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Abstract
Locally Checkable Labeling (LCL) problems are graph problems in which a solution is correct if it
satisfies some given constraints in the local neighborhood of each node. Example problems in this
class include maximal matching, maximal independent set, and coloring problems. A successful line
of research has been studying the complexities of LCL problems on paths/cycles, trees, and general
graphs, providing many interesting results for the LOCAL model of distributed computing. In this
work, we initiate the study of LCL problems in the low-space Massively Parallel Computation (MPC)
model. In particular, on forests, we provide a method that, given the complexity of an LCL problem
in the LOCAL model, automatically provides an exponentially faster algorithm for the low-space
MPC setting that uses optimal global memory, that is, truly linear.

While restricting to forests may seem to weaken the result, we emphasize that all known
(conditional) lower bounds for the MPC setting are obtained by lifting lower bounds obtained in the
distributed setting in tree-like networks (either forests or high girth graphs), and hence the problems
that we study are challenging already on forests. Moreover, the most important technical feature of
our algorithms is that they use optimal global memory, that is, memory linear in the number of
edges of the graph. In contrast, most of the state-of-the-art algorithms use more than linear global
memory. Further, they typically start with a dense graph, sparsify it, and then solve the problem on
the residual graph, exploiting the relative increase in global memory. On forests, this is not possible,
because the given graph is already as sparse as it can be, and using optimal memory requires new
solutions.
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1 Introduction

The Massively Parallel Computation (MPC) model, introduced in [42] and later refined
by [2, 12, 39], is a mathematical abstraction of modern data processing platforms such as
MapReduce [28], Hadoop [55], Spark [56], and Dryad [41]. Recently, tremendous progress
has been made on fundamental graph problems in this model, such as maximal independent
set (MIS), maximal matching (MM) [37, 25], and coloring problems [19, 27]. All these
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9:2 Exponential Speedup over Locality in MPC with Optimal Memory

problems, and many others, fall under the umbrella of Locally Checkable problems, in which
the feasibility of a solution can be checked by inspecting local neighborhoods. They also
serve as abstractions for fundamental primitives in large-scale graph processing and have
recently gained a lot of attention [9, 7, 27, 29, 3, 18, 32]. Locally checkable labelings (LCLs)
are locally checkable problems restricted to constant degree graphs. A more formal definition
of LCLs is deferred to Section 2.

LCLs have been a rich source of research in various models of computation, because they
can be seen as a starting point to understand locally checkable problems in general, and
this holds independently of the model. For example, in the distributed setting, techniques
developed to understand LCLs [16] have then been used to prove lower bounds in the
unbounded degree setting, which the LCL setting does not include, e.g., for the the maximal
independent set problem, or the ∆-coloring problem [4, 6, 5]. In the distributed LOCAL
model of computing, a lot is known about LCLs: for example, if the graph on which we
want to solve the problem is a tree, then there is a discrete set of possible complexities,
and in some cases, given an LCL, we can even automatically decide its distributed time
complexity. Our goal is to bring to the parallel setting, and in particular to the MPC model,
the knowledge that researchers developed about LCLs in the distributed setting, while also
developing new techniques that can be used in the parallel setting. We show that, on forests,
the mere knowledge of what is the distributed complexity of a problem is enough to obtain
blazingly fast algorithms in the MPC setting. In particular, we obtain MPC algorithms that
are exponentially faster than the best distributed ones. We summarize our main result.

The complexity of any LCL problem on forests in the MPC model is exponentially lower
than its distributed complexity, even when using optimal memory bounds.

More in detail, in our work, we solve LCL problems in forests in the most restrictive
low-space MPC model with linear total memory, which is the most scalable variant of the
MPC model. Our results provide an automatic method that, for all LCL problems, yields an
algorithm that solves the given problem exponentially faster than its optimal distributed
counterpart. The resulting algorithms are component-stable [35, 26], which implies that the
solutions in individual connected components are independent of the other components. Our
results are in some sense optimal: for problems that in the LOCAL model can be solved in
no(1), finding more-than-exponentially faster component-stable algorithms would violate the
widely-believed 1 vs. 2 cycle conjecture in the MPC setting.

Why do we care about trees and forests? All known conditional lower bounds1 for
problems in the MPC setting are derived by lifting lower bounds that hold in the LOCAL
model of distributed computing [35, 26]. Most of the lower bounds known in the LOCAL
model are actually proved either on trees or on high-girth graphs (where the neighborhood
of each node corresponds to a tree): see, e.g., [44, 5, 4, 6, 16]. It follows that essentially all
the conditional lower bounds known in the MPC setting already hold on forests2. Despite
this fact, with a few exceptions, there is no work on upper bounds on forests in the MPC
model – a gap we aim to fill.

1 Proving unconditional lower bounds for the MPC model would imply a major breakthrough in circuit
complexity and seems out of reach [53].

2 As lifting lower bounds from the LOCAL model to the MPC model requires hereditary graph classes one
cannot immediately lift a lower bound in the LOCAL model that holds on trees. Instead, a lower bound
in the LOCAL model on trees implies the same lower bound in the LOCAL model for forests which can
then be lifted to a lower bound for MPC algorithms on forests.
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Moreover, understanding the complexity of problems on trees has been already shown
to be essential in the LOCAL model: it is typically the case that interesting problems are
already challenging on trees, and often even in regular balanced trees of small degree. In
fact, most lower bounds known in the LOCAL model hold exactly in this setting. Due to
the lifting, the same statement adapted to forests is true for all recent MPC lower bounds.
Hence, to decrease the relevance of trees and forests, we either need completely new lower
bound techniques in the LOCAL model coupled with completely new lifting theorems, or
completely new lower bound techniques for the MPC model.

At first glance it may seem that our results are easy to achieve, because we restrict to
forests. Conversely, we would like to emphasize that many state-of-the-art algorithms for
problems like MIS and coloring work as follows [37, 25]: start with a dense graph which
requires a lot of memory to store, sparsify it, and then use the freed global memory to solve
the problem faster on the sparsified part. On forests, this is not possible, because the given
graph is already as sparse as it can be.

The MPC Model. In the MPC model, we have M machines who communicate in an
all-to-all fashion. We focus on problems where the input is modeled as a graph with n

vertices, m edges and maximum degree ∆; we call this graph the input graph. Each node has
a unique ID of size b = O(log n) bits from a domain {1, 2, . . . , N}, where N = poly(n). Each
node and its incident edges are hosted on a machine(s) with S = O(nδ) local memory, where
δ ∈ (0, 1) and the units of memory are words of O(log n) bits. When the local memory is
bounded by O(nδ), the model is called low-space (or sublinear). The number of machines is
chosen such that M = m/S = Θ(m/nδ). For trees, where m = Θ(n), this results in Θ(n1−δ)
machines, that is, a total memory (or global memory) of M · S = Θ(n). For simplicity3, we
assume that each machine i simulates one virtual machine for each node and its incident
edges that i hosts, such that the local memory restriction becomes that no virtual machine
can use more than O(nδ) memory.

During the execution of an MPC algorithm, computation is performed in synchronous,
fault-tolerant rounds. In each round, every machine performs some (unbounded) computation
on the locally stored data, then sends/receives messages to/from any other machine in the
network. Each message is sent to exactly one other machine specified by the sending machine.
All messages sent and received by each machine in each round, as well as the output, have
to fit into local memory. The time complexity is the number of rounds it takes to solve a
problem. Upon termination, each node (resp. its hosting machine) must know its own part
of the solution. For example in the case of node-coloring, the machine hosting node u must
decide on the color of u upon termination of the algorithm.

Unlike in most other works, our algorithms employ O(m + n) words of total memory,
which is the strictest possible as it is only enough to store a constant number of copies
of the input graph. Note that if we were to allow superlinear O(m1+δ) global memory in
our constant-degree setting, many LOCAL algorithms with complexity O(log n) could be
trivially sped up exponentially in the low-space MPC model by applying the well-known
graph exponentiation technique by Lenzen and Wattenhofer [45]. A crucial challenge that
comes with the linear global memory restriction is that only a small fraction of n1−δ of the
(virtual) machines can simultaneously utilize all of their available local memory. Thus, with

3 In practice, it is assumed that the virtual machines can be shuffled between physical machines, such
that the sum of the memory of the virtual machines hosted on any single physical machine is O(nδ).
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9:4 Exponential Speedup over Locality in MPC with Optimal Memory

strictly linear global memory we are forced to develop new techniques which must avoid
gathering local neighborhoods, i.e., fundamentally divert from direct simulations of message
passing algorithms.

1.1 The Distributed Complexity Landscapes
In the last decade, there has been tremendous progress in understanding the complexities
of LCLs in various models of distributed and parallel computing. A prime example is the
LOCAL model [46], where the input graph corresponds to a message passing system, and the
nodes must output their part of the solution according only to local information about the
graph. Another example is the CONGEST model, which is a LOCAL model variant where the
message size is restricted to O(log n) bits [52]. A curious fact about LCLs in the distributed
setting is the existence of complexity gaps, that is, some complexities are not possible at all.
For example, it is known that there are no LCLs with a distributed time complexity in the
LOCAL and CONGEST model that lies between ω(log∗ n) and o(log n). In these two models,
the whole complexity landscape of LCL problems is now understood for some important
graph families. For instance, a rich line of work [50, 20, 22, 11, 8, 3, 18] recently came to
an end when a complexity gap between ω(1) and o(log∗ n) was proved [40], completing the
randomized/deterministic complexity landscape of LCL problems in the LOCAL model for
trees. In the CONGEST model, the authors of [9] showed that, on trees, the complexity of
an LCL problem is asymptotically equal to its complexity in the LOCAL model, whereas
the same does not hold in general graphs. In the randomized/deterministic LOCAL and
CONGEST models, recent work showed that the complexity landscapes of LCL problems
for rooted regular trees are fully understood [7], while the complexity landscapes of LCL
problems in the LOCAL model for rings and tori have already been known for some while [17].
Even for general (constant-degree) graphs, the LOCAL complexity landscape of LCL problems
is almost fully understood [50, 16, 21, 22, 36, 30, 34, 10, 8, 54, 33], only missing a small part
of the picture related to the randomized complexity of Lovász Local Lemma (LLL).

In the case of trees, for deterministic algorithms in the LOCAL model, it is known that
there is a discrete set of possible complexities, that we divide into four categories:

Tiny regime: contains the complexities O(1) and Θ(log∗ n).
Example problems: maximal independent set, maximal matching, (∆ + 1)-vertex
coloring4, (2∆ − 1)-edge coloring, and trivial problems (e.g., all nodes must output 0).

Mid regime: contains the complexity Θ(log n).
Example problems: sinkless orientation [16], 3-coloring, and ∆-coloring.

High regime: contains the complexities Θ(n1/k), for all k ∈ N.
Example problems: 2-coloring and 2 1

2 -coloring [22].

Moreover, it is known that randomness can help only in the mid regime, and in partic-
ular that some problems requiring Θ(log n) for deterministic algorithms have randomized
complexity Θ(log log n), which constitutes our fourth category – Low regime. Problems
residing in the low regime include sinkless orientation and ∆-coloring.

On forests, the complexity landscape in the LOCAL model is the same as on trees. While
this is intuitively evident, it can also be shown formally using an analogous approach to the
one used in the proof of [40, Lemma 3.3].

4 We denote the maximum degree of the graph by ∆.
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1.2 Our Contributions
Our main contribution is showing that, given any LCL problem (see Definition 4) on trees that
has deterministic (resp. randomized) complexity T in the LOCAL model, we can automatically
obtain an MPC algorithm with deterministic (resp. randomized) complexity O(log T ) on
forests. In particular, we prove the following.

▶ Theorem 1. Consider an LCL problem on trees with deterministic time complexity f(n) and
randomized time complexity g(n) in the LOCAL model. This problem has deterministic time
complexity O(log f(n)) and randomized time complexity O(log g(n)) in the low-space MPC
model on forests using optimal O(m + n) words of global memory. The provided algorithms
are component-stable.

Put differently, a problem in the LOCAL model can only have a deterministic complexity
f(n) ∈ {Θ(1), Θ(log∗ n), Θ(log n)} ∪ {Θ(n1/k) | k ∈ N}, and we show that it is enough to
know the asymptotic value of f(n) in order to obtain a deterministic MPC algorithm with
complexity O(log(f(n))) ∈ {O(1), O(log log∗ n), O(log log n), O(log n)}.

Moreover, it is known that for all f(n) ̸∈ Θ(log n), the LOCAL randomized complexity of
the problem is the same as the deterministic one. Instead, for f(n) ∈ Θ(log n), the LOCAL
randomized complexity g(n) can be either Θ(log n) or Θ(log log n). If it is Θ(log log n), then
we provide an MPC algorithm with randomized complexity O(log log log n). If we dismiss
the component-stability requirement, we can obtain the same O(log log log n) runtime with a
deterministic MPC algorithm.

▶ Theorem 2. Consider an LCL problem on trees with randomized time complexity
g(n) = Θ(log log n) in the LOCAL model. This problem has deterministic time complexity
O(log log log n) in the low-space MPC model on forests using optimal O(m + n) words of
global memory. This algorithm is component-unstable.

By [35, 26], we know that Theorem 1 is in some sense optimal: if a problem requires T

deterministic rounds in the LOCAL model, then it requires Ω(min{log T, log log n}) rounds
in the low-space MPC setting for component-stable algorithms, assuming that the infamous 1
vs. 2 cycle conjecture holds [12, 35, 53]. In contrast, Theorem 2 shows that one can break the
conditional lower bound of Ω(log log n) for deterministic MPC algorithms for all LCL problems
in the aforementioned class by diverting to component-unstable algorithms. Achieving the
same result even for a single problem without dismissing the component-stability requirement
would be a major breakthrough, as it would falsify the conjecture.

As a subroutine for solving all problems that belong to the high regime in O(log n) MPC
rounds, we also develop an O(log n) round MPC algorithm for rooting a forest. This rooting
algorithm is component-stable, and may be of independent interest, since it is also compatible
with arbitrary degrees.

Additional observations. There is a long line of research that provided algorithms for MPC
that are exponentially faster than the best algorithms for the LOCAL model. Most existing
results achieved these speedup results by using additional global memory, that is, ω(m)
words [13, 32, 27, 26]. We emphasize that, deviating from the usual approach, all of our
results use optimal MPC parameters, in the sense that we work in the low-space setting with
O(nδ) words of local memory and O(m + n) words of global memory.

Hence, our contribution is twofold, on the one hand we prove that we can indeed achieve
this exponential speedup for all LCLs, while on the other hand we show that this exponential
speedup can be achieved without requiring any additional memory. Furthermore, graph
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9:6 Exponential Speedup over Locality in MPC with Optimal Memory

problems in trees and forests are widely unexplored, despite their central role that we have
already elaborated on. It is known that a 4-coloring, MIS, and maximal matching can be
found in O(log log n) rounds [32]. However, the coloring result heavily relies on randomness
and the MIS and matching results require a (small) overhead in the total memory. To
compare, our results deterministically yield a 3-coloring in O(log log n) rounds with linear
total memory. It is not clear whether randomness can even help in the case of 3-coloring,
which is a significant difference to the case of 4-coloring. Furthermore, it is not clear whether
the previous approaches to MIS and matching can be extended to work deterministically
with the same runtime and with linear total memory. While the previous work is designed
for arbitrary degree graphs, it is not clear whether the algorithms could be tuned to work
faster with constant degrees.

Open Questions. In the tiny regime, our results extend to general graphs (see Theorem 5).
In the low regime, our results extend to general graphs if we allow slightly more global
memory (see Theorem 6.5 in the full version). Once we reach the mid regime, i.e., logarithmic
distributed complexities, we do not know the behaviour in general graphs. This leads to
an interesting open question. As mentioned, the asymptotic complexity of any problem on
trees is identical in the LOCAL and CONGEST model, and the same is true (modulo the
exact complexity of the LLL in both models) on general graphs as long as the complexity is
sublogarithmic [9]. However, there is a an exponential separation between the models for
complexities that are at least logarithmic [9]. Does such a separation between the complexity
of an LCL in the LOCAL model and the MPC model also hold for large complexities? Here,
of course, we would want to have a doubly exponential separation.

Interestingly, current conditional lower bounds for the MPC model cannot prove MPC
lower bounds that are ω(log log n). So, while our results in the high regime show that any
problem on forests can be solved in O(log n) rounds in the MPC model, it remains unclear
whether we cannot improve on this bound, even without falsifying the 1 vs. 2 cycle conjecture.

Component-stability. The term of a component-stable MPC algorithm has been introduced
in [35] in the context of lifting distributed lower bounds to the MPC setting. By their
definition, informally, an algorithm is component-stable if the output of a node does not
change if other connected components in the graph are altered (see Definition 11).

While initially believed that it might be an artifact of their lifting techniques, Czumaj,
Davies and Parter [26] showed the contrary, i.e., they showed that component-unstable
algorithms can beat the conditional lower bounds of [35]. Their results hold assuming
their revised definition of component-stability, which is argued to be more robust (see
Definition 13). Under their definition, it is not strictly easier nor harder to design algorithms
to be component-stable, as compared to the definition of [35]. The main difference is that
they allow the output of component-stable algorithms to depend on the total number of
nodes in the graph and the maximum degree. In our work, we adopt the revised definition of
component-stability [26]. See Appendix A and the discussion therein for further details.

1.3 Challenges & Key Techniques
We now provide an overview of the challenges that we had to tackle in order to prove our
results, and a very high level explanation of the key techniques that we used to solve them.

The tiny regime serves as a good warm-up to see why using an optimal amount of global
memory is difficult. The most technically involved part is the high regime, where we obtain
an O(log n)-time MPC algorithm for any LCL problem.
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Graph Exponentiation. A reoccurring challenge for all regimes lies in respecting the linear
global memory, which roughly means that on average, every node can use only a constant
amount of memory. This is particularly unfortunate because almost all recent MPC results –
and in particular all that achieve exponential speedups – rely on the memory-intense graph
exponentiation technique [45]. Informally, this technique enables a node to gather its 2k-hop
neighborhood in k communication rounds. Doing this in parallel for every node in the graph
results in a ∆2k overhead in global memory. For this technique to be useful, k has to be
ω(1), yielding a non-constant multiplicative increase in the global memory requirement. In
order to use this technique but not violate linear global memory, we develop new solutions
that are discussed in the following paragraphs.

Tiny regime f(n) = Θ(1) and f(n) = Θ(log∗ n). Handling the Θ(1) complexity is
trivial, since any LOCAL algorithm for LCLs can be simulated in the MPC setting. For the
Θ(log∗ n) class, it is known from prior work that all problems can be solved in the LOCAL
model in a very specific way: reduce to the problem of computing a distance-k coloring with
a small enough number of colors, where k is a constant that depends on the problem. In a
distance-k c-coloring, each node is assigned a color in {1, . . . , c} such that nodes at distance
at most k have different colors. Such a coloring can be computed in O(log∗ n) rounds in the
LOCAL model, and it could be computed easily in the MPC setting in O(log log∗ n) rounds,
by exploiting the graph exponentiation technique, if we allow an additional O(log∗ n) factor
overhead in the amount of global memory.

We show that this overhead is not required, by developing a novel MPC algorithm for
coloring. The algorithm that we provide reduces the problem of coloring a general graph
to coloring directed pseudoforests, that is, graphs where all edges are oriented and every
node has at most one outgoing edge. Then, we show that in directed pseudoforests, it is
possible to solve the coloring problem through a variant of graph exponentiation that only
requires keeping track of a constant number of IDs. This way, the memory use of each node
is constant, and the global memory is linear.

High regime f(n) = Θ(n1/k), for all k ∈ N. We explicitly provide, for any solvable LCL,
a novel algorithm that has a runtime of O(log n). Essentially, we solve each tree in the forest
separately, hence we will consider trees in the following argumentation. On a high level,
our algorithm first roots the tree using our O(log n)-time tree rooting algorithm, and then
proceeds in two phases. In the first phase, roughly speaking, the goal is to compute, for a
substantial number of nodes v, the set of possible output labels that can be output at v such
that the label choice can be extended to a (locally) correct solution in the subtree hanging
from v. This is done in an iterative manner, proceeding from the leaves towards the root.
The second phase consists of using the computed information to solve the given LCL from
the root downwards.

While this outline sounds simple, there are a number of intricate challenges that require
the development of novel techniques, both in the design of the algorithm and its analysis. For
instance, the depth of the input tree may be ω(log n) (which prevents us from performing
the above ideas in a sequential manner), and the storage of the required completability
information grows exponentially when using graph exponentiation, exceeding the available
global memory. Our key technical contributions are the following.

The design of a process that allows for interleaving graph exponentiation steps and
compressing the graph (and compatibility information) such that the process is also
reversible (second phase of the algorithm). The main challenge here is that multiple graph
exponentiation processes executed on individual parts of the tree have to be merged,
simultaneously or at different times, into one process during the execution.

DISC 2022



9:8 Exponential Speedup over Locality in MPC with Optimal Memory

The design of a fine-tuned potential function for the analysis of the complex algorithm
resulting from addressing the aforementioned issues and the highly non-sequential behavior
arising from interleaving graph exponentiation steps.

Mid regime f(n) = Θ(log n). We would wish to use the algorithm of Chang and Pettie [22]
as a black box. On a very high level idea, their LOCAL algorithm uses O(log n) rounds
to compute a rake-and-compress decomposition of size O(log n), which is essentially the
classic H-partition by Miller and Reif [49]. Then, compatibility information of the given LCL
problem is propagated layer by layer to the top, and then labels are fixed at the top and
propagated down.

Applying known MPC techniques like graph exponentiation to speed up this process
does not work out of the box for several reasons. First, the compatibility information
they propagate grows exponentially, which creates congestion in the MPC model. Secondly,
since the input graph is as sparse as it could possibly be, the direct application of graph
exponentiation would violate the optimal global memory bounds we are striving for. We
resolve the first issue by first observing that the compatibility information can be reduced to
constant size in every iteration. The second issue is remedied by interleaving exponentiation
steps with memory freeing steps in a balanced way.

Low regime g(n) = Θ(log log n). With an additional O(log n) factor of global memory,
this result is easy to obtain. Previous work [9] has a constant time reduction to instances of
size N = log n, resulting in a LOCAL algorithm with runtime poly(log N) = poly(log log n).
A straightforward application of graph exponentiation would yield an MPC algorithm with
runtime O(log log log n). Exploiting additional global memory in this manner has been used
in a similar setting in [26]. However, without the additional memory it is harder to solve
the small instances in triple logarithmic time. The work around for this memory issue is to
use our mid regime algorithm on the small instances, yielding a memory efficient algorithm
with runtime O(log log log n). To the best of our knowledge there is no other paper that
can efficiently deal with such occurring small instances – small instances occur also in many
other problems like MIS and graph coloring – with optimal global memory.

1.4 Further Related Work
For many of the classic graph problems, simple O(log n)-time MPC algorithms follow from
classic literature in the LOCAL model and PRAM [1, 46, 48]. In particular in the case of
bounded degree graphs, it is often straightforward to simulate algorithms from other models.
However, it is usually desirable to get algorithms that run much faster than their LOCAL
counterparts. If the MPC algorithms are given linear Θ(n) or even superlinear Θ(n1+δ) local
memory, fast algorithms are known for many classic graph problems.

In the sublinear (or low-space) model, [19] provided a randomized algorithm for the (∆+1)-
coloring problem that, combined with the new network decomposition results [54, 33], yields
an O(log log log n) MPC algorithm, that is exponentially faster than its LOCAL counterpart. A
recent result by Czumaj, Davies, and Parter [27] provides a deterministic O(log log log n)-time
algorithm for the same problem using derandomization techniques. For many other problems,
the current state of the art in the sublinear model is still far from the aforementioned
exponential improvements over the LOCAL counterparts, at least in the case of general
graphs. For example, the best known MIS, maximal matching, (1 + ϵ)-approximation
of maximum matching, and 2-approximation of minimum vertex cover algorithms run
in Õ(

√
log ∆ +

√
log log n) time [37], whereas the best known LOCAL algorithm has a
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logarithmic dependency on ∆ [31]. For restricted graph classes, such as trees and graphs
with small arboricity5 α, better algorithms are known [15, 13]. Through a recent work by
Ghaffari, Grunau and Jin, the current state of the art for MIS and maximal matching are
O(

√
log α · log log α + log log n)-time algorithms using Õ(n + m) words of global memory [32].

As for lower bounds, [35] gave conditional lower bounds of Ω(log log n) for component-
stable sublinear MPC algorithms for constant approximation of maximum matching and
minimum vertex cover, and MIS. In addition, the authors provided a lower bound of
Ω(log log log n) for LLL. Their hardness results are conditioned on a widely believed conjecture
in MPC about the complexity of the connectivity problem, which asks to detect the connected
components of a graph. It is argued that disproving this conjecture would imply rather strong
and surprising implications in circuit complexity [53]. When assuming component-stability,
they also argue that all known algorithms in the literature are component-stable or can easily
be made component-stable with no asymptotic increase in the round complexity. However,
recent work [26] gave a separation between stable and unstable algorithms, and that some
particular problems (e.g., computing an independent set of size Ω(n/∆)) can be solved faster
with unstable algorithms than with stable ones.

It is also worth discussing the complexity of rooting a tree, as it is an important subroutine
in our high regime. On the randomized side, [15] gave an O(log d · log log n) time algorithm,
where d is the diameter of the graph. On the deterministic side, Coy and Czumaj [24] gave
an O(log n) time algorithm using (component-unstable) derandomization methods, which
is the current state of the art. In the full version we provide a totally different rooting
algorithm that is also deterministic and takes O(log n) time, but is component-stable. We
note that [43] uses similar techniques in a more general setting, but in ω(log n) time.

1.5 Outline
After the formal introduction of LCL problems and other notations in Section 2, we start
proving the exponential speedup for the different regimes in Theorem 1 in separate sections.
In Section 3, we warm up with the tiny regime. In Section 4, we present the high level ideas
for our most involved result, the exponential speedup for the high regime. We provide full
proofs and handle the remaining regimes in the full version of the paper.

Some of our speedup results use a description of a distributed algorithm with the claimed
runtime to obtain the speedup. In the full version of the paper, we show that such a
description can be inferred merely by knowing the distributed complexity class in which the
problem resides.

2 Definitions and Notation

We work with undirected, finite, simple graphs G = (V, E) with n = |V | nodes and m = |E|
edges such that E ⊆ [V ]2 and V ∩E = ∅. Let degG(v) denote the degree of a node v in G and
let ∆ denote the maximum degree of G. The distance dG(v, u) between two vertices v, u in G

is the length of a shortest v − u path in G; if no such path exists, we set dG(v, u) := ∞. The
greatest distance between any two vertices in G is the diameter of G, denoted by diam(G).
For a subset S ⊆ V , we use G[S] to denote the subgraph of G induced by nodes in S. Let
Gk, where k ∈ N, denote the k:th power of a graph G, which is another graph on the same

5 The arboricity of a graph is the minimum number of disjoint forests into which the edges of the graph
can be partitioned.
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vertex set, but in which two vertices are adjacent if their distance in G is at most k. In
the context of MPC, Gk is the resulting virtual graph after performing log k steps of graph
exponentiation [45].

For each node v and for every radius k ∈ N, we denote the k-hop (or k-radius) neighbor-
hood of v as Nk(v) = {u ∈ V : d(v, u) ≤ k}. The topology of a neighborhood Nk(v) of v

is simply G[Nk(v)]. However, with slight abuse of notation, we sometimes refer to Nk(v)
both as the node set and the subgraph induced by node set Nk(v). Neighborhood topology
knowledge is often referred to as vision, e.g., node v sees Nk(v). In trees and forests, the
number n of nodes and the number m of edges are asymptotically equal, and we may use
them interchangeably throughout the paper when reasoning about global memory.

2.1 LCL Definitions
In their seminal work [50], Naor and Stockmeyer introduced the notion of a locally checkable
labeling problem (LCL problem or just LCL for short). The definition they provide restricts
attention to problems where nodes are labeled (such as vertex coloring problems), but they
remark that a similar definition can be given for problems where edges are labeled (such
as edge coloring problems). A modern way to define LCL problems that captures both of
the above types of problems (and combinations thereof) labels half-edges instead, i.e., pairs
(v, e) where e is an edge incident to vertex v. Moreover, on trees it is known that all LCL
problems can be rephrased in a special form, called node-edge-checkable LCL problems [9, 40].
Let us first define a half-edge labeling formally, and then provide this modern LCL problem
definition.

▶ Definition 3 (Half-edge labeling). A half-edge in a graph G = (V, E) is a pair (v, e), where
v ∈ V is a vertex, and e ∈ E is an edge incident to v. A half-edge (v, e) is incident to some
vertex w if v = w. We denote the set of half-edges of G by H = H(G). A half-edge labeling
of G with labels from a set Σ is a function g : H(G) → Σ.

We distinguish between two kinds of half-edge labelings: input labelings that are part of
the input and output labelings that are provided by an algorithm executed on input-labeled
instances. Throughout the paper, we will assume that any considered input graph G comes
with an input labeling gin : H(G) → Σin and will refer to Σin as the set of input labels; if the
considered LCL problem does not have input labels, we can simply assume that Σin = {⊥}
and that each node is labeled with ⊥.

While the formal definition of a node-edge-checkable LCL (see below) appears complicated,
the intuition behind it is simple: essentially, we have a list of allowed output label combinations
around nodes, a list of allowed output label combinations on edges, and a list of allowed
input-output label combinations, all of which a correct solution for the LCL has to satisfy.

▶ Definition 4 (Node-edge-checkable LCL). Let ∆ be some non-negative integer constant.
A node-edge-checkable LCL is a quintuple Π = (Σin, Σout, N , E , g) where Σin and Σout are
finite sets, N = {N1, . . . , N∆} consists of sets Ni of cardinality-i multisets with elements
from Σout, E is a set of cardinality-2 multisets with elements from Σout, and g : Σin → 2Σout

is a function mapping input labels to sets of output labels. We call N1 ∪ · · · ∪ N∆ and E the
node constraint and edge constraint of Π, respectively. Furthermore, we call each element of
N a node configuration, and each element of E an edge configuration. For a node v, denote
the half-edges of the form (v, e) for some edge e by hv

1, . . . , hv
deg(v) (in arbitrary order). For

an edge e, denote the half-edges of the form (v, e) for some node v by he
1, he

2 (in arbitrary
order).
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A correct solution for Π on a graph G is a half-edge labeling gout : H(G) → Σout such that
1. for each node v, the multiset of outputs assigned by gout to hv

1, . . . , hv
deg(v) is an element

of Ndeg(v),
2. for each edge e, the cardinality-2 multiset of outputs assigned by gout to he

1, he
2 is an

element of E, and
3. for each half-edge h ∈ H(G), we have gout(h) ∈ g(ι), where ι = gin(h) is the input label

assigned to h.

We say that an algorithm A solves an LCL problem Π on a graph class G if it provides a
correct solution for Π for every G ∈ G. Note that the LCL definitions above implicitly require
that graph class G has constant degree.

3 The Tiny Regime

In this section, we show that any LCL problem on general graphs that can be solved in the
LOCAL model in O(log∗ n) rounds, can be solved in the MPC model in O(log log∗ n) rounds.
By combining this result with known gaps in the landscape of possible complexities in the
LOCAL model [21], we obtain the following result.

▶ Theorem 5. Let Π be an LCL problem on general graphs. Assume that there is a determ-
inistic algorithm for the LOCAL model that solves Π in o(log n) rounds, or a randomized
algorithm that solves it in o(log log n) rounds. Then, the problem Π can be solved determin-
istically in O(log log∗ N) rounds in the low-space MPC model using O(m + n) words of global
memory, where N = poly(n) is the size of the ID space. The algorithm works even if the
graph consists of disconnected components, and it is components-stable.

The rest of this section is devoted to proving Theorem 5.

A Universal Algorithm. In the LOCAL model, it is known that, if an LCL can be solved
with an algorithm A in o(log n) deterministic rounds, or in o(log log n) randomized rounds,
then it can also be solved with a deterministic algorithm A′ that requires just O(log∗ n)
rounds [21]. In order to prove this result, [21] shows how to convert any such algorithm A

into an algorithm A′ that works as follows (for some constant k that depends on the problem
Π and the algorithm A):
1. Compute a distance-k O(∆2k)-coloring of the graph;
2. Run a k-round algorithm B that uses the computed coloring to produce the final output.
In [21] is shown that the constant k, and the k-round algorithm B, can be mechanically
determined from the original algorithm A. The runtime of algorithm A′ is O(log∗ n) rounds
since this is the runtime for the first step, while the second step only requires constant time.

Why it Works. The high-level purpose of computing the coloring in Item 1 is to provide
new identifiers at the nodes that are unique up to distance k and come from a much smaller
space than the original identifiers (that are part of the setting in the LOCAL model). Roughly
speaking, this ensures that the k-hop view of any node that interprets the computed colors as
identifiers is consistent with the node living in a constant-sized graph (with a constant-sized
identifier space).

In [21], it is argued why this approach works, and on a high level, the reason can be
summarized as follows. For some sufficiently large constant k, algorithm A can be executed
on all graphs of a suitable constant size with a runtime of just k rounds. Since each node
of the original graph executing this k-round algorithm cannot distinguish between living in
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the original graph with the generated new identifiers and living in (a suitable) one of these
constant-sized graphs (on all of which the algorithm is correct), the k-round algorithm must
also be correct on the (much larger) original graph. This is just a high-level sketch of the
proof presented in [21]; there are a number of intricate details that have to be taken care of
and are explained in [21].

How We Proceed. For our purpose, we do not actually need to know the details of [21] on
how A′ is constructed as a function of A, and we just use the following statement that comes
from [21]: if the problem Π can be solved in o(log n) deterministic rounds or o(log log n)
randomized rounds, then it can also be solved in O(log∗ n) deterministic rounds using an
algorithm that first applies Item 1 and then applies Item 2. In fact, in our case, we are not
even given the algorithm A as input: we just know that the problem can be solved in o(log n)
deterministic or o(log log n) randomized rounds, but we are not given an algorithm A with
such a complexity. Hence, we cannot apply the construction of [21] directly.

In Section 7 of the full version, we show that this is not an issue, in the sense that, if an
algorithm exists, then it can be found by brute force. To show that, we use the following two
important ingredients presented in [50]:

Any constant time algorithm that solves an LCL in the LOCAL model can be transformed
into an algorithm that does not require nodes to have IDs.
For every k, it is decidable whether there exists a k-round algorithm that solves a given
problem in a setting where we do not have IDs and we are given a (suitable) distance-k
coloring. The reason is that, in this setting, there are only a finite number of possible
algorithm candidates (and they can be enumerated), and given a candidate, it is possible
to check if it constitutes a correct algorithm by using a centralized offline procedure.

We use the above ingredients as follows. If we just know that Π can be solved in o(log n)
deterministic rounds or o(log log n) randomized rounds, even if no algorithm is given, we can
use [21] to claim that there exists a k for which there is a k-round algorithm B that solves Π
given a distance-k coloring, and then use the first ingredient to claim that this algorithm
does not need the presence of IDs. Finally, we use the second ingredient to say that if we try
increasing values of k, we are going to find the algorithm B that we need.

From the above discussion, in order to prove Theorem 5, we only need to show how to
compute a distance-k O(∆2k)-coloring in O(log log∗ n) deterministic MPC rounds.

3.1 LOCAL Algorithm
We start by presenting an algorithm for computing such a coloring in the LOCAL model.
While computing such a coloring in the LOCAL model is easy, we present an algorithm
amenable to be converted into a faster MPC algorithm. This algorithm is not new: it has
been already presented in [38, 51], and we report it here, with minor modifications, for
completeness.

▶ Lemma 6. For any constant k, the distance-k O(∆2k)-coloring problem on general graphs
can be solved in the LOCAL model with a deterministic algorithm running in O(log∗ n) rounds.

Proof. We present an algorithm that is able to compute an O(∆2) coloring of a given graph
G, where ∆ is the maximum degree of G, in O(log∗ n) rounds. By simulating such an
algorithm on Gk, the k-th power of G, which has maximum degree ∆k, we obtain the claimed
result. Note that the running time is also asymptotically the same, since k is a constant.

The algorithm works as follows. At the beginning, each edge is oriented arbitrarily. Then,
each node marks its incident outgoing edges with different numbers from {1, . . . , ∆}. In
this way, we decomposed our graph G into ∆ edge-disjoint directed subgraphs G1, . . . , G∆,



A. Balliu, S. Brandt, M. Fischer, R. Latypov, Y. Maus, D. Olivetti, and J. Uitto 9:13

where each Gi is the graph induced by edges marked i. Also, notice that by construction, for
each i, each node in Gi has at most a single outgoing edge, and hence each Gi is a directed
pseudoforest.

Assume we can color each directed pseudoforest with 3 colors in O(log∗ n) rounds. Then,
we can obtain a proper coloring for the nodes of G with 3∆ colors, by letting each node
construct the tuple c(v) = (c1(v), . . . , c∆(v)), where ci(v) is the color of v in Gi. In fact,
consider two neighboring nodes u and v connected through an edge e. Assume that e is
oriented from u to v, and that u marked e with value i. Then, in Gi, u and v are neighbors,
and hence they obtained different colors ci(u) and ci(v), implying that c(u) ̸= c(v). Once a
3∆-coloring is obtained, we can then spend O(3∆) rounds to reduce the number of colors to
O(∆2), by using a simple greedy algorithm.

We now show that each pseudoforest can be 3-colored efficiently. Let P be an arbitrary
pseudotree. At first, we can use the IDs of the nodes to produce a poly(n)-coloring of P . Then
we apply 1 round of Linial’s coloring algorithm [47] in order to obtain an O(log n)-coloring
of P . While this step of coloring is not necessary for the LOCAL algorithm, it allows us to
reduce the amount of information that we will later need to transmit in the MPC algorithm.
Nodes can then spend T = O(log∗ n) rounds to gather the color of their successors in P

at distance at most T , and it is known that, with this information, nodes can compute a
proper coloring of P , by simulating O(log∗ n) steps of a color reduction algorithm for directed
paths [38, 23]. ◀

3.2 MPC Implementation
We now show how to convert the LOCAL algorithm into an exponentially faster low-space
MPC algorithm. The LOCAL algorithm consists of two main steps: The distance-k O(∆2k)-
coloring and the k-round algorithm. Since k and ∆ are constant, the latter step is trivial, and
the former step can be computed efficiently using graph exponentiation, where nodes keep
track of the IDs of the two outermost nodes, and the colors of all nodes in between. Lemma 9
of the following paragraph proves the former step, completing the proof for Theorem 5.
Component-stability and compatibility with disconnected components follows directly from
the fact that all arguments are local, i.e., nodes in separate components never communicate,
and that the runtime depends only on N .

Distance-k Coloring. We show that the initial distance-k coloring can be computed in
O(log log∗ n) low-space MPC rounds, while respecting linear global memory. First, we observe
that using the standard graph exponentiation technique, we can compute the kth power
of a graph; for constant k, the memory overhead is only a constant. Then, we will apply
techniques similar to the ones used in the LOCAL model in Lemma 6.

▶ Observation 7. For an input graph G with n nodes, m edges, and maximum degree ∆, the
power graph Gk can be computed deterministically in O(log k) low-space MPC rounds with
O(∆k) words of local and O(m + n · ∆k) words of global memory, as long as ∆k < nδ.

▶ Observation 8. Every k-round LOCAL algorithm can be simulated in O(log k) low-space
MPC rounds with O(∆k) words of local and O(m + n · ∆k) words of global memory, as long as
∆k < nδ. If the LOCAL algorithm is deterministic, then the MPC algorithm is deterministic
as well.

Proof. Using Observation 7, we can collect the k-hop neighborhood of each node and hence,
simulate a k-round LOCAL algorithm in an additional O(1) low-space MPC rounds. Observe
that this also holds for general graphs. ◀
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▶ Lemma 9. The distance-k O(∆2k)-coloring problem on general graphs can be solved in the
low-space MPC model with a O(log log∗ n + log k)-time deterministic algorithm, as long as
∆k < nδ. The algorithm requires O(∆k) words of local and O(m + n · ∆k) words of global
memory. If k and ∆ are constants, the runtime reduces to O(log log∗ n) and we require O(1)
words of local and O(m + n) words of global memory.

Proof. Using Observation 7, we can first compute Gk in O(log k) rounds, and operate on
Gk instead of the input graph G henceforth. The application of Observation 7 requires
O(∆k) words of local memory and O(m + n · ∆k) words of global memory. Then, similarly
to Lemma 6, we can reduce the coloring problem to O(1)-coloring of directed pseudoforests
that are initially colored with O(log n) colors.

Next, our goal is to use the graph exponentiation technique such that each node can collect
the topology and the colors of its O(log∗ n) successors in its pseudoforest in O(log log∗ n)
time. Here, we have to take care of the subtle detail that the color of a successor is not
enough to determine the machine on which this successor lies. Suppose that each node is
initially labeled with its O(log log n)-bit color and its O(log n)-bit identifier that encodes
both the identity (color) of the node and the machine containing the node. Then, in round 1,
each node knows the identifier and the color of its successor. For an inductive argument,
suppose that each node u knows the identifier the successor vi in distance i and the vector of
colors of all nodes in between u and vi, on the directed path from u to vi. Then, in O(1)
MPC rounds, u can learn the identifier of the 2i:th successor v2i and the colors of all nodes
between u and v2i. After learning the identifier of v2i, node u can forget about the identifier
of vi and hence, u only keeps track of one identifier. By induction, node u learns the colors
of its O(log∗ n) successors in O(log log∗ n) MPC rounds.

Using the vector of colors of the successors, in O(1) MPC rounds, each node can simulate
the O(log∗ n)-time LOCAL algorithm to obtain an O(∆2k)-coloring. This requires O(log∗ n ·
log log n+log n) = O(log n) bits of memory per node per pseudoforest that the node belongs to,
counting the colors of the successors and the identifier of the furthest successor. Altogether,
this results in a global memory requirement of O(n log n · ∆k) bits which fits O(n · ∆k)
words. ◀

4 The High Regime

In this section, we will prove that all solvable LCL problems on forests, i.e., all LCL problems
that have a correct solution on every forest, can be solved deterministically in O(log n) time in
the low-space MPC model using O(m + n) words of global memory. Our proof is constructive:
we explicitly provide, for any solvable LCL, an algorithm that has a runtime of O(log n). In
fact, our construction can be used to find an O(log n)-time algorithm even for unsolvable
LCLs, with the guarantee that on any instance that admits a correct solution the given output
will be correct (while the algorithm detects it if no solution exists). We show the following
theorem.

▶ Theorem 10. For any solvable LCL problem Π on a forest, there is an O(log n)-time
deterministic low-space MPC algorithm that is component-stable and uses O(m + n) words of
global memory.

In the full version, we provide a method to solve any LCL on forests if we can solve it on
trees. Hence, we can restrict attention to trees.
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4.1 High-level Overview of the Algorithm and Its Analysis
Consider an arbitrary solvable LCL problem Π on trees. In the following, we will give a
slightly simplified view of the algorithm we will use to solve Π in O(log n) time. First, we root
the input tree by using the O(log n)-round rooting algorithm described in the full version.
Then, on a high level, the rest of the algorithm proceeds in 2 phases.

In the first phase, which we will refer to as the leaves-to-root phase, roughly speaking, the
goal is to compute, for a substantial number of edges e = (u, v), the set of output labels that
can be output at half-edge (v, e) such that the label choice can be extended to a (locally)
correct solution in the subtree hanging from v via e. This is done in an iterative manner,
proceeding from the leaves towards the root. When, at last, the root has computed this set
of output labels for each incident half-edge, it can, on each such half-edge, select an output
label from the computed set such that the obtained node configuration is contained in the
node constraint of Π and the input-output constraints of Π (given by the function g in the
definition of Π) are satisfied. Such a selection must exist due to the fact that Π has a correct
solution on the considered instance. We refer to these sets as the completability information.

The second phase, which we will refer to as the root-to-leaves phase, consists of completing
the solution from the root downwards, by iteratively propagating the selected solution further
towards the leaves. With the same argumentation as at the root, certain nodes v can select an
output label at the half-edge leading to its parent and output labels from the sets computed
on its incident half-edges leading to its children such that the obtained node configuration is
contained in the node constraint of Π, the obtained edge configuration on the edge from v

to its parent is contained in the edge constraint of Π, and the input-output constraints of
Π are satisfied. The fact that the selected labels come from the sets computed in the first
phase ensures that after each choice the current partial solution is part of a correct global
solution. While this outline sounds simple, there are a number of intricate challenges to
make the mentioned ideas work in O(log n) rounds while staying within the memory bound
of O(m + n).

Unfortunately, if the depth of the input tree is ω(log n) the outlined approach has ω(log n)
steps and running them sequentially is insufficient for an O(log n)-time algorithm. In order
to mitigate this issue, we will not only process the leaves of the remaining unprocessed
tree in each iteration, but also the nodes of degree 2, inspired by the rake-and-compress
decomposition by Miller and Reif [49] which guarantees that after O(log n) iterations of
removing all degree-1 and degree-2 nodes all nodes have been removed. The advantage of
degree-2 nodes over higher-degree nodes w.r.t. storing completability information (as in the
above outline) is that they form paths, which by definition only have two endpoints; the
idea, when processing such a path, is to simply store in the two endpoints the information
for which pairs of labels at the two half-edges at the ends of the path there exists a correct
completion of the solution inside the path. This allows to naturally add processing degree-2
nodes to the leaves-to-root phase, while for the root-to-leaves phase, the information stored
at the endpoints s, t of a path essentially allows us to start extending the current partial
solution on the path itself (and thereafter on the subtrees hanging from nodes on the path)
one step after the output labels at s and t are selected. Note that the degrees of nodes change
throughout the process due to the removal of nodes and hence new nodes might become
degree-2 nodes after every step of the algorithm.

Unfortunately, there are further challenges in obtaining an O(log n) runtime. In the
leaves-to-root phase, even when using graph exponentiation, processing a path of degree-2
nodes of length L involves coordination between its endpoints and takes Ω(log L) time,
whereas the O(log n) time guarantee of the rake-and-compress technique crucially relies on
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the fact that each iteration (optimally, an iteration would remove all leaves and all degree-2
nodes) can be performed in constant time. Hence, essentially, we will only perform one
step of graph exponentiation on paths in each iteration. Here, a new obstacle arises: before
the graph exponentiation is finished, new nodes (that just became degree-2 nodes due to
all except one of their remaining children being conclusively processed in the most recent
iteration) might join the path. Nevertheless, we will show that this process still terminates in
logarithmic time by designing a fine-tuned potential function that is inspired by the idea of
counting how many nodes from certain groups of degree-2 nodes are contained in any fixed
“pointer chain” from some leaf to the root.

Another issue is that we have to be able to store the completability information that
we compute in the leaves-to-root phase until we use it (again) in the root-to-leaves phase.
Recall that the graph exponentiation technique adds new edges/pointers. Even on paths
their number can be up to logarithmic in n per node (even on average), yielding a logarithmic
overhead in global memory.

In order to remedy this problem, we perform preprocessing before the leaves-to-root phase,
and, as a result thereof, postprocessing after the root-to-leaves phase. The preprocessing can
be thought of as a more memory-efficient (hence relatively slower) version of (a few iterations
in) the leaves-to-root phase. It differs by processing the degree-2 nodes, i.e., paths, in a way
that guarantees that the number of new edges introduced by the graph exponentiation (which
we should rather call pointer forwarding at this point) on each path in each iteration is only
a constant fraction of the length of the respective path. This is achieved by finding, in each
iteration, a maximal independent set (MIS) on each path, letting only MIS nodes forward
pointers, and removing the MIS nodes afterwards. The preprocessing runs for Θ(log log n)
iterations, and computing an MIS on paths in each of them takes O(log∗ N) time, where N

is the size of the ID space. Note that due to the removal of vertices and the way we treat
paths, new paths can appear in each iteration and we need to pay the O(log∗ N) runtime
in each iteration, yielding a runtime of O(log log n · log∗ N) for the preprocessing, which is
much less than the target runtime of O(log n) rounds.

We will show that the number of remaining nodes is O(n/ log n) after the preprocessing.
This property ensures that the memory overhead of O(log n) edges per node introduced
in the leaves-to-root phase does not exceed the desired global memory of O(m + n) words.
The postprocessing runs for Θ(log log n) iterations and is conceptually very similar to the
preprocessing. We simply iteratively extend the partial solution (computed so far) on the
edges that were processed during preprocessing, analogous to the approach in the root-to-
leaves phase. Lastly, we also have to ensure that the local memory restrictions of low-space
MPC are not exceeded.
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A Component-stability

The notion of a component-stable MPC algorithm has been introduced in [35] in the context
of lifting distributed lower bounds to the MPC setting. It was later revised by Czumaj,
Davies and Parter [26] and argued to be made more robust.

▶ Definition 11 (Component-stability, [35]). An MPC algorithm is component-stable if the
outputs of nodes in different connected components are independent. Formally, assume that
for a graph G, DG denotes the initial distribution of the edges of G among the M machines
and the assignment of unique IDs to the nodes of G. For a subgraph H of G let DH be defined
as DG restricted to the nodes and edges of H. Let Hv be the connected component of node
v. An MPC algorithm A is called component-stable if for each node v ∈ V , the output of v

depends (deterministically) on the node v itself, the initial distribution and ID assignment
DHv of the connected component Hv of v, and on the shared randomness SM .

In their revised definition, [26] assume the setting where all input graphs are legal.

▶ Definition 12 (Legal graph). A graph G is called legal if it is equipped with functions ID,
name: V (G) −→ [poly(n)] providing nodes with IDs and names, such that all names are fully
unique and all IDs are unique in every connected component.

▶ Definition 13 (Component-stability (revised), [26]). A randomized MPC algorithm AMPC
is component-stable if its output at any node v is entirely, deterministically, dependent on
the topology and IDs (but independent of names) of v’s connected component (which we will
denote CC(v)), v itself, the exact number of nodes n and maximum degree ∆ in the entire
input graph, and the input random seed S. That is, the output of AMPC at v can be expressed
as a deterministic function AMPC(CC(v), v, n, ∆, S). A deterministic MPC algorithm AMPC is
component-stable under the same definition, but omitting dependency on the random seed S.

As opposed to [35], [26] allow the output of component-stable algorithms to depend on
the total number of nodes in the graph and the maximum degree of the graph. Additionally,
they assume the following setting: all input graphs are legal (see Definition 12), i.e., all
nodes have an ID that is unique in every connected component, and a name that is unique
across the whole input graph. Assuming the above setting, the output of a component-stable
algorithm is allowed to depend on the IDs of all nodes in the same components, but not the
names.

In our work, we adopt the revised definition of component-stability [26]. In all of our
algorithms, nodes from different components only communicate in order to maintain a certain
global synchrony. This synchrony influences when certain steps are executed and hence the
execution of our algorithms. However, the output at each node is not influenced by the global
communication.

Theorem 2 shows that the lower bounds for component-stable algorithms can be beaten
for a large class of problems on trees and forests even with optimal memory. The long term
effect of the term component-stable in this setting is unclear, but it provides room for many
interesting open questions. One interesting aspect would be to see under which circumstances
one can obtain algorithms with stronger component dependent guarantees, e.g., one may
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want to develop algorithms for which not just the output of a node, but also the time until
it has computed its output can only depend on the size of its component. Our algorithms
do not meet this stronger definition. Besides an ID space dependence our algorithms have
the following runtime behaviour. In the low and mid regime the time until we know the
output of a node depends on the number of nodes in the largest connected component. In
the high regime this time depends on the number of nodes in the whole graph. Going from
trees to forests in the high regime relies on the recent beautiful (deterministic) connected
components algorithm by Czumaj and Coy [24, 14].
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