositions for shortcut construction [27] to solve the primitive in general
graphs with a linear dependence on p, as well as a very simple algorithm with a quadratic
p-dependence for bounded-treewidth graphs. Finally, we settle our original question in
the positive by establishing that our new primitive can be readily used to accelerate the
distributed Laplacian solver for non-worst-case topologies.

Specifically, we show our new techniques are sufficient to lift the existentially optimal
algorithm [18] to a universally optimal algorithm — modulo n°(") factor inherent in the prior
approach — for distributedly solving a Laplacian system, meaning that, for any topology, our
algorithm is essentially as fast as possible. In other words, for any graph, our algorithm almost
matches the best possible (correct) algorithm for that graph. This result is unconditional
in essentially all settings of interest (see Theorem 2 for details), but relies on conjectured
improvements of current state-of-the-art constructions of low-congestion shortcuts to achieve
unqualified universal optimality — like all other results in the area.

Furthermore, another concrete way of bypassing the ?2(\/5 + D) lower bound, besides
investigating non-worst-case families of graphs, is by enhancing the local communication
network with a limited amount of global power. Indeed, research concerning hybrid net-
works was recently initiated in the realm of distributed algorithms [3], although networks
combining different communication modes have already found numerous applications in
real-life computing systems; as such, hybrid networks have been intensely studied in other
areas of distributed computing (see [9, 49, 31], and references therein). In this paper, we
will enhance the standard CONGEST model with the recently introduced node-capacitated
clique (henceforth NCC) [2]. The latter model enables all-to-all communication, but with
severe capacity restrictions for every node. The integration of these models will be referred to
as the HYBRID model for the rest of this work. This leads to the following central question:

Is there a faster distributed Laplacian solver in the HYBRID model?

Our paper essentially settles this question by showing the same p-congested part-wise
aggregation primitive can be efficiently solved in O(p) rounds of NCC, implying an almost
optimal n°M-round distributed algorithm for solving Laplacian systems in the HYBRID
model. A conceptual contribution of our approach is that we treat both CONGEST,
Supported-CONGEST, and HYBRID in a unified way through the lens of the low-congestion
shortcut framework, by designing our algorithm using high-level primitives and leaving the
model-specific translations to the framework itself. A similar unified view of PRAM (i.e.,
parallel) and CONGEST (i.e., distributed) graph algorithms through the same lens has led
to very recent breakthroughs on long-standing open problems for both of these settings [45].

1.1 Overview of our Contributions and Techniques

The unifying thread and the main technical ingredient of our (almost) universally optimal
distributed Laplacian solvers is a new fundamental communication primitive referred to as
the congested part-wise aggregation problem. Specifically, we develop near-optimal algorithms
for solving this problem in the (Supported-)CONGEST and the NCC model (Section 3), and
then we utilize this primitive to develop almost universally optimal Laplacian solvers.

6:3
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1.1.1 The Congested Part-Wise Aggregation Problem

To introduce the congested part-wise aggregation problem, let us first give some basic
background. The aforementioned Ghaffari-Haeupler framework of low-congestion shortcuts
revolves around the so-called part-wise aggregation problem posed as follows: “The graph is
partitioned into disjoint and individually-connected parts, and we need to compute some
simple aggregate function for each part, e.g., the minimum of the values held by the nodes
in a given part” [20] (see Definition 4 for a formal definition). Importantly, it has been
shown that this primitive can be solved efficiently in structured topologies and that many
problems (including the MST, shortest path, min-cut, etc.) reduce to a small number of calls
to a part-wise aggregation oracle, leading to universally optimal algorithms. Unfortunately,
it is not clear how to reduce solving a Laplacian system to (a small number of) part-wise
aggregation calls; in this paper, we primarily address this issue.

Our first technical contribution is to extend the framework of low-congestion shortcuts by
studying a more general primitive: one that incorporates congestion (of the input parts) into
the underlying part-wise aggregation instance. More precisely, unlike the standard part-wise
aggregation problem, we allow each node to participate in up to p € Z>; aggregation parts
(see Definition 13). We later show that efficient solutions to this primitive leads to efficient
distributed Laplacian solvers.

We first remark that a natural strategy for solving congested part-wise aggregation
instances does not work: congested instances cannot, in general, be directly reduced to a
“small” collection of 1-congested instances, thereby necessitating a more refined approach.
To this end, our approach is based on “lifting” the underlying communication network G
into its p-layered version éO(p): every edge is replaced with a matching and every node
with a p-clique. The importance of this transformation is that, as we show in Lemma 15,
the p-congested part-wise aggregation problem can be reduced to a 1-congested instance
on the p-layered graph (Section 3.1.1). This is first established under the assumption that
individual parts correspond to simple paths, and then we extend our results to general parts
by following [29]. In light of this reduction, we next focus on solving the 1-congested part-wise
aggregation instance on the layered graph.

As a warm-up, we treat graphs with bounded treewidth tw(G) (Definition 11). It is known
from [26] that on a graph G with treewidth tw(G), a 1-congested part-wise aggregation
instance can be solved in O(tw(G)D) rounds of CONGEST. Keeping this in mind, we first
show that the treewidth of the p-layered graph G » can only increase by a factor of p compared
to the original graph (Lemma 19). Hence, we can solve 1-congested instances in @O(p) in
O(ptw(G)D) rounds (when the underlying network is @O(p)), which in turn allows us to
solve p-congested instances on G in O(p? tw(G)D) time in G (another p factor is necessary
to simulate @O(p) in G). This positive result poses a natural question: can we achieve similar
results on graphs with bounded minor density 0(G) (Definition 9)? However, the answer to
this question is negative: minor density can blow up even for a 2-layered planar graph (see
Observation 21), making such a result impossible.

Then, we look at arbitrary graphs G: it is known that 1-congested part-wise aggregation
instances can be solved in a number of rounds that is controlled by SQ(G), where SQ(G) is the
shortcut quality of G (a certain graph parameter we formalize in Definition 7). Specifically,
it can be solved in O(SQ(G)) rounds when the topology is known in advance? [29] and
poly(SQ(@)) - n°™) in general CONGEST [27]. The shortcut quality parameter is significant

2 This model is also known as the supported CONGEST. That is, CONGEST under the assumption
that the topology is known; see Section 2 for a formal description of the model. Our techniques also
apply in the full generality of CONGEST, as we explain in the sequel.
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since many distributed problems (including the MST, shortest path, min-cut, and — Laplacian
solving, as we show later) require €(SQ(G)) rounds in CONGEST to be solved on G [29].
Therefore, algorithms that have an upper bound close to SQ(G) are universally optimal.

With the end goal of solving the 1-congested part-wise aggregations on layered graphs
CA;,) in time controlled by SQ(G), our main result established that the shortcut quality of
the p-layered graph does not increase (modulo polylogarithmic factors) as compared to the
original graph (Theorem 22). This has a plethora of important consequences: (1) when
SQ(G) < n°M) | we can unconditionally solve p-congested part-wise aggregation instances
in p-n° CONGEST rounds using the state-of-the-art shortcut construction [27], and (2)
when the topology of G is known (i.e., Supported-CONGEST), there exists a distributed
algorithm that solves any p-congested part-wise aggregation problem in p - 5(SQ(G)) rounds
via [29]. As a consequence of our general result, the shortcut quality of any 2-layered planar
graph is 6(D) since the shortcut quality of a planar graph is 6(D) [20]. This is perhaps the
most natural example of a graph whose minor density is very far from the shortcut quality;
the only other example documented in the literature so far is that of expander graphs.

Our proof proceeds by employing alternative characterizations of the shortcut quality
in terms of certain communication tasks. Specifically, shortcut quality can be shown to be
equal (modulo polylogarithmic factors) to the following two-player max-min game: the first
(max) player chooses k sources and k sinks in the graph such that we can find k node-disjoint
paths matching the sources with the sinks; then the second (min) player finds the smallest
so-called quality @ such that there exist k£ paths matching the sources with the sinks with
the path lengths being at most ) and each edge of the underlying graph supporting at most
Q of second player’s paths. This characterization allows us to compare the shortcut quahty
of G with G as follows: take the worst-case (first player’s) set of sources and sinks in G .
PrOJect them to G and note they have node congestion p (due to the construction of G )
Then, we show we can decompose (i.e., partition) these set of sources and sinks into O(p)
pairs of sub-sources and sub-sinks that are node-disjointly connectable in G. However, each
such set enjoys paths of quality SQ(G), hence embedding each such pair in a separate layer
of G » shows that the shortcut quality of SQ(@ ) is at most O(SQ(@)). Although this general
approach improves over our result for treewidth-bounded graphs we previously described, our
approach for the latter class of graphs is substantially simpler and more suited in practice.

1.1.2 Almost Universally Optimal Laplacian Solvers

First, we note that any distributed Laplacian solver that always correctly outputs an answer
on a fixed graph G must take at least Q(SQ(G)) rounds, giving us a lower bound to compare
ourselves with. Our refined lower bound uses the hardness result recently shown by [29] for
the spanning connected subgraph problem, applicable for any (i.e., non-worst-case) graph
G. Specifically, we show that a Laplacian solver can be leveraged to solve the spanning
connected subgraph problem, thereby substantially strengthening the lower bound in [18].

» Theorem 1. Consider a graph GNwith shortcut quality SQ(G). Then, solving a Laplacian
system on G with ¢ < L requires Q(SQ(G)) rounds in both CONGEST and Supported-
CONGEST models.

On the upper-bound side, we utilize the congested part-wise aggregation primitive to
improve and refine the Laplacian solver of [18], leading to a substantial improvement in the
round complexity under structured network topologies.

6:5
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» Theorem 2. Consider any n-node graph G with shortcut quality SQ(G) and hop-diameter D.
There exists a distributed Laplacian solver with error e > 0 with the following guarantees:
In the Supported-CONGEST model, it requires n°") SQ(G)log(1/¢) rounds.
In the CONGEST model, it requires n°™® poly(SQ(G)) log(1/e) rounds.
In the CONGEST model on graphs with minor density 6, it requires n°Y§D log(1/e)
rounds.

We note that the above algorithm is almost (up to inherent n°Y) factors) universally
optimality for most settings of interest. Since it is (almost) matching the SQ(G)-lower-
bound, it is unconditionally universally optimal when the topology is known in advance (i.e.,
Supported-CONGEST). Furthermore, in standard CONGEST, we give almost universally
optimal Dn°™) log(1/e)-round algorithms for topologies that include planar graphs, no-
genus graphs, n°M-treewidth graphs, excluded-minor graphs, since all of them are graphs
with minor density §(G) = n°1). Furthermore, for the realistic case of D < n°), it holds for
most networks of interest that SQ(G) < n°®) (e.g., expanders, hop-constrained expanders, as
well as all classes mentioned earlier), for which we get n°(!) log(1/¢)-round solvers. Finally, the
conjectured improvements of the state-of-the-art of almost-optimal low-congestion shortcut
constructions would immediately lift our results to be unconditionally universally optimal in
CONGEST; this issue is orthogonal and not within the scope of this paper.

Furthermore, in HYBRID we obtain an almost optimal complexity in general graphs:

» Theorem 3. Consider any n-node graph. There exists a distributed Laplacian solver in the
HYBRID model with round complexity n°") log(1/¢), where & > 0 is the error of the solver.

This implies a remarkably fast subroutine for solving a Laplacian system in HYBRID
under arbitrary topologies. As a result, we corroborate the observation that a very limited
amount of global power can lead to substantially faster algorithms for certain optimization
problems, supplementing a recent line of work [8, 3, 35, 16, 7, 24, 36, 11]. Furthermore,
our framework based on the congested part-wise aggregation problem allows for a unifying
treatment of both (Supported-) CONGEST and HYBRID, and we consider this to be an
important conceptual contribution of our work. Indeed, as we previously explained, both of
our accelerated Laplacian solvers rely on faster algorithms for solving the congested part-wise
aggregation problem. In particular, for (Supported-)CONGEST we have already described
our approach in detail, while in the HYBRID model we employ certain communication
primitives developed in [2] for dealing with congestion in part-wise aggregations. A byproduct
of our results is that the framework of low-congestion shortcuts interacts particularly well
with the HYBRID model, as was also observed in [1].

1.2 Further Related Work

Our main reference point is the recent Laplacian solver of [18] with ezistentially almost-
optimal complexity of n°)(/n 4 D)log(1/¢) rounds, where £ > 0 represents the error of
the solver. Specifically, they devised several new ideas and techniques to circumvent certain
issues which mostly relate to the bandwidth restrictions of the CONGEST model; these
building blocks, as well as the resulting Laplacian solver are revisited in our work to refine
the performance of the solver. We are not aware of any previous research addressing this
problem in the distributed context. On the other hand, the Laplacian paradigm has attracted
a considerable amount of interest in the community of parallel algorithms [44, 6].

Research concerning hybrid communication networks in distributed algorithms was re-
cently initiated by [3]. Specifically, they investigated the power of a model which integrates the
standard LOCAL model [38] with the recently introduced node-capacitated clique (NCC) [2],
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focusing mostly on distance computation tasks. Several of their results were subsequently
improved and strengthened in subsequent works [35, 7] under the same model of computation.
In our work we consider a substantially weaker model, imposing a severe limitation on the
communication over the “local edges”. This particular variant has been already studied in
some recent works for a variety of fundamental problems [16, 24].

The NCC model, which captures the global network in all hybrid models studied thus
far, was introduced in [2] partly to address the unrealistic power of the congested clique
(CLIQUE) [39]. In the latter model each node can communicate concurrently and independ-
ently with all other nodes by O(logn)-bit messages. In contrast, the NCC model allows
communication with O(logn) (arbitrary) nodes per round. As a result, in the HYBRID
model and under a sparse local network, only é(n) bits can be exchanged overall per round,
whereas CLIQUE allows for the exchange of up to é(ng) (distinct) bits. As evidence for the
power of CLIQUE we note that even slightly super-constant lower bounds would give new
lower bounds in circuit complexity, as implied by a simulation argument in [14]. Finally, we
remark a subsequent work that leverages tools from the Laplacian paradigm in the broadcast
variant of the congested clique [17].

2 Preliminaries

General notation. We denote with [k] := {1,2,...,k}. Graphs throughout this paper
are undirected. The nodes and the edges of a given graph G are denoted as V(G) and
E(G), respectively. We also use n := |V(G)| for brevity. The graphs are often weighted, in
which case we assume (as is standard) that for all e € E(G),w(e) € {1,2,...,poly(n)}. We
will denote the hop-diameter of a graph G with D(G) (the hop-diameter ignores weights).
Moreover, we use AW B to denote the multiset union, i.e., each element is repeated according
to its multiplicity; this operation corresponds to disjoint unions when A N B = ().

Communication models. The communication network consists of a set of @ entities with
] :={1,2,...,7} being the set of their IDs, and a local communication topology given by a
graph G.*> We define D := D(G) to be the (hop-)diameter of the underlying network. At
the beginning, each node knows its own unique O(logn)-bit identifier as well as the weights
of the incident edges. Communication occurs in synchronous rounds, and in every round
nodes have unlimited computational power to process the information they possess. We will
consider models with both local and global communication modes.

The local communication mode will be modeled with the CONGEST model [42] and
Supported-CONGEST model [46], for which in each round every node can exchange an
O(logm)-bit message with each of its neighbors in G via the local edges. In the (standard)
CONGEST model, each node v € V(G) initially only knows the identifiers of each node in
v’s own neighborhood, but has no further knowledge about the topology of the graph. On
the other hand, in the Supported-CONGEST model, all nodes know the entire topology of
G upfront, but not the input.

The global communication mode will be modeled using NCC' [2], for which in each round
every node can exchange O(log7)-bit messages with O(log7) arbitrary nodes via global
edges. If the capacity of some channel is exceeded, i.e., too many messages are sent to the

3 To avoid any possible confusion we point out that, for consistency with the nomenclature of [18], we
henceforth reserve G to denote the underlying communication network, while G is used in statements
regarding arbitrary graphs.
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same node, it will only receive an arbitrary (potentially adversarially selected) subset of the
information based on the capacity of the network; the rest of the messages are dropped. In
this context, we will let HYBRID be the integration of CONGEST and NCC (i.e., nodes
have both a local and a global communication mode at their disposal).

The performance of a distributed algorithm will be measured in terms of its round
complexity — the number of rounds required so that every node knows its part of the output.
For randomized algorithms it will suffice to reach the desired state with high probability.* We
will assume throughout this work that nodes have access to a common source of randomness;
this comes without any essential loss of generality in our setting [19]. When talking about a
distributed algorithm for a specific problem (e.g., Laplacian solving, part-wise aggregation,
etc.) we assume the input is appropriately distributedly stored (i.e., each node will know
its own part) and, upon termination, it will be required that the output is appropriately
distributedly stored. The appropriate way to distributedly store the input and output will
be explained in the problem definition.

Low-Congestion Shortcuts. A recurring scenario in distributed algorithms for global
problems (e.g. MST) boils down to solving the following part-wise aggregation problem:

» Definition 4 (Part-Wise Aggregation Problem). Consider an n-node graph G whose node
set V(G) is partitioned into k (disjoint) parts Py W --- W P, C V(G) such that each induced
subgraph G[P;] is connected. In the part-wise aggregation problem, each node v € V is given
its part-ID (if any) and an O(logn)-bit value x(v) as input. The goal is that, for every
part Py, all nodes in P; learn the part-wise aggregate P, ¢ p, (w), where P is an arbitrary
pre-defined aggregation function.

Throughout this paper, we will assume that the aggregation function €p is commutative and
associative (e.g. min, sum, logical-AND), although this is not strictly needed (e.g., see [23]).
To solve such problems, [20] introduced a natural combinatorial graph structure that they
refer to as low-congestion shortcuts.

» Definition 5 (Low-Congestion Shortcuts). Consider a graph G whose node set V(G) is
partitioned into k (disjoint) parts Py W --- W P, C V(G) such that each induced subgraph
G[P;] is connected. A collection of subgraphs Hy, ..., Hy is a shortcut of G with congestion
¢ and dilation d if the following properties hold: (i) the (hop) diameter of each subgraph
G[P;] U H; is at most d, and (ii) every edge is included in at most ¢ many of the subgraphs
H;. The quantity Q = ¢+ d will be referred to as the quality of the shortcut.

lmportantly a shortcut of quality @ allows us to solve the part-wise aggregation problem
in O(Q) rounds of CONGEST, as formalized below.

» Proposition 6. Suppose that Py, ..., Py is any part-wise aggregation instance in a commu-
nication network G. Given a shortcut of quality Q, we can solve with high probability the
part-wise aggregation problem in O(Q) CONGEST rounds.

Shortcut Quality and Construction of Shortcuts. Shortcut quality, introduced below, is a
fundamental graph parameter that has been proven to characterize the complexity of many
important problems in distributed computing.

4 We say that an event holds with high probability if it occurs with probability at least 1 — 1/n for a
(freely choosable) constant ¢ > 0.
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» Definition 7. Given a graph G = (V, E), we define the shortcut quality SQ(G) of G as
the optimal (smallest) shortcut quality of the worst-case partition of V into disjoint and
connected parts PLW PoW ... P, CV.

For fundamental problems such as MST, SSSP, and Min-Cut any correct algorithm
requires (SQ(G)) rounds on any network G, even if we allow randomized solutions and (non-
trivial) approximation factors. In fact, this limitation holds even when the network topology
G is known to all nodes in advance [29]. We remark that Q(D(G)) < SQ(G) < O(D(G)+v7),
and the upper bound is known to be tight in certain (pathological) worst-case graph instances.

Moreover, assuming fast distributed algorithms for constructing shortcuts of quality
competitive with SQ(G), all of the aforementioned problems can be solved in O(SQ(G))
rounds [20, 50, 23]. However, the key issue here is the algorithmic construction of the
shortcuts upon which the above papers rely. While there has been a lot of recent progress in
this regard, current algorithms are quite complicated and have sub-optimal guarantees. We
recall below these state-of-the-art SQ(G)-competitive construction results.

» Theorem 8. There exists a distributed algorithm that, given any part-wise aggregation
instance on any m-node graph G, computes with high probability a shortcut with the following
guarantees:
In CONGEST, the shortcut has quality poly(SQ(é)) 71°M) and the algorithm terminates
in poly (SQ(G)) - m°M) rounds [27].
In Supported-CONGEST, the shortcut has quality 6(SQ(§)) and the algorithm terminates
in O(SQ(@)) rounds [29].

Universal Optimality. A distributed algorithm is said to be a-universally optimal if, on
every network graph G, it is a-competitive with the fastest correct algorithm on G [29].
Even the existence of such algorithms is not at all clear as it would seem possible that vastly
different algorithms are required to leverage the structure of different networks. Nevertheless,
a remarkable consequence of Theorem 8 is that in Supported-CONGEST we can design
5(1)—universally optimal algorithms for many fundamental optimization problems. Moreover,
efficient shortcut construction is the only obstacle towards achieving these results in the full
generality of CONGEST, which is an orthogonal issue and out of scope for this paper. Still,
the aforementioned results are sufficient to design 7°")-universally optimal algorithms on
graphs that have shortcut quality SQ(G) = m°(*).

Graphs Excluding Dense Minors. It turns out that the crucial issue of efficient shortcut
construction can be resolved with a near-optimal, simple, and even deterministic algorithm
for the rich class of graphs with bounded minor density. Formally, let us first recall the
following definition.

» Definition 9 (Minor Density). The minor density 6(G) of a graph G is defined as

E/
§(G) = max { |V/I : H = (V',E'") is a minor ofG} :
Any family of graphs closed under taking minors (such as planar graphs) has a constant

minor density. For such graphs, [21] established efficient shortcut construction:
» Theorem 10 ([21]). Any graph G with hop-diameter D and minor density 6(G) admits

shortcuts of quality O(8D), which can be constructed with high probability in O(8D) rounds
of CONGEST.
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Some of our results apply for communication networks with bounded treewidth, so let us
recall the following definition.

» Definition 11 (Tree Decomposition and Treewidth). A tree decomposition of a graph G is a
tree T with tree-nodes X1, ..., Xy, where each X; is a subset of V(G) satisfying the following
properties:

L Vv=U" X;

2. For any node u € V(G), the tree-nodes containing u form a connected subtree of T';

3. For every edge {u,v} € E(G), there exists a tree-node X; which contains both u and v.
The width w of the tree decomposition is defined as w = max;ep) |Xi| — 1. Moreover,
the treewidth tw(G) of G is defined as the minimum of the width among all possible tree
decompositions of G.

Bounded-treewidth graphs inherit all of the nice properties guaranteed by Theorem 10,
as implied by the following well-known fact.

» Lemma 12. For any graph G, 6(G) < tw(G).

3 The Congested Part-Wise Aggregation Problem

This section is concerned with a congested generalization of the standard part-wise aggregation
problem (Definition 4), formally introduced below.

» Definition 13 (Congested Part-Wise Aggregation Problem). Consider an n-node graph G
with a collection of k subsets of nodes Py, ..., P, C V(G) called parts such that each induced
subgraph G|P;] is connected and each node v € V(G) is contained in at most p € Z>1 many
parts, i.e., Vo € V(G) |{i: P; 2 v}| < p. In the p-congested part-wise aggregation problem,
each node v is given the following as input: for each part P; > v node v knows the part-ID i
and an O(log n)-bit part-specific value x;(v). The goal is that, for each part P;, all nodes in P;
learn the part-wise aggregate @wePi x;(w), where @ is a pre-defined aggregation function.

This congested generalization of the standard part-wise aggregation problem that we
study in this section turns out to be a central ingredient in our refined Laplacian solver; this
is further explained in Section 4. The remainder of this section is organized as follows. In
Section 3.1 we establish near-optimal algorithms for solving congested part-wise aggregations
in CONGEST, which is also the main focus of this section. We conclude by pointing out
the construction for NCC in Section 3.2. Due to space limitations, all the omitted proofs
are deferred to the full version of this paper.

3.1 Solving Congested Instances in the CONGEST Model

The first natural strategy for solving the p-congested part-wise aggregation problem of
Definition 13 is through a reduction to poly(p) 1-congested instances. However, this approach
immediately fails even if we allow p = 2. Indeed, there exist congested part-wise aggregation
instances for which every two (distinct) parts share a common node, even when p = 2, leading
to the following observation.

» Observation 14. For an infinite family of values T, there exists an M-node planar graph G
and a 2-congested part-wise aggregation instance T with k = O(\/7) parts such that reducing
T to the union of k' 1-congested part-wise aggregation instances on G requires k' = Q(v/7).
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Figure 1 A 2-congested part-wise aggregation problem on a 6 X 6 grid (the instance immediately
extends to an v/7z X v/7 topology). Different colors highlight different parts of the instance.

Such a pattern is illustrated in Figure 1. Indeed, in that 2-congested part-wise aggregation
instance every two distinct parts share a common node. As a result, directly employing a
1-congested part-wise aggregation oracle is of little use since it would introduce an overhead
depending on the number of parts. In light of this, we develop a more refined approach that
leverages what we refer to as the layered graph.

3.1.1 The Layered Graph

Here we introduce the layered graph (A?p, associated with the underlying graph G. Then, we
reduce any p-congested part-wise aggregation on G to a l1-congested instance on Go(p)-

e

Figure 2 An example of a transformation from G to the layered graph ép with p = 3. We have
highlighted with different colors different layers of the graph.

The Layered Graph. Consider an underlying network G and some p € Z>1, corresponding to
the congestion parameter in Definition 13. The layered graph G » is constructed in the following
way. First, we let @p be a disjoint union of p copies of G (called layers), namely G1, Ga, . . . ,ép.
Each node v € V(G) is associated with its copies vy, vs,...,v, € V(@p). We also add an
edge between each two copies that originate from the same node (i.e., we add a clique to G P

on the set of copies associated with the same node v € V(G)); this construction is illustrated
in Figure 2. The layered graph induces a natural projection operation 7 : V(@p) — V(GQ)
which maps a copy v; to its original node v = w(v;). Furthermore, we often talk about
simulating G , in G, by which we mean that each node v simulates — learns all the inputs and
can generate all outputs — for its copies v1,...,v,. Throughout this paper, we will assume
that p = poly(m) so that any O(logn)-bit message on ép can be sent within O(1) rounds in
G’ this also keeps the O-notation well-defined.
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The main goal of this section is to establish that the p-congested part-wise aggregation
problem on G can be reduced to a 1-congested instance on Go(p), as formalized below.

» Lemma 15 (Unrestricted Congested Part-Wise Aggregation). Let G be an Ti-node graph and
let Z>1 3 p < poly(m). Suppose that any (1-congested) part-wise aggregation on éo(p) can be
solved with a T-round CONGEST algorithm on éo(p), Then, there exists an 6(,0 - T)-round
CONGEST algorithm on G that solves any p-congested part-wise aggregation instance on G.

Towards establishing this reduction, we first point out that any CONGEST algorithm
on G, can be simulated with only a p multiplicative overhead in the round complexity.

» Lemma 16 (Simulating CA?,, in G). For any G and any Z>1 > p < poly(n), we can simulate
any T-round CONGEST algorithm on G, with a (p - 7)-round CONGEST algorithm on G.

Furthermore, we will use a folklore result showing how to color a (multi)graph of maximum
degree A in O(A) colors in O(logn) rounds of CONGEST. By multigraph here we simply
mean that there can be multiple parallel edges between the same pair of nodes, and every
such edge can carry an independent message per round.

» Lemma 17 (Folklore, [30]). Given a (multi)graph G with n nodes and mazimum degree
A < poly(n), there exists a randomized CONGEST algorithm that colors the edges of G with
O(A) colors and completes in O(logn) rounds, with high probability. The coloring is proper,
i.e., two edges that share an endpoint are assigned a different color.

Using this lemma, we first prove a version of our main reduction (Lemma 15), but with
the slight twist that we restrict each part of the p-congested part-wise aggregation problem
to be a simple path.

» Lemma 18 (Path-Restricted Congested Part-Wise Aggregation). Let G be an mi-node graph
and let Z=1 > p < poly(m). Suppose that there exists a T-round CONGEST algorithm
solving the (1-congested) part-wise aggregation on éo(p). Then, there exists an 5(p~7’)-round
CONGEST algorithm on G that solves any p-congested part-wise aggregation instance on G
when each part is restricted to be a simple path® (nodes are not repeated in simple paths).

Finally, our reduction in Lemma 15 follows by reformulating [29, Lemma 7.2].

3.1.2 Treewidth-Bounded Graphs

Here we leverage the reduction we established in Lemma 15 to obtain a simple algorithm
for solving the congested part-wise aggregation problem in treewidth-bounded graphs. The
crucial observation is that the treewidth of the layered graph can only grow by a factor of p
compared to the treewidth of the underlying graph, as we show below.

» Lemma 19. If the treewidth of G is tw(G), then tw(G,) < ptw(G) +p— 1.

Combining this guarantee with Lemmas 12 and 15 and Theorem 10, we obtain the
following immediate consequence.

» Corollary 20. Let G be an Ti-node communication network of diameter at most D and

treewidth tw(G). Then, we can solve with high probability any p-congested part-wise aggrega-
tion problem in G within O(p? - tw(G) - D) rounds of CONGEST.

5 Le., there exists a simple path traversing all the nodes of the part, and each node knows the corresponding
incident edges of that path.
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Minor Density in the Layered Graph. In light of Lemma 19, a natural question is whether
an analogous bound holds with respect to the minor density of the underlying graph; i.e.,

~

whether §(G,) = poly(p)d(G). Unfortunately, this is not possible, as illustrated in Figure 3.

» Observation 21. There exists an n-node graph G with minor density 6(G) = O(1), but its
2-layered version Go has minor density 6(G2) = Q(v/n).

C, R,
Cy Ry
Cs R3

Figure 3 The layered graph ép of a 3 x 3 grid with every node having congestion p = 2 (left),
and a minor of G, induced by the connected components {C1, C2,Cs, R1, R2, Rs} (right).

3.1.3 General Graphs

We conclude with our main result of Section 3.1: a near-optimal distributed algorithm for
solving the p-congested part-wise aggregation problem in general graphs. In light of our
reduction in Lemma 15, the technical crux is to control the degradation in the shortcut
quality incurred by the transformation into the layered graph. Surprisingly, we show that
the shortcut quality of G » does not increase by more than a polylogarithmic factor even
when the number of layers is polynomial:

» Theorem 22. For any m-node graph G and any Z>1 > p < poly(n), we have that
SQ(G,) = 0(SQ(G)).

This theorem improves over our previous result for treewidth-bounded graphs (Lemma 19)
since the latter guarantee inevitably induces a linear factor of p in the shortcut quality of
@p. While this will not affect the asymptotic performance of the Laplacian solver, this
improvement might prove to be important for future applications. Assuming that we have
shown Theorem 22, we can then utilize the efficient shortcut constructions given in Theorem 8
to solve p-congested part-wise aggregations on any graph.

» Corollary 23. There exists a randomized distributed algorithm that, for any m-node graph
G and p € Z>1 < poly(m), solves with high probability any p-congested part-wise aggregation
instance on G with the following guarantees:

In the CONGEST, the algorithm terminates in at most p - poly(SQ(é)) 1M rounds.

In the CONGEST model on graphs with minor density J, it requires 5(p -6+ D) rounds.
In the Supported-CONGEST, the algorithm terminates in O(p - SQ(G)) rounds.

The rest of this subsection is dedicated to the proof of Theorem 22. First, to argue about
the shortcut quality of the layered graph, we need to develop several generalized notions of
node connectivity.
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Pair Node Connectivity. Given a (multi)set of source-sink pairs P = {(s;,t;)}_; in G, we
say that P has pair node connectivity p if there exist paths Pi,..., Py, with s; and ¢; being
the endpoints of each P;, such that every node v € V(@) is contained in at most p many
paths, i.e., for all v we have |{i : V(P;) > v}| < p. If P has pair node connectivity 1 we say
that they are pair node-disjointly connectable.

Any-to-Any Node Connectivity. Suppose that we are given multisets of k sources S =
{s1,...,8K} and k sinks T = {t; ..., tx}. We say that (S,T") have any-to-any node connectiv-
ity p if there is a permutation = : {1,...,k} — {1,...,k} such that the pairs {(si,tﬁ(i))}i-“:l
have pair node connectivity p. If (S,T) have any-to-any node connectivity 1 we say they are
any-to-any node-disjointly connectable.

The following decomposition lemma states that two sets with any-to-any node connectivity
p can be decomposed into 5(p) many pairs of subsets that are any-to-any node-disjointly
connectable.

» Lemma 24. Given a graph G, suppose we are given any two multisets of nodes S C V(QG)
and T C V(G) of size k :=|S| = |T| that have any-to-any node connectivity p. Then, we can
partz'tion S = Sl (] SQ H...d SO(plogk) and T = Tl (] TQ W.. 'TO(plogk) such that |Sl| == |T‘1|
and (S;,T;) are any-to-any node-disjointly connectable.

Next, we introduce two communication tasks that will be useful for characterizing the
shortcut quality.

Multiple-Unicast Problem. Suppose that we are given k source-sink pairs P = {(s;,t;)}5_;.
The goal is to find the smallest possible completion time T such that there are k paths
Py, ..., Py for which (1) the endpoints of each P; are exactly s; and ¢;; (2) the dilation is 7,
i.e., each path P; has at most 7 hops; and (3) the congestion is 7, i.e., each edge e € E(Q) is
contained in at most 7 many paths.

Any-to-Any-Cast Problem. Suppose we are given k sources S = {s1,...,s;} and k sinks
T ={t;...,tx}. The goal is to find the smallest completion time T such that there ex-
ists a permutation 7 : {1,...,k} — {1,...,k} for which the multiple-unicast problem on

{(si,tx(s))}*_, has a completion time of at most 7.

Finally, we now recall (a reinterpretation of) a result characterizing shortcut quality from
[28, 29]. Shortcut quality was originally defined as the smallest completion-time of the worst-
case generalized (with respect to parts) multiple-unicast (i.e., multi-commodity) problem
over a pair node-disjointly connectable instance (Definition 7). Using recent network coding
gap results, we can equivalently express shortcut quality as the smallest completion-time of
the worst-case any-to-any-cast (i.e., single-commodity) problem over sources and sinks that
are any-to-any node-disjointly connectable. The formal statement follows.

» Theorem 25 ([28, 29]). Consider any graph G and let T be the worst-case completion
time of any-to-any-cast problems taken over all any-to-any node-disjointly connectable sets
(SCV(G), T CV(G)). Then, 7 = O(SQ(Q)).

Finally, combining all of the previous ingredients, we are ready to show Theorem 22.

~ ~

Proof of Theorem 22. Let S C V(G,) and T C V(G,) be any-to-any node-disjointly
connectable sets such that the completion time of any-to-any-cast between S and T' is
O(SQ(G,)) (Theorem 25). Let k := |S| = |T|, and suppose that S’ := 4, ¢{7(s)} € V(G)
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and 7" := W, {7(t)} C V(G) are the multisets induced by projecting S and T to G,
respectively. By construction of ép, S” and T' have any-to-any node connectivity p; to see
this, consider the witness paths disjointly connecting them in @p and project them to G.
Therefore, we can partition §' = ST ... 0S5 .4y and T =T W... W T}, such that
|Si] = |T!| and (S.,T}) are any-to-any node-disjointly connectable in G (Lemma 24).

By definition of shortcut quality, for each i € {1,...,0(plogk)} there exists a set of paths

(P;)LS:”1 in G between S! and T of quality (i.e., both congestion and dilation) at most SQ(G).

Then, we inject the first O(log k) collections of paths (P});, (P?);, ..., (Pjo(logk))j to the

first layer G of ép; the second O(log k) collections to the second layer 62, and so on, until
we finally inject the last O(log k) collections to the last layer G,. Note that only the paths on
the same layer interact, so both the congestion and dilation after injecting all paths into G i
O(SQ(G) log k). Hence, the same applies for the shortcut quality. Finally, to solve the any-to-
any-cast problem on S and T one might need to add an between-layer edge at the beginning
and at the end since each injected path is restricted to some adversarially chosen layer.
However, this only increases the congestion and dilation by O(1). Hence, the completion time
of any-to-any-cast between S and T is O(SQ(G)), implying that SQ((A?p) = 0(SQ(@)). =

3.2 The NCC Model

We next turn our attention to the NCC model. We observe that the p-congested part-wise
aggregation problem admits a solution in poly(p,logm) rounds of NCC. This is established
after appropriately translating the communication primitives established for NCC in [2].

» Lemma 26. Let G be an m-node graph. Then, we can solve with high probability any
p-congested part-wise aggregation problem on G after O(p + logm) rounds of NCC.

4  Almost Universally Optimal Laplacian Solvers

In this section, we relate the congested part-wise aggregation problem we studied in the
previous section with the Laplacian solver in [18]. To present a unifying analysis for both
CONGEST and HYBRID, as well as for future applications and extensions, we analyze
the distributed Laplacian solver under the following hypothesis.

» Assumption 27. Consider a model of computation which incorporates CONGEST. We
assume that we can solve with high probability any p-congested part-wise aggregation problem
in Q(p) = O(p°Q(1)) rounds, for some universal constant ¢ > 1.

One of our crucial observations is that the performance of the Laplacian solver of [18] can
be parameterized in terms of the complexity of the congested part-wise aggregation problem.
Indeed, we revisit and refine the main building blocks of their solver, leading to the following.

» Theorem 28. Consider a weighted Ti-node graph G for which Assumption 27 holds for
some Q(p) = O(p°Q), where c is a universal constant and Q = Q(G) is some parameter.
Then, we can solve any Laplacian system after n°) Qlog(1/e) rounds.

Combining this theorem with Corollary 23 and Lemma 26 yields the following immediate
consequences.
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» Theorem 2. Consider any n-node graph G with shortcut quality SQ(G) and hop-diameter D.
There exists a distributed Laplacian solver with error e > 0 with the following guarantees:

In the Supported-CONGEST model, it requires n°Y) SQ(G)log(1/¢) rounds.
In the CONGEST model, it requires n°® poly(SQ(G)) log(1/e) rounds.

In the CONGEST model on graphs with minor density 8, it requires n°3Dlog(1/e)
rounds.

» Theorem 3. Consider any n-node graph. There exists a distributed Laplacian solver in the
HYBRID model with round complezity n°®) log(1/e), where € > 0 is the error of the solver.

Lower Bound in Supported-CONGEST. Finally, we complement our positive results with
an almost-matching lower bound on any graph G, applicable even under the Supported-
CONGEST model, thereby establishing universal optimality up to an m°(") factor. Our
reduction leverages the refined hardness result established in [29] for the spanning connected
subgraph problem [13]. In this problem a subgraph H of G is specified with nodes knowing
all of the incident edges belonging to H. The goal is to let every node learn whether H is
connected and spans the entire network.

» Theorem 29 ([29]). Let A be any algorithm which is always correct with probability® at
least % for the spanning connected subgraph problem, and T(G) = maxz TA(Z;G) be the
worst-case round-complexity of A under G. Then, T(G) = Q(SQ(G)).

In this context, we show that a Laplacian solver can be leveraged to solve the spanning
connected subgraph problem, leading to the following lower bound.

» Theorem 1. Consider a graph éNu)ith shortcut quality SQ(G). Then, solving a Laplacian
system on G with & < % requires Q(SQ(G)) rounds in both CONGEST and Supported-
CONGEST models.

5 Conclusions

In this paper, we have established almost universally optimal Laplacian solvers for both the
(Supported-) CONGEST and the HYBRID model. One of our main technical contributions
was to introduce and study a congested generalization of the standard part-wise aggregation
problem, which we believe may find further applications beyond the Laplacian paradigm in
the future. For example, one candidate problem would be to refine the distributed algorithm
for max-flow due to [22].

We also hope that our accelerated Laplacian solvers will be used as a basic primitive
for obtaining improved distributed algorithms for other fundamental optimization problems
as well. For example, our results directly imply an exact O(m!/2t°() SQ(G)) algorithm
for the max-flow problem using a standard reduction [12]. On the other hand, there are
substantial obstacles in obtaining further improvements and strengthening the max-flow
algorithm of [18], which in turn relies on the more recent techniques of [40, 10], as that would
require solving exactly the single-source shortest paths problem in almost SQ(G) rounds.

6 Note that [29] only proved this for always-correct algorithms with probability 1, but the extension we
claim here follows readily from their argument.
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