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Abstract
Our aim is to develop a formal semantics for giving instructions to taskable agents, to investigate
the complexity of decision problems relating to these semantics, and to explore the issues that these
semantics raise. In the setting we consider, agents are given instructions in the form of Linear
Temporal Logic (LTL) formulae; the intuitive interpretation of such an instruction is that the agent
should act in such a way as to ensure the formula is satisfied. At the same time, agents are assumed
to have inviolable and immutable background safety requirements, also specified as LTL formulae.
Finally, the actions performed by an agent are assumed to have costs, and agents must act within a
limited budget. For this setting, we present a range of interpretations of an instruction to achieve
an LTL task Υ, intuitively ranging from “try to do this but only if you can do so with everything
else remaining unchanged” up to “drop everything and get this done.” For each case we present a
formal pre-/post-condition semantics, and investigate the computational issues that they raise.
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1 Introduction

When we consider AI systems that carry out tasks on our behalf (agents), we can distinguish
between different types. At one extreme are agents that are hard-wired to carry out a single
specific function (e.g., vacuum cleaning robots). At the other extreme are autonomous agents,
which have some control over their (mental) state and actions: we can request an autonomous
agent to do something, but whether the agent actually does it is beyond our control. In this
work, we are concerned with taskable agents, which lie between these two extremes. Taskable
agents have a general set of capabilities, which they can draw upon to carry out a wide
range of tasks on our behalf (typically within some constrained environment) – see, e.g., [19].
Unlike autonomous agents, however, taskable agents must try to carry out the instructions
that are presented to them, although we are not in control of how they will try to do so.

In this paper we develop a semantics of instructions for taskable agents: how do we
give them instructions, and how should an agent in receipt of these reconfigure itself in
light of them? Our work lies within the tradition of reactive synthesis [27] and rational
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verification [11, 15]. We assume agents are given instructions in the form of Linear Temporal
Logic (LTL) formulae. A taskable agent given an LTL instruction Υ must subsequently
act so as to ensure Υ is satisfied, if it can do so. At the same time, however, agents are
assumed to have inviolable and immutable background safety requirements, which are also
specified as LTL formulae. Whatever an agent does, it must attempt to ensure that its safety
requirements are respected: safety takes priority over obedience. Actions performed by an
agent are assumed to have costs, and agents must act within a given limited budget. For this
setting, we present a range of interpretations of an instruction to achieve an LTL task Υ.

A key underlying principle to our work is the principle of least change: when acting on a
new instruction, an agent should try to keep everything else as close to how it was before
as possible. This is a ceteris paribus condition: keep all other things equal. Thus, the most
basic form of instruction we consider intuitively says “try to do this but only if you can do
so with everything else remaining unchanged”. An agent will adopt such an instruction only
if it is able to do so while being able to guarantee its original task is achieved, ensuring that
its safety requirement remains satisfied, and staying within its original budget. At the other
extreme are instructions of the form “get this done whatever it takes” in which case we want
the agent to get the task achieved irrespective of its original task and budget. Between these
two extremes are a range of possibilities, some of which we study here. For each case, we
present a pre-/post-condition semantics, and investigate the issues the semantics raise. We
study the complexity of decision problems relating to our semantics, and find that these
range from polynomial time decidable up to 2ExpTime-complete.

2 The Formal Framework

Where S is a set, we denote the powerset of S by 2S . We use various propositional languages
to express properties of the systems we consider. In these languages, we let Φ be a finite
and non-empty vocabulary of Boolean variables, with elements p, q, . . . Where a and b are
words (either finite or infinite) we denote the word obtained by concatenating a and b by
a · b. Where a is a word, we denote by aω the infinite repetition of a.

2.1 Environments
We consider environments in which a single agent is acting. We model such environments as
nondeterministic finite state machines. We use CALLIGRAPHIC letters for elements of
the environment. Our model assumes that an agent acts in an environment that can be in
any of a set S of possible environment states; the environment is initially in state s0. The
agent has a repertoire A of actions that it can perform: the result of performing an action
α ∈ A when the environment is in a state s ∈ S is to transform the environment into another
state that is nondeterministically taken from T (s, α); we refer to T as the state transformer
function of the environment. Finally, individual actions have real-valued costs associated
with them: the cost of performing α is denoted C(α) – thus, in the interests of simplicity,
costs are fixed, and independent of the state of the system.

Formally an environment is given by a structure E = (S,A, T , C,L, s0), where:

S is a finite and non-empty set of environment states;
A is the finite and non-empty set of actions that may be performed in E ;
T : S × A → 2S is the nondeterministic state transformer function of E ;
C : A → R is a cost function, which indicates the cost C(α) of performing action α ∈ A;
L : S → 2Φ is a labelling function, which associates with each state s ∈ S the set L(s) ⊆ Φ
of Boolean variables true in s; and finally
s0 ∈ S is the initial state of the environment.
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The environment E is said to be deterministic if T (s, α) is a singleton set for each
environment state s ∈ S and action α ∈ A. As we will see later, deterministic environments
greatly simplify many of the decision problems addressed in this paper.

2.2 Strategies

A strategy is a plan that defines how an agent will act in an environment. As is common
practice in the theory of iterated games [6], and in work on synthesis and verification [13],
we model strategies as finite state machines with output (i.e., Moore machines). Formally, a
strategy σ for an environment E is given by a finite state machine σ = (Q, τ, δ, q0) where:

Q is the set of machine states;
τ : Q× S → Q is the state transition function of the strategy;
δ : Q → A is the action selection function of the strategy, which selects an action δ(q) for
every machine state q ∈ Q; and
q0 ∈ Q is the initial state of the strategy.

We let Σ be the set of all such finite state machine strategies (E is assumed to be clear from
context). A strategy is enacted in an environment, starting from some state s ∈ S, as follows:
the environment starts in state s, and the strategy starts in state q0. The strategy then
selects an action α0 = δ(q0), and changes state to q′ = τ(q0, s). The environment responds
to the performance of α0 by moving to a state s1 ∈ T (s, α0); the agent then chooses an
action δ(q′), and so on. In this way, the performance of a strategy σ in the environment E
traces out an infinite interleaved sequence of environment states and actions, called a run:

ρ : s α0−→ s1
α1−→ s2

α2−→ · · ·

The set of runs that may be generated by the enactment of σ in E from state s ∈ S is denoted
by R(E , σ, s). We write R(E , σ) as an abbreviation for R(E , σ, s0). A run ρ ∈ R(E , σ, s) is
sometimes said compatible with σ in E – the definition is straightforward, and so we omit it
here. Where ρ is a run and u ∈ N, we write s(ρ, u) to denote the state indexed by u in ρ –
so s(ρ, 0) is the first state in ρ, s(ρ, 1) is the second, and so on and so forth. In the same
way, we denote the first action in ρ by α(ρ, 0), the second by α(ρ, 1), etc.

Above, we defined the cost function C(·) with respect to individual actions. In what
follows, we find it useful to lift the cost function from individual actions to runs. Since runs
are infinite, simply summing costs is not appropriate: instead, we consider the cost of a run
to be the average cost incurred over the whole run; more precisely, we define the cost C(ρ) as
the inferior limit of means: this is a very standard approach in automated formal verification
as well as in the theory of iterated games (see, e.g., [6, p.366]). Formally, we have:

C(ρ) = lim inf
t→∞

1
t

t∑
i=0

C(α(ρ, i))

Given a run ρ, we define the histories associated with ρ to be the set of finite and
non-empty prefixes of ρ which end in an environment state. We let H(ρ) denote the histories
associated with ρ, and use h, h′, . . . to refer to elements of H. Where h is a history, we denote
the word obtained from h by removing the final environment state from it by h. We denote
the final environment state occurring in h by last(h).

TIME 2022
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2.3 Linear Temporal Logic
We use Linear Temporal Logic (LTL) to express properties of runs [25, 9]. LTL extends
propositional logic with tense operators X (“in the next state. . . ”), F (“eventually. . . ”), G
(“always. . . ”), and U (“. . . until . . . ”). Formally, the syntax of LTL is defined with respect
to a set Φ of Boolean variables by the following grammar:

φ ::= ⊤ | p | ¬φ | φ ∨ φ | Xφ | φUφ

where p ∈ Φ. Other classical connectives (“⊥”, “∧”, “→”, “↔”) are defined in terms of ¬
and ∨ in the conventional way. The LTL operators F and G are defined in terms of U as
follows: Fφ = ⊤ Uφ, and Gφ = ¬F¬φ. Given a set of variables Ψ, let LTL(Ψ) be the set
of LTL formulae over Ψ; where Ψ is clear from the context, we write LTL. We interpret
formulae of LTL with respect to pairs (ρ, t) where ρ is a run and t ∈ N is a temporal index
into ρ. Any given LTL formula may be true at none or multiple time points on a run; for
example, a formula Xp will be true at a time point t ∈ N on a run ρ if p is true on run ρ at
time t+ 1. We will write (ρ, t) |= φ to mean that φ ∈ LTL is true at time t ∈ N on run ρ.
The rules defining when formulae are true (i.e., the semantics of LTL) are defined as follows:

(ρ, t) |= ⊤;
(ρ, t) |= x iff x ∈ L(s(ρ, t)) (where x ∈ Φ);
(ρ, t) |= ¬φ iff it is not the case that (ρ, t) |= φ;
(ρ, t) |= φ ∨ ψ iff (ρ, t) |= φ or (ρ, t) |= ψ;
(ρ, t) |= Xφ iff (ρ, t+ 1) |= φ;
(ρ, t) |= φUψ iff, for some t′ ≥ t, (ρ, t′) |= ψ and (ρ, t′′) |= φ for all t ≤ t′′ < t′.

We write ρ |= φ for (ρ, 0) |= φ, in which case we say that ρ satisfies φ. A formula φ is
satisfiable if there is some run satisfying φ. A strategy σ realizes φ in E , written σ �E φ, if ρ
satisfies φ for every ρ ∈ R(E , σ, s0), that is, if every run compatible with σ satisfies the LTL
formula. The formula φ is realizable in E , written �Eφ, if there is a strategy σ such that
σ �E φ. We write σ �E,s φ to indicate that every run consistent with σ starting from state
s ∈ S satisfies φ. While LTL satisfiability is PSpace-complete [31], LTL synthesis/relisability
is 2ExpTime-complete [27]. The following results are useful in what follows:

▶ Lemma 1. Given some E = (S,A, T , C,L, s0), a state s ∈ S, and an LTL formula φ,
checking whether there is a run ρ of E starting in s such that ρ |= φ is PSpace-complete.

Proof. For membership, we can reduce to LTL satisfiability: we can define a new LTL
formula ψE which represents the behaviour of the environment, and check whether ψE ∧ φ is
satisfiable. For hardness, we can reduce LTL model checking [31]. ◀

▶ Lemma 2. Given an environment E = (S,A, T , C,L, s0), a state s ∈ S, and an LTL
formula φ, checking whether there is a strategy σ such that σ �E,s φ is 2ExpTime-complete.

Proof. For membership, we can reduce to LTL realizability: we can define a new LTL
formula ψE which represents the behaviour of the environment, and check whether ψE → φ

is realizable. For hardness, we can reduce LTL synthesis [27]. ◀

2.4 Agents
The agents we consider are taskable: an agent is designed to operate in a specific environment
E , but may be assigned different tasks to carry out in the environment. The basic approach
we adopt is to specify a task for an agent via an LTL formula Υ: an agent succeeds with
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the task Υ if it chooses a strategy that realizes Υ. Crucially, tasks for agents are mutable:
we might initially instruct an agent to achieve a task formula Υ1, but later change our
instructions by giving the agent a task Υ2. Much of the remainder of this paper is concerned
with understanding precisely how an agent should interpret a new instruction like this.

We intend our agents to operate safely. To this end, we assume they have a background
safety requirement, specified as an LTL formula ζ1. The absolute priority for an agent is to
ensure that ζ is realized. While tasks Υ are mutable, safety requirements ζ are immutable:
no matter what instructions the agent receives relating to tasks, the agent must ensure that
its safety requirement is fulfilled if it can do so in the first place.

Finally, we assume that agents have a budget, which we denote by β. This is a real
number which indicates how much cost we are willing for our agent to incur, where the cost
of a run is measured using the limit of means approach (see above). Thus, the budget is not
an absolute limit, but indicates maximum average expenditure that we are willing for an
agent to incur. Formally, then, an agent A is defined by a structure A = (Υ, ζ, σ, β) where:

Υ is an LTL formula which specifies the currently assigned task of the agent;
ζ is an LTL formula representing the safety requirements of the agent;
σ ∈ Σ is the agent’s current strategy; and finally,
β ∈ R is the agent’s budget.

We will say an agent (Υ, ζ, σ, β) in an environment E is:
safe if the strategy ensures the agent’s safety requirement is realized: σ �E ζ;
sound if the strategy achieves the task: σ �E Υ; and
solvent if the agent is within budget: C(ρ) < β, for each ρ ∈ R(E , σ, s0).

An agent that satisfies all of the above conditions is said to be properly configured. A properly
configured agent is one that has thus been assigned a task Υ, and that has chosen a strategy
to achieve Υ that will do so while respecting both the safety requirement ζ and budget β.

▶ Theorem 3. Given an environment E, a safety requirement ζ, a budget β, and a task
Υ, checking whether there is a strategy σ such that A = (Υ, ζ, σ, β) is properly configured is
2ExpTime-complete. Moreover, given an environment E and an agent A = (Υ, ζ, σ, β) for
E, checking whether A is properly configured with respect to E is PSpace-complete.

Proof. First, note that the problem of finding σ such that the agent is properly configured
amounts to solve the synthesis problem for the formula Υ ∧ ζ with the additional condition
of staying within the budget β for every possible generated run in the environment. This
problem corresponds to a special case of an equilibrium synthesis with combined qualitative
and quantitative objectives, as it is introduced and solved in [14], and for which a 2ExpTime
procedure has been shown. For hardness, we can reduce LTL synthesis: the transformer
function T can be used to encode a transition relation in an instance of LTL synthesis [27].
For the second part, an agent together with an environment will trace out a Kripke structure
K such that K |= ζ ∧ Υ if, and only if, the agent is properly configured, thus membership is
in PSpace. For hardness, one can use a reduction from LTL model-checking [31]. ◀

▶ Theorem 4. For a deterministic environment E, a safety requirement ζ, a budget β,
and a task Υ, checking whether there exists a strategy σ such that A = (Υ, ζ, σ, β) is
properly configured is PSpace-complete. In contrast, for an environment E and an agent
A = (Υ, ζ, σ, β) for E, checking whether A is properly configured with respect to E is solvable
in polynomial time.

1 A well-known class of LTL formulae express what are technically called safety properties [32], intuitively
capturing the idea that “nothing bad happens.” We do not require our safety requirements ζ to belong
to this class, although in practice, many safety requirements will.

TIME 2022
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Proof. The first part follows from Lemma 1 (note that for deterministic environments,
solvency can be checked in polynomial time). For hardness use LTL model checking: the
transformer function T can encode a transition relation in an instance of LTL model
checking [31]. For the second part, an agent together with an environment will trace out a
path of the form a · bω with a and b finite words. We can compute a and b in polynomial time
by executing the strategy in the environment and watching until we find to have repeated a
configuration; we then check ζ ∧ Υ on this path, which can be done in polynomial time [21],
and then check solvency, which can be done in polynomial time in the deterministic case (by
computing the average cost over the finite path corresponding to b). ◀

2.5 Progressing an LTL Formula
We use the concept of progressing an LTL formula [5]. The idea is as follows. Suppose
that an agent has been operating to achieve a task Υ, and in this process has generated
a (finite) history h. We then give the agent a new instruction Υ′. Now, it may be that
the task Υ has already been discharged in the history h, in which case, when the agent
reconfigures itself in light of the new instruction Υ′, it can disregard the original task Υ.
To make this concrete, consider a (rather contrived) agent with a task Υ = F beer (must
eventually drink beer). The agent configures itself, adopting a strategy to eventually drink
beer, and succeeds to do so. Sometime later, a user issues a new instruction Υ′. At this point,
however, the task Υ has already been achieved (beer has been drunk), and nothing the agent
does subsequently will change that. As the agent adjusts its configuration in light of the
new instruction, it can take account of that. Similar comments apply to the agent’s safety
requirement ζ: it may be that the requirement has already been discharged within the finite
history h. (In general, of course, we do not think of safety requirements operating in this way:
they are typically ongoing properties, which must be maintained infinitely into the future.
For example, suppose the agent’s safety requirement was ζ = G¬crash. Such a requirement
cannot be discharged within a finite history: as the agent adjusts its configuration in light of
the new instructions, it must take into account these ongoing requirements.)

The notion of progressing a temporal formula φ through a history h captures the idea of
transforming φ into a new formula prog(φ, h) so that it captures all those requirements of φ
that have not already been satisfied within h. Formally, we have the following [16, Thm 3.2].

▶ Theorem 5. For every LTL formula φ, finite history h, and run ρ such that s(ρ, 0) = last(h),
there exists an LTL formula prog(φ, h) such that h · ρ |= φ iff ρ |= prog(φ, h).

We refer the reader to the definition of the function prog(· · ·) in [16], and note that the
function can be implemented in time polynomial in the size of the history and given formula2.

We now move on to the main focus of the present article: the issue of giving instructions
to agents. The precise setting we consider is as follows. We have an agent A = (Υ, ζ, σ, β),
operating in an environment E = (S,A, T , C,L, s0), which has traced out a history h. The
agent is then presented with a new instruction Υ′. How then should the agent reconfigure
itself – and in particular, what new strategy σ′ should the agent adopt, taking into account
the safety requirement ζ and the history h to date? As we will see, there are multiple possible
answers to this question: we consider a range of possible instruction types, which differ
primarily in the strength of the new instruction given to the taskable agent.

2 The definition in [16] is defined with respect to states rather than histories: the extension to histories
simply requires progressing the input formula progressively through each state in the given history h.
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As we noted above, a very natural principle when an agent is asked to adopt a new
instruction is the one of least change: when reconfiguring yourself, first try to do so while
keeping everything else as close to how it was before as possible. Thus, on the one hand, we
have instructions of the form “take onboard my new instruction Υ′ only if you can do so
without changing anything else.” On the other hand, we have instructions of the form “drop
everything else you are doing and get this done whatever it takes.” There are several variants
between these two extremes. We emphasise, however, that no new instructions can result in
the agent releasing its safety requirement: this is immutable – but the satisfaction of the
safety requirement needs to be considered in the context of the history h traced out so far.

We define the semantics of each type of instruction using pre- and post-conditions. The
pre-conditions define the circumstances under which the instruction can be accommodated.
If the pre-conditions of an instruction type are not satisfied, then that instruction will fail,
in which case the agent is assumed to be unchanged. The post-conditions specify properties
of the agent configuration after the agent has adjusted its configuration to accommodate
the instruction, under the assumption that the pre-condition was satisfied. We consider four
different types of instructions, which we refer to as Type I instructions through to Type IV
instructions: Type I instructions are the weakest (in the sense that they make the least
demands on an agent); Type IV are the strongest type of instructions.

2.6 Instructions of Type I
The first type of instruction we consider is the weakest form of instruction in our setting. In
a Type I instruction, we ask an agent to take on a new task Υ′ only if it can do so safely,
without affecting its current task, and within the originally specified budget. This type of
instruction thus embodies the notion of “least change” in a very direct way. With this type
of instruction, an agent will retain its previous task, irrespective of whether the instruction
is successful or not. Formally, our Type I semantics are as follows.

Suppose we have an agent (Υ, ζ, σ, β) operating in an environment E , having generated a
history h. The agent is then presented with a Type I instruction Υ′. The preconditions for
this Type I instruction require that there exists a strategy σ′ ∈ Σ such that:
(I.1) h · ρ |= ζ ∧ Υ, for every ρ ∈ R(E , σ′, last(h));
(I.2) σ′ �E,last(h) Υ′;
(I.3) C(ρ) ≤ β, for every ρ ∈ R(E , σ′, last(h)).
If these pre-conditions are satisfied, then an agent acting upon a Type I instruction will
change to a configuration (prog(Υ, h) ∧ Υ′, prog(ζ, h), σ′, β) where σ′ ∈ Σ satisfies conditions
(I.1)–(I.3). Several points are in order with respect to this definition. First, note that the only
components modified with the new instruction will be the current task of the agent (extended
to include the new instruction) and the chosen strategy: both the safety requirement and
budget will remain unchanged after updating the agent.

With respect to (I.1), the conditions require that the adopted strategy will ensure that
both the original task Υ and the safety requirement are satisfied by σ′. Note that we could
alternatively have expressed this condition as:

ρ |= prog(ζ, h) ∧ prog(Υ, h) for every ρ ∈ R(E , σ, last(h))

Condition (I.2) requires that σ′ ensures the achievement of the new task Υ′. The main
point to note here is that, unlike condition (I.1), this condition does not take into account
the prior history h. The reason for this is as follows: suppose the original task Υ was Fbeer
(eventually drink beer), and the agent succeeded to do so within the history h. Then if the

TIME 2022
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new instruction Υ′ was Fbeer (intuitively, “drink another beer”), then if we took h into
account when considering the new strategy we would regard Υ′ as being already discharged.
Thus, when we consider the satisfaction of the new task Υ′, we need to ignore the history to
date and focus on the run that will be generated subsequently.

Finally, observe that the solvency requirement for an agent adopting the new strategy
(condition (I.3)) is given with respect to future costs only. This may seem counter-intuitive:
should we not take into account costs already incurred? The answer stems from the way we
measure costs, using the inferior limit of means. The agent will have been running for a finite
time when presented with its new instruction, but will run for an infinite time subsequently.
In the limit, costs already incurred in the finite history h are irrelevant: all that matters are
the future costs incurred over the infinite suffix to h.

▶ Example 6. Consider the floor of an elderly home where a number of guest rooms are
arranged around a corridor, and a robot deployed to patrol the surroundings. The robot can
move along the corridor or in one of the guest rooms. Moreover, each room can be either
occupied or empty, and the floor might be dirty or clean. The robot has two tasks. The first
is the safety requirement to eventually tidy up the corridor every time it gets dirty. This
can be represented by the LTL formula ζ = G(dirty → F(tidy U ¬dirty)). The second is the
assigned task to monitor the occupied room and assist a guest in room i in case they send an
assistance request. This can be represented by the formula Υi = G(calli → Fassisti). Note
that requests from the other rooms will be ignored by the agent. This is because they are
marked as empty, and so requests from those rooms would happen for reasons that are not
relevant to the robot, e.g., a contractor team is testing/maintaining the room.

Once a new guest arrives in room j, the agent needs to be reconfigured to include the
task of listening to requests from the corresponding room. This can be done by the Type
I instruction of the form Υj = G(callj → Fassistj). Without giving full details, for brevity,
the setting above could be represented by the following environment E :

S = Pos × 2{1,2,3,4} × {dirty, not-dirty}, where Pos represents the possible positions of the
robot (i.e., locations in the corridor or one of the rooms), the set 2{1,2,3,4} represents
the set of rooms from which an assistance request has been made, whereas the third
component in {dirty, not-dirty} represents the fact that the corridor is dirty in some
location or clean all around.
A = {up, down, left, right, stop} allows the robot to navigate along the floor by either
moving along the four directions or by stopping.
C(up) = C(down) = C(left) = C(right) = 1, while C(stop) = 0, that is, the robot consumes
one unit of power only when it moves along the floor.
T is deterministic on Pos, meaning that the value in Pos depends only on the current
position and the robots action, and not on the environment reaction to this. Whereas T
is nondeterministic on the other components of the states, which depends on whether the
environment calls for assistance in any of the room and whether it activates the signal
that the corridor is somewhere dirty.
L(roomi, C, ι) = {assisti} ∪ C ∪ {ι} meaning that if the robot is in room roomi, then it
is assisting the guest in the same room, while the assistance requests and the cleaning
status of the corridor is copied from the other two components of the state.
L(corridor, C, ι) = C ∪ {not-dirty} meaning that whenever the robot is in any location of
the corridor, it is not assisting any guest but efficiently cleaning the corridor.
s0 = (corridor0, ∅, not-dirty) is an arbitrary taken initial state of the environment.
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▶ Theorem 7. Given an environment E and a properly configured agent A = (Υ, ζ, σ, β),
together with a history h generated by σ in the environment, checking whether a Type I
instruction Υ′ allows for a proper reconfiguration of an agent A after history h is 2ExpTime-
complete.

Proof. Following Theorem 5, the problem can be reduced to checking whether there exists a
strategy σ′ such that the agent A′ = (prog(Υ, h) ∧ Υ′, prog(ζ, h), σ′, β) is properly configured
over the environment E ′ obtained from E by replacing the initial state s0 with h. Following
Theorem 3 it holds that such problem can be solved in 2ExpTime. For hardness, we can
encode LTL synthesis [26]. ◀

2.7 Instructions of Type II
Type II instructions are stronger than Type I: whereas in Type I instructions an agent is
asked to adopt the new instruction within the original budget, with a Type II instruction an
agent is given a new budget – intuitively, more resources to accomplish the task. Otherwise
a Type II instruction is as a Type I.

Suppose we have an agent (Υ, ζ, σ, β) operating in an environment E , having generated a
history h. The agent is then presented with a Type II instruction (Υ′, β′). The pre-conditions
for this Type II instruction require that there is a strategy σ′ ∈ Σ such that:
(II.1) h · ρ |= ζ ∧ Υ, for every ρ ∈ R(E , σ′, last(h));
(II.2) σ′ �E,last(h) Υ′;
(II.3) C(ρ) ≤ β′, for every ρ ∈ R(E , σ′, last(h)).
If the pre-conditions are satisfied, then an agent acting upon a Type II instruction will
change to a configuration (prog(Υ, h)∧Υ′), prog(ζ, h), σ′, β′) where σ′ ∈ Σ satisfies conditions
(II.1)–(II.3). Since β′ can be set to any value, using a Type II instruction we can in effect
say “forget about your budget limits”. (We can also use Type II instructions to give reduced
budgets.)

▶ Example 8. Consider again the setting in Example 6. After a given period of time, the
components of the robots might deteriorate, including the battery, which might reduce
its maximum capacity. Therefore, the budget β must be adjusted to accommodate this
requirement. A Type-II instruction is suitable for this purpose. This can be of the form
(⊤, β′) in case we are updating the cost requirement only, or of the form (Υ′, β′) if we are
including a new task requirement to the new configuration.

▶ Theorem 9. Given an environment E and a properly configured agent A = (Υ, ζ, σ, β),
together with a history h generated by σ in the environment, checking whether a Type II
instruction (Υ′, β′) allows for a proper reconfiguration of an agent A after history h is
2ExpTime-complete.

2.8 Instructions of Type III
In a Type III instruction, we ask an agent to take on a task even if that means dropping
its original task; but it should stay within its original budget. Suppose we have an agent
(Υ, ζ, σ, β) operating in an environment E , having generated a history h. The agent is then
presented with a Type III instruction Υ′. The pre-conditions for this Type III instruction
require that there is a strategy σ′ ∈ Σ such that:
(III.1) h · ρ |= ζ, for every ρ ∈ R(E , σ′, last(h));
(III.2) σ′ �E,last(h) Υ′;
(III.3) C(ρ) ≤ β, for every ρ ∈ R(E , σ′, last(h)).
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If the pre-conditions are satisfied, then an agent acting upon a Type III instruction will
change to a configuration (Υ′, prog(ζ, h), σ′, β) where σ′ ∈ Σ satisfies conditions (III.1)–(II.3).

▶ Example 10. Consider again the setting described in Example 6. Recall that the task
requirement is of the form Υ =

∧
i∈N ′ Υi, for a given subset N ′ ⊆ N of the rooms and Υi

being the requirement for room i.
After a guest left the elderly home, say from room j, it is no longer necessary for the robot

to monitor such room. We can use a Type III instruction to remove this task requirement.
This can be obtained by using the formula Υ′ =

∧
i∈N ′\{j} prog(Υi,h) that drops room j

from monitoring and reinstates the other rooms at the same time.

▶ Theorem 11. Given an environment E and a properly configured agent A = (Υ, ζ, σ, β),
together with a history h generated by σ in the environment, checking whether a Type III
instruction Υ′ allows for a proper reconfiguration of an agent A after history h is 2ExpTime-
complete.

Proof. The proof is similar to that of Theorem 7, where the synthesis problem is cast by
replacing prog(Υ, h) ∧ Υ′ by just Υ′. ◀

2.9 Instructions of Type IV

In a Type IV instruction, we present an agent with a new task and budget: the agent drops
its original task and budget completely, and completely replaces them with those newly
presented. This represents the strongest type of instruction we consider here: it may result
in all components of an agent other than the safety condition (which is progressed through
the prior history) being reconfigured. Suppose we have an agent (Υ, ζ, σ, β) operating in an
environment E , having generated a history h. The agent is then presented with a Type IV
instruction (Υ′, β′). The pre-conditions for this Type IV instruction require that there is a
strategy σ′ ∈ Σ such that:

(IV.1) h · ρ |= ζ, for every ρ ∈ R(E , σ′, last(h));
(IV.2) σ′ �E,last(h) Υ′;
(IV.3) C(ρ) ≤ β′, for every ρ ∈ R(E , σ′, last(h)).

If the pre-conditions are satisfied, then an agent acting upon a Type III instruction will change
to a configuration (Υ′, prog(ζ, h), σ′, β′) where σ′ ∈ Σ satisfies conditions (IV.1)–(IV.3).

▶ Theorem 12. Given an environment E and a properly configured agent A = (Υ, ζ, σ, β),
together with a history h generated by σ in the environment, checking whether a Type IV
instruction (Υ′, β′) allows for a proper reconfiguration of an agent A after history h is
2ExpTime-complete.

We know from the optimisation and planning literature that giving instructions to an agent
as it operates may deliver solutions that are inferior to solutions computed before the agent
executes any plan. For example, consider the taskable agent presented in [17, 1], where an
autonomous agent is required to move in a grid-like world, much like the robot in our running
example, and is requested to find the shortest path between two places in the grid, say X
and Y , but under the restriction that some elements must be collected before going from X

to Y . While the same situation may arise here, our approach ensures that new tasks will be
undertaken safely.
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3 Related Work & Discussion

We hope to have illustrated that the natural and intuitively simple problem of reconfiguring a
taskable agent to accommodate new LTL instructions is actually a rather subtle and complex
problem. Formally, we have also shown that solving this general problem, in most settings
and for most types of instructions we consider, is 2ExpTime-complete, with only a few
exceptions where the decision problems are either PSpace-complete or solvable in polynomial
time in some of the simplest cases.

Our work is somewhat related to (and influenced by) work in the semantics of speech acts
and agent communication. This work traces its origins least as far back to Wittgenstein’s
1953 study of language games, which marked the beginning of the pragmatic tradition of
language understanding [20]. The best-known work in this tradition is the speech acts
paradigm, initiated by [4] and [30]. Within AI, Searle’s work led to [8] showing how the
pre- and post-conditions of speech acts could be formulated using an AI planning formalism,
which paved the way for the development of AI systems that could plan to perform speech
acts as part of a natural language generation process [3], and then the semantics of agent
communication languages [23, 10]. The main difference with our work is that speech act
semantics pre-suppose that agents are autonomous, in the sense that they have complete
control over their own state and actions. For example, the FIPA request communicative
act represents an attempt to get an agent to perform an action: it is not an instruction,
which is conceptually and technically different. Our work differs in that we assume agents
are taskable: we give one of our agents an instruction and they will attempt to accommodate
it as per the various different models we have discussed.

Research on human-robot interactions addresses the problem of robots performing tasks
requested by a human through natural language [33, 28, 22, 24]. In [2], it is suggested that
robots that can understand and perform human instructions will consist of three levels: (i)
language-based semantic reasoning on the instruction (high level); (ii) formulation of goals in
robot symbols and planning to achieve them (mid-level); and (iii) action execution (low level).
We focus on level (ii), and our work can exploit previous works that translate high-level
natural language tasks to LTL [29, 7]. Another interesting line of research is the use of
LTL instructions in Reinforcement Learning [34, 18]. In [34], LTL is used as a language for
specifying multiple tasks to speed up learning by generating the tasks in a way that supports
the composition of learned skills. We assume that no learning is needed by our agents: our
work is closer to the LTL synthesis paradigm (although combining our work with previous
work on LTL-based reinforcement learning [34, 18] would present many interesting research
questions). Our work has focused on the idea of directly instructing agents with regard to
tasks. There are of course other indirect ways to influence the activities of agents such as
sharing information [12] and setting taxation or rewards [35]. The main difference with our
work is that we consider agents that are obligated to follow the instructions that they receive,
given that they are consistent with their safety requirements; in contrast, [12] and [35] both
assume self-interested agents.

So far, we have said nothing about how an agent will operationalise our semantics. In
the single agent case, one very natural possibility, given an instruction Υ, is to start by
attempting to interpret it in the “least intervention” semantics of Type I instructions: try to
accomodate it while continuing with your existing goal. If this is not possible, then move
on to semantics that result in greater changes. We might, for example, imagine an agent
coming back and asking for an increased budget (“if you give me a bigger budget I can get
your original task accomplished and the new task”). The multi-agent case is more complex,
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because the operationalisation will have to take into account how other agents respond to the
adoption of a new strategy: it would thus be useful to consider the dynamics of a system after
an agent reconfigures itself (how agents might respond). Such issues have been investigated
in the game theory literature, but not in the settings we consider here. In this latter case,
we might, e.g., look at “responsible” agents that take into account the social welfare of a
system as they adopt new strategies. The multi-agent case is the most obvious avenue for
future research, wherein ideas from both coopeartive and non-cooperative game theory could
shed some light into how to approach that more challenging problem.

Finally, in our model, we have a single safety requirement ζ. It is natural to extend our
model to support hierarchies of logically-defined safety requirements (ζ1, . . . , ζk), where an
agent is required to first ensure that ζ1 is satisfied, then ζ2, and so on.
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