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Abstract
We give practical, efficient algorithms that automatically determine the asymptotic distributed
round complexity of a given locally checkable graph problem in the [Θ(log n), Θ(n)] region, in two
settings. We present one algorithm for unrooted regular trees and another algorithm for rooted
regular trees. The algorithms take the description of a locally checkable labeling problem as input,
and the running time is polynomial in the size of the problem description. The algorithms decide if
the problem is solvable in O(log n) rounds. If not, it is known that the complexity has to be Θ(n1/k)
for some k = 1, 2, . . . , and in this case the algorithms also output the right value of the exponent k.

In rooted trees in the O(log n) case we can then further determine the exact complexity class
by using algorithms from prior work; for unrooted trees the more fine-grained classification in the
O(log n) region remains an open question.
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1 Introduction

We give practical, efficient algorithms that automatically determine the asymptotic distributed
round complexity of a given locally checkable graph problem in rooted or unrooted regular trees
in the [Θ(log n), Θ(n)] region, for both LOCAL and CONGEST models, see Section 3 for the
precise definitions. In these cases, the distributed round complexity of any locally checkable
problem is known to fall in one of the classes shown in Figure 1 [22, 21, 11, 20, 14, 31, 12].
Our algorithms can distinguish between all higher complexity classes from Θ(log n) to Θ(n).

1.1 State of the art
Since 2016, there has been a large body of work studying the possible complexities of LCL
problems. After an impressive sequence of works, the complexity landscape of LCL problems
on bounded-degree general graphs, trees, and paths is now well-understood. For example,
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Figure 1 The most efficient algorithms for the classification of distributed round complexities. In
the figure we show all possible complexity classes. Each gap between two classes corresponds to a
natural decision problem: given a locally checkable problem, determine on which side of the gap its
complexity is. For each gap we indicate whether a practical algorithm was provided already by prior
work [9], whether it is first presented in this work, or whether the existence of such a routine is still
an open question. The figure also indicates whether the algorithms are in P (polynomial time in the
size of the problem description) or in EXP (exponential time in the size of the problem description).

it is known that there are no LCLs with deterministic complexity between ω(log∗ n) and
o(log n). The proofs of some of the complexity gaps implies that the design of asymptotically
optimal distributed algorithms can be automated in certain settings, leading to a series
of research studying the computational complexity of automated design of asymptotically
optimal distributed algorithms. See Section 2 for more details.

The most recent paper [9] in this line of research presented an algorithm that takes as
input the description of an LCL problem defined in rooted regular trees and classifies the
problem into one of the four complexity classes O(1), Θ(log∗ n), Θ(log n), and nΘ(1). The
classification applies to both the LOCAL and CONGEST models of distributed computing,
both for randomized and deterministic algorithms.

To illustrate the setting of locally checkable problems in rooted regular trees, consider,
for example, the following problem, which is meaningful for rooted binary trees:

Each node is labeled with 1 or 2. If the label of an internal node is 1, exactly one of
its two children must have label 1, and if the label of an internal node is 2, both of its
children must have label 1.

We can represent it in a concise manner as a problem C = {1 : 12, 2 : 11}, where a : bc

indicates that a node of label a can have its two children labeled with b and c, in some order.
We can take such a description, feed it to the algorithm from [9], and it will output that this
problem requires Θ(log n) rounds in order to be solved in a rooted tree with n nodes.

1.2 What was missing
What the prior algorithm from [9] can do is classifying a given problem into one of the four
main complexity classes O(1), Θ(log∗ n), Θ(log n), and nΘ(1). However, if the complexity is
nΘ(1), we do not learn whether its complexity is, say, Θ(n) or Θ(

√
n) or maybe Θ(n1/10).
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There are locally checkable problems of complexity Θ(n1/k) for every k = 1, 2, . . . , and there
have not been any practical algorithm that would determine the value of the exponent k for
any given problem.

Furthermore, the algorithm from [9] is only applicable in rooted regular trees, while the
case of unrooted trees is perhaps even more interesting.

It has been known that the problem of distinguishing between e.g. Θ(n) and Θ(
√

n) is
in principle decidable, due to the algorithm of [20]. This algorithm is, however, best seen
as a theoretical construction. To the best of our knowledge, nobody has implemented it,
there are no plans of implementing it, and it seems unlikely that one could classify any
nontrivial problem with it using any real-world computer, due to its doubly exponential time
complexity. This is the missing piece that we provide in this work.

1.3 Contributions and motivations
We present polynomial-time algorithms that determine not only whether the round complexity
of a given LCL problem is Θ(n1/k) for some k, but they also determine the exact value of k.
We give one algorithm for the case of unrooted trees and one algorithm for the case of rooted
trees.

Our algorithms not only determine the asymptotic round complexity, but they also
output a description of a distributed algorithm attaining this complexity. If the given LCL
problem Π has optimal complexity Θ(n1/k), then our algorithms will output a description
of a deterministic distributed algorithm that solves Π in O(n1/k) rounds in the CONGEST
model. Similarly, if the given LCL problem Π has optimal complexity O(log n), then our
algorithms will output a description of a deterministic distributed algorithm that solves Π in
O(log n) rounds in the CONGEST model.

We have implemented both algorithms for the case of 3-regular trees, the proof-of-concept
implementations are freely available online,1 and they work fast also in practice.

From a practical point of view, together with prior work from [9], there is now a practical
algorithm that is able to completely determine the complexity of any LCL problem in rooted
regular trees.2 In the case of unrooted regular trees deciding between the lower complexity
classes below o(log n) remains an open question.

From a theoretical point of view, this work significantly expands the class of LCL problems
whose optimal complexity is known to be decidable in polynomial time. See Figure 1 for a
summary of the current state of the art on the classification of LCL complexities for regular
trees, showing where the new algorithms are applicable and where the state of the art is
given by existing results.

We note that the problem of determining the optimal complexity of an LCL problem is
computationally hard in general: It is undecidable in general [37], EXPTIME-hard even for
bounded-degree trees [20], and PSPACE-hard even for paths and cycles with input labels [2].
Hence, in order to understand whether polynomial-time algorithms are even possible, we
must restrict our consideration to restricted cases, such as LCLs with no inputs defined on
regular trees. In fact, it is known that it is possible to use LCLs with no inputs defined on
non-regular trees to encode LCLs with inputs, and hence, by allowing inputs, or constraints
that depend on the degree of the nodes, we would make decidability at least PSPACE-hard.

1 https://github.com/jendas1/poly-classifier
2 Even though some algorithms in [9] are exponential in the size of the description of the problem, they

are nevertheless very efficient in practice. In fact, the authors of [9] have implemented them for the case
of binary rooted trees and they are indeed very fast in practice [41].
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Motivations. Studying LCLs is interesting because, on the one hand, this class of problems
is large enough to contain a significant fraction of problems that are commonly studied in the
context of the LOCAL model (e.g., (∆ + 1)-coloring, (2∆ − 1)-edge coloring, ∆-coloring, weak
2-coloring, maximal matching, maximal independent set, sinkless orientation, many other
orientation problems, edge splitting problems, locally maximal cut, defective colorings, . . . ),
but, on the other hand, it is restricted enough so that we can prove interesting results about
them, such as decidability and complexity gaps. Moreover, techniques used to prove results on
LCLs have been already shown to be extremely useful outside the LCL context: for example,
all recent results about lower bounds for locally checkable problems in the unbounded degree
case – e.g., for MIS, maximal matching, ruling sets, and other fundamental problems – use
techniques that originally were introduced in the context of LCLs [5, 19, 8, 6, 7].

In this work, we restrict our attention to the case of regular trees. The study of LCLs on
trees is related with our understanding of graph problems in the general setting. Actually, for
many problems of interest, unrooted regular trees are hard instances, and hence understanding
the complexity of LCLs on trees could help us in understanding the complexity of problems
in general unbounded-degree graphs. In fact, a relatively new and promising technique called
round elimination has been used to prove tight lower bounds for interesting graph problems
such as maximal matchings, maximal independent sets, and ruling sets, even if, for now, we
are only able to apply this technique for proving lower bounds on trees [15, 38, 5, 8, 4, 19, 6, 7].

As for the more restrictive setting of regular trees, we would like to point out that many
natural LCL problems have the same optimal complexity in both bounded-degree trees and
regular trees. This includes, for example, the k-coloring problem. For any tree T whose
maximum degree is at most ∆, we may consider the ∆-regular tree T ∗ which is the result
of appending degree-1 nodes to all nodes v in T with 1 < deg(v) < ∆ to increase the
degree of v to ∆. We may locally simulate T ∗ in the network T . As any proper k-coloring
of T ∗ restricting to T is also a proper k-coloring, this reduces the k-coloring problem on
bounded-degree trees to the same problem on regular trees, showing that the k-coloring
problem has the same optimal complexity in both graph classes. More generally, if an LCL
problem Π has the property that removing degree-1 nodes preserves the correctness of a
solution, then Π has the same optimal complexity in both bounded-degree trees and regular
trees, so our results in this work also apply to these LCLs on bounded-degree trees.

2 Related work

Locally Checkable Labeling problems have been introduced by Naor and Stockmeyer [37], but
the class of locally checkable problems has been studied in the distributed setting even before
(e.g., in the context of self-stabilisation [1]). For many locally checkable problems, researchers
have been trying to understand the exact time complexity, and while in many cases upper
bounds have been known since the 80s, matching lower bound have been discovered only
recently. Examples of this line of research relate to the problems of colorings, matchings,
and independent sets, see e.g. [25, 32, 33, 39, 28, 26, 5, 40, 34, 7, 29].

In parallel, there have been many works that tried to understand these problems from a
complexity theory point of view, trying to develop general techniques for classifying problems,
understanding which complexities can actually exist, and developing generic algorithmic
techniques to solve whole classes of problems at once. In particular, a broad class3 of locally
checkable problems, called Locally Checkable Labelings (LCLs), has been studied in the LOCAL
model of distributed computing, which will be formally defined later.

3 For example, our definition of LCL does not allow an infinite number of labels, so it does not capture
some locally checkable problems such as fractional matching.
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Paths and cycles. The first graph topologies on which promising results have been proved
are paths and cycles. In these graphs, we now know that there are problems with the
following three possible time complexities:

O(1): this class contains, among others, trivial problems, e.g. problems that require every
node to output the same label.
Θ(log∗ n): this class contains, for example, the 3-coloring problem [25, 32, 36].
Θ(n): this class contains hard problems, for example the problem of consistently orient
the edges of a cycle, or the 2-coloring problem.

For LCLs in paths and cycles, we know that there are no other possible complexities, that
is, there are gaps between the above classes. In other words, there are no LCLs with a time
complexity that lies between ω(1) and o(log∗ n) [37], and no LCLs with a time complexity that
lies between ω(log∗ n) and o(n) [21]. These results hold also for randomized algorithms, and
they are constructive: if for example we find a way to design an O(log n)-rounds randomized
algorithm for a problem, then we can automatically convert it into an O(log∗ n)-round
deterministic algorithm.

Moreover, in paths and cycles, given an LCL problem, we can decide its time complexity.
In particular, it turns out that for problems with no inputs defined on directed cycles, deciding
the complexity of an LCL is as easy as drawing a diagram and staring at it for few seconds [18].
This result has later been extended to undirected cycles with no inputs [23]. Unfortunately,
as soon as we consider LCLs where the constraints of the problem may depend on the given
inputs, decidability becomes much harder, and it is now known to be PSPACE-hard [2], even
for paths and cycles.

Trees. Another class of graphs that has been studied quite a lot is the one containing
trees. While there are still problems with complexities O(1), Θ(log∗ n), and Θ(n), there are
also additional complexity classes, and sometimes here randomness can help. For example,
there are problems that require Θ(log n) rounds for both deterministic and randomized
algorithms, while there are problems, like sinkless orientation, that require Θ(log n) rounds for
deterministic algorithms and Θ(log log n) rounds for randomized ones [17, 21, 30]. Moreover,
there are problems with complexity Θ(n1/k), for any natural number k ≥ 1 [22]. It is known
that these are the only possible time complexities in trees [22, 21, 11, 20, 14, 31]. In [12], it
has been shown that the same results hold also in a more restrictive model of distributed
computing, called CONGEST model, and that for any given problem, its complexities in the
LOCAL and in the CONGEST model, on trees, are actually the same.

Concerning decidability, the picture is not as clear as in the case of paths and cycles.
As discussed in the introduction, it is decidable, in theory, if a problem requires nΩ(1)

rounds, and, in that case, it is also decidable to determine the exact exponent [22, 20], but
the algorithm is very far from being practical, and in this work we address exactly this
issue. Moreover, for lower complexities, the problem is still open. Different works tried to
tackle this issue by considering restricted cases. In [4], authors showed that it is indeed
possible to achieve decidability in some cases, that is, when problems are restricted to the
case of unrooted regular trees, where leaves are unconstrained, and the problem uses only
two labels. Then, promising results have been achieved in [9], where it has been shown
that, if we consider rooted trees, then we can decide the complexity of LCLs even for no(1)

complexities. Unfortunately, it is very unclear if such techniques can be used to solve the
problem in the general case. In fact, we still do not know if it is decidable whether a problem
can be solved in O(1) rounds or it requires Ω(log∗ n) rounds, and it is not known if it is
decidable whether a problem can be solved in O(log∗ n) rounds or it requires Ω(log n) for

DISC 2022
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deterministic algorithms and Ω(log log n) for randomized ones. These two questions are very
important, and understanding them may also help in understanding problems that are not
restricted to regular trees of bounded degree. This is because, as already mentioned before,
for many problems it happens that unrooted regular trees are hard instances, and studying
the complexity of problems in these instances may give insights for understanding problems
in the general setting.

General graphs. In general graphs, many more LCL complexities are possible. For example,
there is a gap similar to the one between ω(1) and o(log∗ n) of trees, but now it holds only
up to o(log log∗ n), and we know that there are problems in the region between Ω(log log∗ n)
and o(log∗ n). In fact, for any rational α ≥ 1, it is possible to construct problems with
complexity Θ(logα log∗ n) [13]. A similar statement holds for complexities between Ω(log n)
and O(n) [13, 11].

There are still complexity regions in which we do not know if there are problems or
not. For example, while it is known that any problem that has randomized complexity
o(log n) can be sped up to O(TLLL) [22], where TLLL is the distributed complexity of the
constructive version of the Lovász LOCAL Lemma, the exact value of TLLL is unknown, and
we only known that it lies between Ω(log log n) and O(poly log log n) [17, 24, 27, 40]. Another
problem that falls in this region is the ∆-coloring problem, for which we still do not know
the exact complexity.

Another open question regards the role of randomness. In general graphs, we know that
randomness can also help outside the O(log n) region [10], but we still do not know exactly
when it can help and how much.

In general graphs, unfortunately, determining the complexity of a given LCL problem is
undecidable. In fact, we know that this question is undecidable even on grids [37].

3 Preliminaries

Graphs. Let G = (V, E) be a graph. We denote with n = |V | the number of nodes of G,
with ∆ the maximum degree of G, and with deg(v), for v ∈ V , the degree of v. If G is a
directed graph, we denote with degin(v) and degout(v), the indegree and the outdegree of
v, respectively. The radius-r neighborhood of a node v is defined to be the subgraph of G

induced by the nodes at distance at most r from v.

Model of computing. In the LOCAL model of distributed computing, the network is
represented with a graph G = (V, E), where the nodes correspond to computational entities,
and the edges correspond to communication links. In this model, the computational power
of the nodes is unrestricted, and nodes can send arbitrarily large messages to each other.

This model is synchronous, and computation proceeds in rounds. Nodes all start the
computation at the same time, and at the beginning they know n (the total number of
nodes), ∆ (the maximum degree of the graph), and a unique ID in {1, . . . , nc}, for some
constant c ≥ 1, assigned to them. Then, the computation proceeds in rounds, and at each
round nodes can send (possibly different) messages to each neighbor, receive messages, and
perform some LOCAL computation.

At the end of the computation, each node must produce its own part of the solution. For
example, in the case of the (∆ + 1)-coloring problem, each node must output its own color,
that must be different from the ones of its neighbors. The time complexity is measured as
the worst case number of rounds required to terminate, and it is typically expressed as a
function of n, ∆, and c.
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4 Technical overview

Our new results build on several techniques developed in previous works [9, 23] designing
polynomial-time algorithms that determine the distributed complexity of LCL problems. In
this section, we first give a brief overview of these techniques, then we discuss how in this
paper we build upon them and obtain our new results. The aim of this section is to present
the intuition behind the results. To keep the discussion at a high level, the presentation here
will be a bit imprecise.

4.1 The high-level framework
Existing algorithms for deciding the complexity of a given LCL problem are often based on
the following approach.
1. Define some combinatorial property P of LCL problems.
2. Show that computing P (Π) for a given problem Π can be done efficiently.
3. Show that Π is in a certain complexity class if and only if P (Π) holds.

As discussed in [18, 23], any LCL Π on directed paths can be viewed as a regular language.
Taking the corresponding non-deterministic automaton, we obtain a directed graph G(Π)
that represents Π on directed paths.

For example, the maximal independent set problem can be described as the automaton
with states V = {00, 01, 10} and transitions E = {00 → 01, 01 → 10, 10 → 00, 10 → 01}.
Each state corresponds to a possible labeling of the two endpoints u and v of a directed edge
u → v. Each transition describes a valid configuration of two neighboring directed edges
u → v and v → w.

It has been shown [9, 18, 16, 23] that in several cases the distributed complexity of an
LCL can be characterized by simple graph properties of G(Π), even if the underlying graph
class is much more complicated than directed paths. The precise definition of G(Π) will
depend on the choice of the LCL formalism.

4.2 Paths and cycles
It was shown in [18, 23] that the distributed complexity and solvability of Π on paths and
cycles can be characterized by simple graph properties of G(Π). In particular, Π on directed
cycles is solvable in O(log∗ n) rounds if and only if G(Π) contains a node v that is path-flexible,
in the sense that there exists a number K such that, in G(Π), there is a length-k returning
walk for v, for each k ≥ K. If such a path-flexible node v exists in G(Π), then Π on directed
cycles can be solved in O(log∗ n) rounds in the following manner.
1. In O(log∗ n) rounds, compute an independent set I such that the distance between the

nodes in I is at least K and at most 2K.
2. Fix the labels for the nodes in I according to the path-flexible node v in G(Π).
3. By the path-flexibility of v, this partial labeling can be completed into a correct complete

labeling.

For example, in the automaton for maximal independent set described above, the state 01
is flexible, as for each k ≥ 5, there is a length-k walk starting and ending at 01, so a maximal
independent set can be found in O(log∗ n) rounds on directed cycles via the above algorithm.

The above characterization can be generalized to both paths and cycles, undirected and
directed, after some minor modifications, see [23] for the details. For further examples of
representing LCLs as automata and how the round complexity of an LCL can be inferred
from basic properties of its associated automaton, see [18, Fig. 3] and [23, Fig. 1 and 3].

DISC 2022
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4.3 The O(log n) complexity class in regular trees

Subsequently, it was shown in [9, 16] that the class of O(log n)-round solvable LCL problems
on rooted and unrooted regular trees can be characterized in a similar way, based on the
notion of path-flexibility in the directed graph G(Π). To keep the discussion at a high level,
we do not discuss the difference between rooted and unrooted trees here. Roughly speaking,
Π can be solved in O(log n) rounds on rooted or unrooted regular trees if and only if there
exists a subset of labels S such that, if we restrict Π to S, then its corresponding directed
graph is strongly connected and contains a path-flexible node. Such a set S of labels is also
called a certificate for O(log n)-round solvability.4

A key property of such a directed graph is that there exists a number K such that, for
each pair of nodes (u, v), and for each integer k ≥ K, there is a length-k walk from u to v

(here we allow the possibility of u = v). The property can be described in the following more
intuitive manner. For any path of length at least K, regardless of how we fix the labels of its
two endpoints using S, it is always possible to complete the partial labeling into a correct
labeling w.r.t. Π of the entire path using only labels in S.

The intuition behind such a characterization is the fact [22] that all LCLs solvable
in O(log n) rounds on bounded-degree trees can be solved in a canonical way based on
rake-and-compress decompositions. Roughly speaking, a rake-and-compress process is a
procedure that decomposes a tree by iteratively removing degree-1 nodes (rake) and removing
degree-2 nodes (compress). This process partitions the set of nodes into several parts:
V = V R

1 ∪ V C
1 ∪ V R

2 ∪ V C
2 ∪ · · · ∪ V R

L , where V R
i is the set of nodes removed by the rake

operation in the ith iteration and V C
i is the set of nodes removed by the compress operation

in the ith iteration. It can be shown that L = O(log n) [35].
There are several variants of a rake-and-compress process. Here the considered variant is

such that, in the compress operation, a degree-2 node v is removed if v belongs to a path
whose length is at least ℓ, so we may assume that the connected components in the subgraph
induced by V C

i are paths with length at least ℓ.
Let Π be any LCL problem satisfying the combinatorial characterization for O(log n)-round

solvability discussed above, and let the set of labels S be a certificate for O(log n)-round
solvability. By setting ℓ = K in the property of the combinatorial characterization, we may
obtain an O(log n)-round algorithm solving the given LCL problem Π using only the labels in
S. The high-level idea is that we can label the tree in an order that is the reverse of the one of
the rake-and-compress procedure: V R

L , . . . , V C
2 , V R

2 , V C
1 , V R

1 , as we observe that the property
of the combinatorial characterization discussed above ensures that any correct labeling of
V R

L ∪ · · · ∪ V R
i can be extended to a correct labeling of V R

L ∪ · · · ∪ V R
i ∪ V C

i−1 and similarly any
correct labeling of V R

L ∪ · · · ∪ V C
i can be extended to a correct labeling of V R

L ∪ · · · ∪ V C
i ∪ V R

i .
The requirement that Π is an LCL problem defined on regular trees is critical in the above

approach, as this requirement ensures that for each non-leaf node, the set of constraints is
the same, so we do not need to worry about the possibility for different nodes in the tree to
have different sets of constraints in Π. Indeed, if we allow nodes of different degrees to have
different sets of constraints, then the problem of determining the distributed complexity of
an LCL in bounded-degree trees becomes EXPTIME-hard [20].

4 Although the certificate described in [9] also includes the steps in the construction of S, the set S alone
suffices to certify that Π can be solved in O(log n) rounds, as the O(log n)-round algorithm described
in [9] uses only S.
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4.4 The polynomial complexity region in regular trees

In this work, we will extend the above approach to cover all complexity classes in the
[Θ(log n), Θ(n)] region. By [11, 20, 22], we know that the possible complexity classes in this
region are Θ(log n) and Θ(n1/k) for all positive integers k. Similar to the complexity class
O(log n), any LCL problem Π solvable in O(n1/k) rounds can be solved in a canonical way in
O(n1/k) rounds using a variant of rake-and-compress decomposition [20].

Specifically, Π is O(n1/k)-round solvable if and only if it can be solved in a canonical way
using a rake-and-compress decomposition, where in each iteration, we perform γ = O(n1/k)
rake operations and one compress operation. Similar to the case of complexity class O(log n),
in the compress operation, a degree-2 node v is removed if v belongs to a path whose length
is at least ℓ, where ℓ = O(1) is some sufficiently large number depending only on the LCL
problem Π. It can be shown [20] that by selecting γ = O(n1/k) to be large enough, the
number of layers L in the decomposition V = V R

1 ∪ V C
1 ∪ V R

2 ∪ V C
2 ∪ · · · ∪ V R

L is k, and such a
decomposition can be computed in O(n1/k) rounds.

To derive a certificate for O(n1/k)-round solvability based on the result of [20], we will need
to take into consideration the following properties about the variant of the rake-and-compress
decomposition described above.

The number of layers L = k is now a finite number independent of the size of the graph n.
For technical reasons, this means that the certificate for O(n1/k)-round solvability cannot
be based on a single set of labels S, as the certificate for O(log n)-round solvability [9, 16].
We need to consider the possibility that different sets of labels are used for different layers
in the design of the certificate for O(n1/k)-round solvability.
The number of rake operations for a layer can be unbounded as n goes to infinity. That
is, V R

i is no longer an independent set, and each connected component in the subgraph
induced by V R

i can be a very large tree.

The certificate. Our certificate for O(n1/k)-round solvability will be based on the notion
of a good sequence of sets of labels. The definition of a good sequence relies on two functions
on a set of labels: trim and flexible-SCC. As we will later see, these two functions correspond
to rake and compress, respectively. Given an LCL problem Π and a set of labels S, trim(S)
and flexible-SCC are defined as follows.

trim(S) is the subset of S resulting from removing all labels σ ∈ S meeting the following
conditions: There exists some number i such that if the root of the complete regular tree
T of height i is labeled by σ, then we are not able to complete the labeling of T using
only labels in S such that the overall labeling is correct w.r.t. Π.
flexible-SCC(S) is a collection of disjoint subsets of S defined as follows. Consider the
directed graph representing the LCL problem Π restricted to S. Let flexible-SCC(S) be
the set of strongly connected components that have a path-flexible node. The intuition
behind this definition is similar to the intuition behind the certificate for O(log n)-round
solvability.

We briefly explain the connection between trim and rake. Suppose we want to find a
correct labeling of a regular tree T using only the labels in S. If a label σ is in trim(S), then
σ can only be used in places that are sufficiently close to a leaf. To put it another way, if we
do a large number of rakes to T , then the labels in trim(S) can only be used to label the
nodes that removed due to a rake operation.
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The connection between flexible-SCC to compress is due to the fact that the nodes removed
due to a compress operation form long paths, and we know that in order to label long paths
efficiently in O(log∗ n) rounds, it is necessary to use labels corresponding to path-flexible
nodes, due to the existing automata-theoretic characterization [18, 23] of round complexity
of LCLs on paths and cycles.

We say that a sequence (ΣR
1 , ΣC

1 , ΣR
2 , ΣC

2 , . . . , ΣR
k) is good if it satisfies the following rules,

where Σ is the set of all labels of Π.

ΣR
i =

{
trim(Σ) if i = 1,

trim(ΣC
i−1) if i > 1.

ΣC
i ∈ flexible-SCC(ΣR

i ).
ΣR

k ̸= ∅.

The only nondeterminism in the above rules is the choice of ΣC
i ∈ flexible-SCC(ΣR

i ) for each i.
We will show that such a sequence exists if and only if the underlying LCL problem can be
solved in O(n1/k) rounds. Intuitively, ΣR

i represents the set of labels that are eligible to label
the nodes in V R

i , and similarly ΣC
i represents the set of labels that are eligible to label the

nodes in V C
i .

The classification. The notion of a good sequence allows us to classify the complexity
classes in the region [Θ(log n), Θ(n)]. Specifically, we define the depth dΠ of an LCL problem
Π as the largest k such that a good sequence (ΣR

1 , ΣC
1 , ΣR

2 , ΣC
2 , . . . , ΣR

k) exists. If there is no
good sequence, then we set dΠ = 0. If there is a good sequence (ΣR

1 , ΣC
1 , ΣR

2 , ΣC
2 , . . . , ΣR

k)
for each positive integer k, then we set dΠ = ∞. We will show that dΠ characterizes the
distributed complexity of Π in the following manner.

If dΠ = 0, then Π is unsolvable in the sense that there exists a regular tree such that
there is no correct solution of Π on this rooted tree. This follows from the definition of
trim and the observation that dΠ = 0 if trim(Σ) = ∅.
If dΠ = k is a positive integer, then the distributed complexity of Π is Θ(n1/k).
If dΠ = ∞, then Π can be solved in O(log n) rounds. If we can have a good sequence
that is arbitrarily long, then there must be a fixed point S in the sequence such that
trim(S) = S and flexible-SCC(S) = {S}, because ΣR

1 ⊇ ΣC
1 ⊇ · · · ⊇ ΣR

k . We will show that
the fixed point S qualifies to be a certificate for O(log n)-round solvability.

The fixed point phenomenon explains why the notion of good sequence was not needed
in [9, 16], as the existence of a fixed point for the case Π is O(log n)-round solvable implies
that we may apply the same strategy according to the fixed point to label each layer of the
rake-and-compress decomposition to solve Π in O(log n) rounds.

To show correctness and efficiency of our characterization, we do the following.
Upper bound: Given a good sequence (ΣR

1 , ΣC
1 , ΣR

2 , ΣC
2 , . . . , ΣR

k), show that there exists an
O(n1/k)-round algorithm solving Π. Therefore, dΠ = k implies O(n1/k)-round solvability.

Lower bound: Given an o(n1/k)-round algorithm solving Π, show that a good sequence
(ΣR

1 , ΣC
1 , ΣR

2 , ΣC
2 , . . . , ΣR

k+1) exists. Therefore, dΠ = k implies Ω(n1/k)-round solvability.
Efficiency: Design a polynomial-time algorithm that computes dΠ for any given description

of an LCL problem Π.

The upper bound proof is relatively simple. Similar to the certificate O(log n)-round
solvability, we just need to show that Π can be solved in O(n1/k) rounds using rake-and-
compress decompositions given that a good sequence (ΣR

1 , ΣC
1 , ΣR

2 , ΣC
2 , . . . , ΣR

k) exists.
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The lower bound proof is much more complicated. Given an algorithm A solving Π in
t = o(n1/k) rounds, we will consider a tree G that is a result of a hierarchical combination
of complete trees and paths of length greater than t. Intuitively, G is chosen to be the
fullest possible tree that can be partitioned into V = V R

1 ∪ V C
1 ∪ V R

2 ∪ V C
2 ∪ · · · ∪ V R

k+1 with a
rake-and-compress decomposition of [20] with L = k + 1 layers. We will prove by induction
that if we take ΣR

i to be the set of possible output labels of A for V R
i ∪ V C

i ∪ · · · ∪ V R
k+1

and take ΣC
i to be the set of possible output labels of A for V C

i ∪ V R
i+1 ∪ · · · ∪ V R

k+1, then
(ΣR

1 , ΣC
1 , ΣR

2 , ΣC
2 , . . . , ΣR

k+1) must be a good sequence. In particular, the non-emptiness of
ΣR

k+1 follows from the correctness of A.
To design a polynomial-time algorithm computing dΠ, we recall that the only nondeter-

minism in the rules for a good sequence is the choice of ΣC
i ∈ flexible-SCC(ΣR

i ), so we will
just do a brute-force search for all possibilities. Although this seems inefficient, we recall that
flexible-SCC(ΣR

i ) is a collection of disjoint subsets of ΣR
i , so the sum of the size of all sets of

labels considered in each level is at most the total number of labels |Σ| in Π. The number of
levels we need to explore is also bounded, as ΣR

1 ⊇ ΣC
1 ⊇ · · · ⊇ ΣR

k . If k exceeds |Σ|, then we
know that there is a fixed point ΣR

i such that ΣR
i = ΣC

i = ΣR
i+1 = ΣC

i+1 = · · · , so dΠ = ∞.

The differences between rooted and unrooted trees. The high-level proof strategy pre-
sented in this technical overview applies to both rooted and unrooted regular trees, showing
that these two graph classes behave very similarly in the complexity region [Θ(log n), Θ(n)].
There are still some technical differences between rooted and unrooted trees.

The formalisms for representing LCL problems are different for rooted and unrooted trees.
In the case of rooted trees, the problem can refer to orientations. For example, what is
permitted for a parent can be different from what is permitted for a child. Instead of
specifying node and edge configurations, we follow [9] and specify what are permitted
multisets of child labels for each node label.
For the upper bound, we need to generalize the rake-and-compress decomposition of [20]
so that it is applicable in rooted trees.
For the lower bound, the lower bound graph for unrooted trees does not work for the
rooted trees. Roughly speaking, this is because the presence of edge orientation increases
the symmetry breaking capability of nodes, so some indistinguishability arguments in the
lower bound proof for unrooted trees do not work for rooted trees. Therefore, we will
need to consider a different approach for crafting the lower bound graph for rooted trees.

5 Unrooted trees

In this section, we give a polynomial-time-computable characterization of LCL problems for
regular unrooted trees with complexity O(log n) or Θ(n1/k) for any positive integer k. Due
to the page limit, our results in regular rooted trees are left to the full version [3] of the
paper. A ∆-regular tree is a tree where the degree of each node is either 1 or ∆. An LCL
problem for ∆-regular unrooted trees is defined as follows.

▶ Definition 1 (LCL problems for regular unrooted trees). For unrooted trees, an LCL problem
Π = (∆, Σ, V, E) is defined by the following components.

∆ is a positive integer specifying the maximum degree.
Σ is a finite set of labels.
V is a set of size-∆ multisets of labels in Σ specifying the node constraint.
E is a set of size-2 multisets of labels in Σ specifying the edge constraint.
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We call a size-∆ multiset C of labels in Σ a node configuration. A node configuration C

is correct with respect to Π = (∆, Σ, V, E) if C ∈ V. We call a size-2 multiset D of labels in
Σ an edge configuration. An edge configuration D is correct with respect to Π = (∆, Σ, V, E)
if D ∈ E . We define the correctness criteria for a labeling of a ∆-regular tree in Definition 2.

▶ Definition 2 (Correctness criteria). Let G = (V, E) be a tree whose maximum degree is at
most ∆. For each edge e = {u, v} ∈ E, there are two half-edges (u, e) and (v, e). A solution
of Π = (∆, Σ, V, E) on G is a labeling that assigns a label in Σ to each half-edge in G.

For each node v ∈ V with deg(v) = ∆ its node configuration C is the multiset of ∆ half-
edge labels of (v, e1), (v, e2), . . ., (v, e∆), where e1, e2, . . . , e∆ are the ∆ edges incident to
v. We say that the labeling is locally-consistent on v if C ∈ V.
For each edge e = {u, v} ∈ E, its edge configuration D is the multiset of two half-edge
labels of (u, e) and (v, e). We say that the labeling is locally-consistent on e if D ∈ E.

The labeling is a correct solution if it is locally-consistent on all v ∈ V with deg(v) = ∆ and
all e ∈ E.

In other words, a labeling of G = (V, E) is correct if the edge configuration for each e ∈ E

is correct and the node configuration for each v ∈ V with deg(v) = ∆ is correct. All nodes
whose degree is not ∆ are unconstrained.

Although Π = (∆, Σ, V, E) is defined for ∆-regular unrooted trees, Definition 2 applies to
all trees whose maximum degree is at most ∆. We emphasize that all nodes v whose degree
is not ∆ are unconstrained in that there is no requirement about the node configuration of
v. Nevertheless, we may focus on ∆-regular unrooted trees without loss of generality. The
reason is that for any unrooted tree G whose maximum degree is at most ∆, we may consider
the unrooted tree G∗ which is the result of appending degree-1 nodes to all nodes v in G with
1 < deg(v) < ∆ to increase the degree of v to ∆. This only blows up the number of nodes
by at most a ∆ factor. We claim that the asymptotic optimal round complexity of Π is the
same in both G and G∗. Any correct solution of Π on G∗ restricted to G is a correct solution
of Π on G, as all nodes whose degree is not ∆ are unconstrained. Therefore, if we have an
algorithm for Π in ∆-regular unrooted trees, then the same algorithm also allows us to solve
Π in unrooted trees with maximum degree ∆ in the same asymptotic round complexity.

▶ Definition 3 (Complete trees of height i). We define the rooted trees Ti and T ∗
i recursively

as follows.
T0 is the trivial tree with only one node.
Ti is the result of appending ∆ − 1 trees Ti−1 to the root r.
T ∗

i is the result of appending ∆ trees Ti−1 to the root r.

Observe that T ∗
i is the unique maximum-size tree of maximum degree ∆ and height i.

All nodes within distance i − 1 to the root r in T ∗
i have degree ∆. All nodes whose distance

to r is exactly i are degree-1 nodes. Although Ti and T ∗
i are defined as rooted trees, they

can also be viewed as unrooted trees.

▶ Definition 4 (Trimming). Given an LCL problem Π = (∆, Σ, V, E) and a subset S ⊆ V of
node configurations, we define trim(S) as the set of all node configurations C ∈ S such that
for each i ≥ 1 it is possible to find a correct labeling of T ∗

i such that the node configuration
of the root is C and the node configurations of the remaining degree-∆ nodes are in S.

In the definition, note that if for some i ≥ 1 it is not possible to find such a labeling of
T ∗

i , then it is also not possible for any larger i. The reason is that if such a labeling for larger
i exists, then by taking subgraph, we obtain such a labeling for of T ∗

i . Here we use the fact
that nodes by taking subgraph, and using the fact that all nodes whose degree is not ∆ are
unconstrained.
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Intuitively, trim(S) is the subset of S resulting from removing all node configurations in
S that are not usable in a correct labeling of a sufficiently large ∆-regular tree using only
node configurations in S.

In fact, given any tree G of maximum degree ∆ and a node v of degree ∆ in G, after labeling
the half-edges surrounding v using a node configuration in trim(S), it is always possible to
extend this labeling to a complete correct labeling of G using only node configurations in
trim(S). Such a labeling extension is possible due to Lemma 5.

▶ Lemma 5 (Property of trimming). Let S ⊆ V such that trim(S) ̸= ∅. For each node
configuration C ∈ trim(S) and each label σ ∈ C, there exist a node configuration C ′ ∈ trim(S)
and a label σ′ ∈ C ′ such that the multiset {σ, σ′} is in E.

Proof. Assuming that such C ′ and σ′ do not exist, we derive a contradiction as follows. We
pick s to be the smallest number such that there is no correct labeling of T ∗

s where the node
configuration of the root r is in S \ trim(S) and the node configuration of each remaining
degree-∆ node of T ∗

s is in S. Such a number s exists due to the definition of trim.
Now consider a correct labeling of T ∗

s+1 where the node configuration of the root r is C

and the node configuration of each remaining degree-∆ node is in S. Such a correct labeling
exists due to the fact that C ∈ trim(S). Our assumption on the non-existence of C ′ and
σ′ implies that the node configuration C̃ of one child w of the root r of T ∗

s+1 must be in
S \ trim(S). However, the radius-s neighborhood of w in T ∗

s+1 is isomorphic to T ∗
s rooted

at w. Since the node configuration of w is in S \ trim(S), our choice of s implies that the
labeling of the radius-s neighborhood of w cannot be correct, which is a contradiction. ◀

Path-form of an LCL problem. Given an LCL problem Π = (∆, Σ, V, E) and a subset S ⊆ V
of node configurations, we define

DS = the set of all size-2 multisets D such that D is a sub-multiset of C for some C ∈ S.

To understand the intuition behind the definition DS , define the length-k hairy path
Hk as the result obtained by starting from a length-k path P = (v1, v2, . . . , vk+1) and then
adding degree-1 nodes to make deg(vi) = ∆ for all 1 ≤ i ≤ k + 1. If our task is to label
hairy paths using node configurations in S, then this task is identical to labeling paths using
node configurations in DS . In other words, the LCL problem (∆, Σ, S, E) on hairy paths is
equivalent to the LCL problem (2, Σ, DS , E) on paths. Hence (2, Σ, DS , E) is the path-form of
(∆, Σ, S, E).

Automaton for the path-form of an LCL problem. Given a set D of size-2 multisets whose
elements are in Σ, we define the directed graph MD as follows. The node set V (MD) of MD
is the set of all pairs (a, b) ∈ Σ2 such that the multiset {a, b} is in D. The edge set E(MD)
of MD is defined as follows. For any two pairs (a, b) ∈ V (MD) and (c, d) ∈ V (MD), we add
a directed edge (a, b) → (c, d) if the multiset {b, c} is an edge configuration in E . Note that
MD could contain self-loops.

The motivation for considering MD is that it can be seen as an automaton recognizing
the correct solutions for the LCL problem (2, Σ, D, E) on paths, as each length-k walk
(a1, b1) → (a2, b2) → · · · → (ak+1, bk+1) of MD corresponds to a correct labeling of a length-
k path (v1, v2, . . . , vk+1) where the labeling of half-edge (vi, {vi−1, vi}) is ai and the labeling
of half-edge (vi, {vi, vi+1}) is bi.
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Path-flexibility. With respect to the directed graph MD, we say that (a, b) ∈ V (MD) is
path-flexible if there exists an integer K such that for each integer k ≥ K, there exist length-k
walks (a, b)⇝ (a, b), (a, b)⇝ (b, a), (b, a)⇝ (a, b), and (b, a)⇝ (b, a) in MD. Throughout
this paper, we write u⇝ v to denote a walk starting from u and ending at v.

It is clear that (a, b) is path-flexible if and only if (b, a) is path-flexible. Hence we may
extend the notion of path-flexibility from V (MD) to D. That is, we say that a size-2 multiset
{a, b} ∈ D is path-flexible if (a, b) is path-flexible.

The following lemma is useful in lower bound proofs. For any {a, b} ∈ D that is not
path-flexible, the following lemma shows that there are infinitely many path lengths k such
that there is no length-k s⇝ t walk for some s ∈ {(a, b), (b, a)} and t ∈ {(a, b), (b, a)}. As
we will later see, this inflexibility in the possible path lengths implies lower bounds for
distributed algorithms that may use the configuration {a, b}.

▶ Lemma 6 (Property of path-inflexibility). Suppose that the size-2 multiset {a, b} ∈ D is not
path-flexible. Then one of the following holds.

There is no s⇝ t walk for at least one choice of s ∈ {(a, b), (b, a)} and t ∈ {(a, b), (b, a)}.
There is an integer 2 ≤ x ≤ |Σ|2 such that for any positive integer k that is not an integer
multiple of x, there are no length-k walks (a, b)⇝ (a, b) and (b, a)⇝ (b, a) in MD.

Proof. Suppose that {a, b} ∈ D is not path-flexible. We assume that there are s⇝ t walks
for all choices of s ∈ {(a, b), (b, a)} and t ∈ {(a, b), (b, a)}. To prove this lemma, it suffices to
show that there is an integer 2 ≤ x ≤ |Σ|2 such that for any positive integer k that is not an
integer multiple of x, there are no length-k walks (a, b)⇝ (a, b) and (b, a)⇝ (b, a).

First of all, we claim that for any integer K there is an integer k ≥ K such that there
is no length-k walk (a, b) ⇝ (a, b). If this claim does not hold, then there is an integer K

such that there is a length-k walk (a, b) ⇝ (a, b) for each k ≥ K. Combining these walks
with existing walks (a, b)⇝ (b, a) and (b, a)⇝ (a, b), we infer that there exists an integer K ′

such that for each integer k ≥ K ′, there exist length-k walks (a, b)⇝ (a, b), (a, b)⇝ (b, a),
(b, a) ⇝ (a, b), and (b, a) ⇝ (b, a) in MD, contradicting the assumption that {a, b} ∈ D is
not path-flexible.

Let U be the set of integers k such that there is a length-k walk (a, b)⇝ (a, b). Note that
by taking reversal, the existence of a length-k walk (a, b)⇝ (a, b) implies the existence of
a length-k walk (b, a)⇝ (b, a), and vice versa. Our assumption on the existence of a walk
(a, b)⇝ (a, b) implies U ≠ ∅. We choose x = gcd(U) to be the greatest common divisor of U ,
so that for any integer k that is not an integer multiple of x, there are no length-k walks
(a, b)⇝ (a, b) and (b, a)⇝ (b, a) in MD. We must have x ≥ 2 because there cannot be two
co-prime numbers in U , since otherwise there exists an integer K such that U includes all
integers that are at least K, contradicting the claim proved above. Specifically, if the two
co-prime numbers are k1 and k2, then we may set K = g(k1, k2) + 1 = k1k2 − k1 − k2 + 1,
where g(k1, k2) is the Frobenius number of the set {k1, k2} [42]. We also have x ≤ |Σ|2, since
the smallest number in U is at most the number of nodes in MD, which is upper bounded
by |Σ|2. ◀

For the special case of |Σ| = 1 and D ≠ ∅, we must have a = b in Lemma 6. Since there
is no integer x satisfying 2 ≤ x ≤ |Σ|2 when |Σ| = 1, Lemma 6 implies that if {a, a} is not
path-flexible, then there is no walk (a, a)⇝ (a, a), where {a, a} is the unique element in D.

Path-flexible strongly connected components. Since each {a, b} ∈ D corresponds to two
nodes (a, b) and (b, a) in MD, we will consider a different notion of a strongly connected
component. In Definition 7, we do not require the elements a, b, c, and d to be distinct. For
example, we may have {a, b} = {c, d} or a = b.
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▶ Definition 7 (Strongly connected components). Let D be a set of size-2 multisets of elements
in Σ. For each {a, b} ∈ D and {c, d} ∈ D, we write {a, b} ∼ {c, d} if there is a walk s⇝ t in
MD for each choice of s ∈ {(a, b), (b, a)} and t ∈ {(c, d), (d, c)}.

Let D∼ be the set of all {a, b} ∈ D such that {a, b} ∼ {a, b}. Then we define the strongly
connected components of D as the equivalence classes of ∼ over D∼.

By taking reversal, the existence of an (a, b) ⇝ (c, d) walk implies the existence of
a (d, c) ⇝ (b, a) walk. Therefore, if there is a walk s ⇝ t in MD for each choice of
s ∈ {(a, b), (b, a)} and t ∈ {(c, d), (d, c)}, then there is also a walk t ⇝ s in MD for each
choice of s ∈ {(a, b), (b, a)} and t ∈ {(c, d), (d, c)}. Hence the relation ∼ in Definition 7 is
symmetric over D. It is clear from the definition of ∼ in Definition 7 that it is transitive
over D and it is reflexive over D∼, so ∼ is indeed an equivalence relation over D∼.

For any strongly connected component D′ of D, it is clear that either all {a, b} ∈ D′

are path-flexible or all {a, b} ∈ D′ are not path-flexible. We say that a strongly connected
component D′ is path-flexible if all {a, b} ∈ D′ are path-flexible. We define flexibility(D′) as
the minimum number K such that for each integer k ≥ K there is an (a, b)⇝ (c, d) walk of
length k for all choices of a, b, c, and d such that {a, b} ∈ D′ and {c, d} ∈ D′. Such a number
K exists given that D′ is a path-flexible strongly connected component. We define

flexible-SCC(D) = the set of all subsets of D that are a path-
flexible strongly connected component of D.

Clearly, elements in flexible-SCC(D) are disjoint subsets of D. It is possible that
flexible-SCC(D) is an empty set, and this happens when all nodes in the directed graph MD
are not path-flexible.

Restriction of a set of node configurations. Given an LCL problem Π = (∆, Σ, V, E), a
subset S ⊆ V of node configurations, and a set D of size-2 multisets whose elements are in Σ,
we define the restriction of S to D as follows.

S ↾D= {C ∈ S | all size-2 sub-multisets of C are in D}.

Lemma 8 shows that if we label the two endpoints of a sufficiently long path using
node configurations in S ↾D∗ , where D∗ ∈ flexible-SCC(DS), then it is always possible
to complete the labeling of the path using only node configurations in S in such a way
that the entire labeling is correct. Specifically, consider a path P = (v1, v2, . . . , vd+1) of
length d ≥ flexibility(D∗). Assume that the node configuration of v1 is already fixed to be
C ∈ S ↾D∗ where the half-edge (v1, {v1, v2}) is labeled by β ∈ C and the node configuration
of vd+1 is already fixed to be C ′ ∈ S ↾D∗ where the half-edge (vd+1, {vd, vd+1}) is labeled
by α′ ∈ C ′. Lemma 8 shows that it is possible to complete the labeling of P using only
node configurations in S, as we may label vi using the node configuration Ci where the two
half-edges (vi, {vi−1, vi}) and (vi, {vi, vi+1}) are labeled by αi and βi, for each 2 ≤ i ≤ d.

▶ Lemma 8 (Property of path-flexible strongly connected components). Let S ⊆ V be a
set of node configurations, and let D∗ ∈ flexible-SCC(DS). For any choices of C ∈ S ↾D∗ ,
C ′ ∈ S ↾D∗ , size-2 sub-multisets {α, β} ⊆ C, {α′, β′} ⊆ C ′, and a number d ≥ flexibility(D∗),
there exists a sequence α1, C1, β1, α2, C2, β2, . . . , αd+1, Cd+1, βd+1 satisfying the following
conditions.

First endpoint: α1 = α, β1 = β, and C1 = C.
Last endpoint: αd+1 = α′, βd+1 = β′, and Cd+1 = C ′.
Node configurations: for 1 ≤ i ≤ d + 1, {αi, βi} is a size-2 sub-multiset of Ci, and Ci ∈ S.
Edge configurations: for 1 ≤ i ≤ d, {βi, αi+1} ∈ E.
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Proof. By the path-flexibility of D∗, there exists a length-d walk (α, β)⇝ (α′, β′) in MDS .
We fix (α1, β1) → (α2, β2) → · · · → (αd+1, βd+1) to be any such walk. This implies that
{βi, αi+1} ∈ E for each 1 ≤ i ≤ d. Since {αi, βi} is a size-2 multiset of DS , there exists a
choice of Ci ∈ S for each 2 ≤ i ≤ d such that {αi, βi} is a sub-multiset of Ci. ◀

Good sequences. Given an LCL problem Π = (∆, Σ, V, E) on ∆-regular trees, we say that
a sequence (V1, D1, V2, D2, . . . , Vk) is good if it satisfies the following requirements.

V1 = trim(V). That is, we start the sequence from the result of trimming the set V of all
node configurations in the given LCL problem Π = (∆, Σ, V, E).
For each 1 ≤ i ≤ k − 1, Di ∈ flexible-SCC(DVi

). That is, Di is a path-flexible strongly
connected component of the automaton associated with the path-form of the LCL problem
(∆, Σ, Vi, E), which is Π restricted to the set of node configurations Vi.
For each 2 ≤ i ≤ k, Vi = trim(Vi−1 ↾Di−1). That is, Vi is the result of taking the
restriction of the set of node configurations Vi−1 to Di−1 and then performing a trimming.
Vk ̸= ∅. That is, we require that the last set of node configurations is non-empty.

It is straightforward to see that V1 ⊇ V2 ⊇ · · · ⊇ Vk since Vi = trim(Vi−1 ↾Di−1) is always
a subset of Vi−1. Similarly, we also have D1 ⊇ D2 ⊇ · · · ⊇ Dk−1, as Di ∈ flexible-SCC(DVi

)
is a subset of DVi and DVi is a subset of Di−1 due to the definition Vi = trim(Vi−1 ↾Di−1).

Depth of an LCL problem. We define the depth dΠ of an LCL problem Π = (∆, Σ, V, E) on
∆-regular trees as follows. If there is no good sequence, then we set dΠ = 0. If there is a good
sequence (V1, D1, V2, D2, . . . , Vk) for each positive integer k, then we set dΠ = ∞. Otherwise,
we set dΠ as the largest integer k such that there is a good sequence (V1, D1, V2, D2, . . . , Vk).
In the full version [3] of the paper, we prove the following results.

▶ Theorem 9 (Characterization of complexity classes). Let Π = (∆, Σ, V, E) be an LCL problem
on ∆-regular trees. We have the following.

If dΠ = 0, then Π is unsolvable in the sense that there exists a tree of maximum degree ∆
such that there is no correct solution of Π on this tree.
If dΠ = k is a positive integer, then the optimal round complexity of Π is Θ(n1/k).
If dΠ = ∞, then Π can be solved in O(log n) rounds.

▶ Theorem 10 (Complexity of the characterization). There is a polynomial-time algorithm A
that computes dΠ for any given LCL problem Π = (∆, Σ, V, E) on ∆-regular trees. If dΠ = k

is a positive integer, then A also outputs a description of an O(n1/k)-round algorithm for Π.
If dΠ = ∞, then A also outputs a description of an O(log n)-round algorithm for Π.

In Theorem 9, all upper bounds hold in the CONGEST model, and all lower bounds hold
in the LOCAL model. For example, if dΠ = 5, then Π can be solved in O(n1/5) rounds in the
CONGEST model, and there is a matching lower bound Ω(n1/5) in the LOCAL model. The
distributed algorithms returned by the polynomial-time algorithm A in Theorem 10 also work
in the CONGEST model. We note that there are several natural definitions of unsolvability
of an LCL w.r.t. a given graph class that are different from the one in Theorem 9, see [23].
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