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—— Abstract

For graphs G and H, an H-coloring of G is an edge-preserving mapping from V(G) to V(H). In
the H-COLORING problem the graph H is fixed and we ask whether an instance graph G admits
an H-coloring. A generalization of this problem is H-COLORINGEXT, where some vertices of G
are already mapped to vertices of H and we ask if this partial mapping can be extended to an

H-coloring.
We study the complexity of variants of H-COLORING in F-free graphs, i.e., graphs excluding
a fixed graph F' as an induced subgraph. For integers a,b,c > 1, by Ss . we denote the graph
obtained by identifying one endvertex of three paths on a + 1, b+ 1, and ¢ + 1 vertices, respectively.
For odd k£ > 5, by Wi, we denote the graph obtained from the k-cycle by adding a universal vertex.
As our main algorithmic result we show that W5-COLORINGEXT is polynomial-time solvable in
So,1,1-free graphs. This result exhibits an interesting non-monotonicity of H-COLORINGEXT with
respect to taking induced subgraphs of H. Indeed, W5 contains a triangle, and K3-COLORING, i.e.,
classical 3-coloring, is NP-hard already in claw-free (i.e., S1,1,1-free) graphs. Our algorithm is based
on two main observations:
1. W5-COLORINGEXT in Sz 1 1-free graphs can be in polynomial time reduced to a variant of the
problem of finding an independent set intersecting all triangles, and
2. the latter problem can be solved in polynomial time in S5 1,1-free graphs.

We complement this algorithmic result with several negative ones. In particular, we show that
Ws5-COLORING is NP-hard in P;-free graphs for some constant ¢ and W5-COLORINGEXT is NP-hard
in S33,3-free graphs of bounded degree. This is again uncommon, as usually problems that are
NP-hard in S5 -free graphs for some constant a, b, ¢ are already hard in claw-free graphs
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1 Introduction

Many computationally hard problems become tractable when restricted to instances with
some special properties. In case of graph problems, typical families of such special instances
come from forbidding certain substructures. For example, for a family F of graphs, a
graph G is F-free if it does not contain any graph from F as an induced subgraph. If F
consists of a single graph F, then we write F-free instead of {F'}-free. Classes defined by
forbidden induced subgraphs are hereditary, i.e., closed under vertex deletion. Conversely,
every hereditary class of graphs can be uniquely characterized by a (possibly infinite) set of
minimal forbidden induced subgraphs.

Let us define two families of graphs that play a special role as forbidden induced subgraphs.
For t > 1, by P, we denote the path in ¢ vertices. For a,b,c > 1, by S, we mean the graph
consisting of three paths P, 11, Py41, Pet1 with one endvertex identified. Each graph S, is
called a subdivided claw. The smallest subdivided claw, i.e., S1 1,1 is the claw, and the graph
S2,1,1 is sometimes called the fork or the chair. Finally, let S denote the class of graphs in
which every connected component is a path or a subdivided claw.

MIS and k-Coloring in F-free graphs. Two problems, whose complexity in hereditary
graph classes attracts significant attention, are MAX (WEICGHTED) INDEPENDENT SET
(denoted by MIS) and k-COLORING. Let us briefly survey known results, focusing on F-free
graphs for connected F. By an observation of Alekseev [2], MIS is NP-hard in F-free graphs,
unless F' € §. On the positive side, polynomial-time algorithms are known for some small
graphs FF € §. If FF = P;, then a polynomial-time algorithm for ¢t < 5 was provided by
Lokshtanov et al. [37], which was later extended to ¢ < 6 by Grzesik et al. [28]. The case of
t = 7 remains open and the general belief is that for every ¢ the problem is polynomial-time
solvable. Some evidence is given by the existence of quasipolynomial-time algorithms [25,45].

The polynomial-time algorithm for MIS in claw-free graphs [41,46] can be obtained
by an extension of the augmenting path approach used for finding largest matchings [17];
note that a maximum matching is precisely a largest independent set in the line graph, and
line graphs are in particular claw-free. There are also more modern approaches, based on
certain decompositions of claw-free graphs [19,42]. A polynomial-time algorithm for MIS
in Sy 1 1-free graphs was first obtained by Alekseev [3] (only for the unweighted case), and
later an arguably simpler algorithm was provided by Lozin and Milani¢ [39] (also for the
weighted case). Again, the complexity of MIS in F-free graphs for larger subdivided claws
F remains open, but all these cases are believed to be tractable. This belief is supported
by the existence of a subexponential-time algorithm [12,40], a QPTAS [12,13,40], or a
polynomial-time algorithm in the bounded-degree case [1].

If it comes to k-COLORING, then it follows from known results that if F' is not a forest
of paths, then for every k > 3 the problem is NP-hard in F-free graphs [18,26,33,36]. The
complexity of k-COLORING in P;-free graphs is quite well understood. For ¢ = 5, the problem
is polynomial-time solvable for every constant k [31]. If k > 5, then the problem is NP-hard
already in Ps-free graphs [34]. The case of k = 4 is polynomial-time solvable for ¢ < 6 [47] and
NP-hard for ¢ > 7 [34]. The case of k = 3 is much more elusive. We know a polynomial-time
algorithm for Pr-free graphs [5] and the cases for all ¢ > 8 are open. The general belief
that they should be tractable is again supported by the existence of a quasipolynomial-time
algorithm [45].

Let us mention two generalizations of k-COLORING. In the k-COLORINGEXT problem
we are given a graph G with a subset of its vertices colored using k colors, and we ask
whether this partial coloring can be extended to a proper k-coloring of G. In the even more
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general L1ST k-COLORING problem, each vertex of the instance graph G is equipped with
a subset of {1,...,k} called list, and we ask whether there exists a proper k-coloring of G
respecting all lists. Clearly any tractability result for a more general problem implies the
same result for a less general one, and any hardness result for a less general problem implies
the same hardness for more general variants. In almost all mentioned cases the algorithms
for k-COLORING generalize to L1ST k-COLORING. The only exception is the case k = 4 and
t = 6: the polynomial time algorithm for 4-COLORING in Pg-free graphs can be generalized
to 4-COLORINGEXT [47], but LisT 4-COLORING in this class is NP-hard [27]

Minimal obstructions. One of the ways of designing polynomial-time algorithms for k-
COLORING is to check if the instance graph contains some (hopefully small) subgraph that
is not k-colorable. This approach is formalized by the notion of critical graphs. A graph G
is (k + 1)-vertex critical if it is not k-colorable, but each of its induced subgraphs is. Such
graphs can be thought of minimal obstructions to k-coloring: a graph G is k-colorable if
and only if it does not contain any (k + 1)-vertex-critical graph as an induced subgraph.
Thus if for some hereditary class G of graphs, the number of (k + 1)-vertex critical graphs is
finite, we immediately obtain a polynomial-time algorithm for k-COLORING in graphs from
G. Indeed, it is sufficient to check if the instance graph contains any (k + 1)-vertex-critical
induced subgraph, which can be done in polynomial time by brute force. Such an algorithm,
in addition to solving the instance, provides a certificate in case of a negative answer — a
constant-size subgraph which does not admit a proper k-coloring. Thus the question whether
for some class G, the number of (k + 1)-vertex critical graphs is finite, can be seen as a refined
analysis of the polynomial cases of k-COLORING.

The finiteness of the families of (k + 1)-vertex critical graphs in F-free graphs is fully
understood. Recall that the only interesting (i.e., not known to be NP-hard) cases are for F’
being a forest of paths. Again focusing on connected F', i.e., k-COLORING of P;-free graphs,
we know that the families of minimal obstructions are finite for ¢t < 6 and k = 3 [9], and for
t < 4 and any k. The latter result follows from the fact that Ps-free graphs are perfect and
thus the only obstruction for k-coloring is Kj1. In all other cases there are constructions of
infinite families of minimal obstructions [9, 32].

Graph homomorphisms in F-free graphs. A homomorphism from a graph G to a graph
H is a mapping from V(@) to V(H) that preserves edges, i.e., the image of every edge of G
is an edge of H. Note that if H is the complete graph on k vertices, then homomorphisms
to H = K}, are exactly proper k-colorings. For this reason homomorphisms to H are called
H -colorings, and we will also refer to vertices of H as colors. In the H-COLORING problem the
graph H is fixed and we need to decide whether an instance graph GG admits a homomorphism
to H. By the analogy to coloring, we also define more general variants, i.e., H-COLORINGEXT
and LisT H-COLORING. In the former problem we ask whether a given partial mapping
from vertices of an instance graph G to V(H) can be extended to a homomorphism, and in
the latter one each vertex of G is equipped with a list which is a subset of V/(H) and we look
for a homomorphism respecting all lists.

The complexity of H-COLORING was settled by Hell and Nesettil [30]: the problem
is polynomial-time solvable if H is bipartite or has a vertex with a loop, and NP-hard
otherwise. The dichotomy is also known for LisT H-COLORING [22-24]: this time the
tractable cases are the so-called bi-arc graphs. The case of H-COLORINGEXT is more tricky.
The classification follows from the celebrated proof of the CSP complexity dichotomy [7,49],
but a graph-theoretic description of polynomial cases is unknown.
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We are very far from understanding the complexity of variants of H-COLORING in F-free
graphs. Chudnovsky et al. [10] showed that L1sT C-COLORING for k € {5,7} U [9, 00) is
polynomial-time solvable in Py-free graphs. On the negative side, they showed that for every
k > 5 the problem is NP-hard in F-free graphs, unless F' € S. This negative result was later
extended by Piecyk and Rzazewski [44] who showed that if H is not a bi-arc graph, then
LisT H-COLORING is NP-hard and cannot be solved in subexponential time (assuming the
ETH) in F-free graphs, unless F' € S.

The case of forbidden path or subdivided claw was later investigated by Okrasa and
Rzazewski [43]. They defined a class of predacious graphs and showed that if H is not
predacious, then for every t, the LisST H-COLORING problem can be solved in quasipolynomial
time in Pj-free graphs. On the other hand, for every predacious H there exists ¢ for which
LisT H-COLORING cannot be solved in subexponential time in P;-free graphs unless the
ETH fails. They also provided some partial results for the case of forbidden subdivided claws.
Finally, Chudnovsky et al. [11] considered a generalization of L1ST H-COLORING in Ps-free
graphs and related classes.

The notion of vertex-critical graphs can be naturally translated to H-colorings. A graph
G is a minimal H-obstruction if it is not H-colorable, but its every induced subgraph is.
Minimal H-obstructions in restricted graph classes were studied by some authors, but the
results are rather scattered [4,8,35].

Our motivation. Let us point a substantial difference between working with H-COLORING
and working with LisT H-COLORING (with H-COLORINGEXT being somewhere between,
but closer to H-COLORING). The L1sT H-COLORING problem enjoys certain monotonicity:
if H' is an induced subgraph of H, then every instance of LisT H'-COLORING can be seen
as an instance of L1ST H-COLORING, where no vertex from V(H) — V(H') appears in any
list. Thus any tractability result for L1sST H-COLORING implies the analogous result for
LisT H'-COLORING, while any hardness result for LisT H’-COLORING applies also to LIsST
H-COLORING. In particular, all hardness proofs for LisT H-COLORING follow the same
pattern: first we identify a (possibly infinite) family H of “minimal hard cases” and then show
hardness of LisT H’-COLORING for every H' € H. This implies that LisT H-COLORING is
hard unless H is H-free. The lists are also useful in the design of algorithms: for example if
for some reason we decide that some vertex v € V(G) must be mapped to x € V(H), we
can remove from the lists of neighbors of v all non-neighbors of x, and then delete v from
the instance graph. This combines well with e.g. branching algorithms or divide-&-conquer
algorithms based on the existence of separators.

In contrast, when coping with H-COLORING we need to think about the global structure
of H. This makes working with this variant of the problem much more complicated. In
particular, hardness proofs often employ certain algebraic tools [6,30], which in turn do not
combine well with the world of F-free graphs. However, note that the complexity dichotomy
for H-COLORING is still monotone with respect to taking induced subgraphs of H: the
minimal NP-hard cases are odd cycles.

An interesting example of non-monotonicity of H-COLORING was provided by Feder
and Hell in an unpublished manuscript [21]. For an odd integer k > 5, let W}, denote the
k-wheel, i.e., the graph obtained from the k-cycle by adding a universal vertex. Feder and
Hell proved that W5-COLORING is polynomial-time solvable in line graphs. This is quite
surprising as W5 contains a triangle and K3-COLORING, i.e., 3-COLORING, is NP-hard in
line graphs [33]. (Note that this implies that LiST W;5-COLORING is NP-hard in line graphs.)
Feder and Hell also proved that for any odd k > 7, the Wi-COLORING problem is NP-hard
in line graphs [21].
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Our contribution. In this paper we study to which extent the result of Feder and Hell [21]
can be generalized. We provide an algorithm and a number of lower bounds, each of a
different kind. The main algorithmic contribution of our paper is the following theorem.

» Theorem 1. W5-COLORINGEXT can be solved in polynomial time in Sa 1 1-free graphs.

Let us sketch the outline of the proof. Surprisingly, despite the fact that graph homomor-
phisms generalize colorings, our approach is much closer to the algorithms for MIS.

Consider any homomorphism ¢ from G to W5 and let X be the set of vertices of G
mapped by ¢ to the universal vertex of W5. We notice that X is independent, and G — X
admits a homomorphism to Cs. This is exactly how we look at the problem: we aim to find
an independent set X whose removal makes the graph Cs-colorable (and make sure that the
precoloring of vertices is respected).

So let us focus on describing the structure of G — X i.e., recognizing Cs-colorable graphs.
Note that here we need to use the fact that our graph is Sy 1 i-free, as C5-COLORING is
NP-hard in general graphs. As a warm-up let us assume that our instance is claw-free and
forget about precolored vertices. We observe that every Cs-colorable graph must be triangle-
free, as there is no homomorphism from K3 to Cs. But since G — X is {S11,1, K3}-free,
it must be of maximum degree at most 2, i.e., every component of G — X is a path or a
cycle with at least 4 vertices. It is straightforward to verify that such graphs always admit a
homomorphism to C5. Therefore in claw-free graphs, solving W5-COLORING boils down to
finding an independent set intersecting all triangles.

We extend this simple observation in two ways. First, we show that the same phenomenon
occurs in Sy 1 1-free graphs: the only S7 1,1-free minimal Cs-obstruction is the triangle. Second,
we show that in the same way we can handle precolored vertices: the only no-instances of
C5-COLORINGEXT in {531 1, K3}-free graphs can be easily recognized. Based on this result
we show that W5-COLORINGEXT in S 1 1-free graphs can be in polynomial time reduced to
the INDEPENDENT TRIANGLE TRANSVERSAL EXTENSION (ITTE) problem on an induced
subgraph of the original instance. Here, the “extension” means that some vertices of our
instance can be prescribed to be in X or outside X. Thus from now on we focus on solving
ITTE in S 1,1-free graphs. Note that we still need to use the fact that our instances are
S2.1,1-free, as ITTE is NP-hard in general graphs [20].

We start with the case that our instance graph G is claw-free. We use the result of
Chudnovsky and Seymour [14] who show that each claw-free graph admits certain decom-
position called a strip structure. Roughly speaking, this means that G “resembles” the line
graph of some graph D: the vertices of G can be partitioned into sets n(e) assigned to the
edges e of D, such that (i) for each e € E(D) the set n(e) induces a subgraph of G with
a simple structure and (ii) the interactions between sets n(e) and n(f) for distinct edges
e, f are well-defined. Due to property (i), for each edge e of D we can solve the problem in
the subgraph of G induced by n(e) in polynomial time. Then we can use property (ii) to
combine these partial solutions into the final one by finding an appropriate matching in an
auxiliary graph derived from D.

As the final step, we lift our algorithm for claw-free graphs to the class of S3 1 1-free
graphs. We use an observation of Lozin and Milani¢ [39]: they show that if G is Sp 1 1-free
and prime, then every prime induced subgraph of the graph obtained from G by removing
any vertex and its neighbors is claw-free (the exact definition of prime graphs can be found
in Section 3.1). Using this observation we can reduce ITTE in Sy 1 1-free graphs to the same
problem in claw-free graphs, which we already know how to solve in polynomial time.
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Combining the reduction from W5-COLORINGEXT in S5 1-free graphs to ITTE in
S,1,1,-free graphs and the polynomial-time algorithm for ITTE in Sy ; ;-free graphs we

obtain Theorem 1. Let us point out that the frontier of the complexity of W5-COLORINGEXT
in Sqp,c-free graphs is the same as for MIS: the minimal open cases are S3 ;1 and Ss2 1.

In the remainder of the paper we investigate several possible generalizations of Theorem 1
and show a number of negative results.

First, one can ask whether a simpler algorithm, at least for W5-COLORING, can be
obtained by showing that the family of minimal Sy ; ;-free Ws-obstructions is finite. In the
following theorem we show that this is not the case.!

» Theorem 2 (ﬁ) For all odd k > 5, there are infinitely many claw-free minimal Wi-
obstructions.

We remark that for every k, the LiST Wj,-COLORING problem can be solved in polynomial
time in Ps-free graphs [11]. We show that this result cannot be extended to P;-free graphs
for every fixed ¢: there exists ¢ such that W5-COLORING in P;-free graphs is NP-hard and
cannot be solved in subexponential time, unless the ETH fails. Note that this result in
particular implies hardness in Sy 4 4-free graphs for a = [(t — 1)/2]. For W5-COLORINGEXT
we show that it is NP-hard and, assuming the ETH, there is no subexponential-time algorithm
already in S3 3 3-free graphs of maximum degree 5. This should be contrasted with the fact
that for any a, b, c, the MIS problem in S, ; .-free graphs can be solved in subexponential
time [12,40], and even in polynomial time, if the instance is of bounded maximum degree [1].
Consequently, the complexity of W5-COLORING in S, .-free graphs for large a, b, c differs
from the complexity of MIS. Furthermore, we find our hardness results quite surprising, as
typically problems that are hard in S, .-free graphs for some fixed a, b, ¢ are already hard
in claw-free graphs.

Finally, we consider the complexity of variants of Wj-COLORING in F-free graphs for
other pairs (k, F'). Our results are summarized in the following theorem.

» Theorem 3 (X). Let F' be a connected graph.

1. There exist a, b, c,t with the following property. If F' is neither an induced subgraph of
Sa.b,c nor of Py, then the W5-COLORING problem is NP-hard in F-free graphs and cannot
be solved in subexponential time, unless the ETH fails.

2. For every odd k > 7 there exists t with the following property. If F' is not an induced
subgraph of Py, then the Wi-COLORING problem is NP-hard in F-free graphs and cannot
be solved in subexponential time, unless the ETH fails.

» Remark. The curious reader might wonder why we only consider k-wheels for odd k > 5.
The 3-wheel is exactly K4, and homomorphisms to K, are exactly proper 4-colorings. As
mentioned above, both 4-COLORING and 4-COLORINGEXT are well studied in hereditary
graph classes and behave substantially differently than Wj-COLORING for odd k£ > 5. On the
other hand, if k is even, then the Wj-COLORING problem is equivalent to the 3-COLORING
problem: a graph admits a homomorphism to Wy, if and only if it is 3-colorable (this follows
from the fact that K3 is the core of W, [29, Section 1.4]). Thus it only makes sense to
consider variants of Wj-COLORING in F-free graphs, where F is a path or a forest of paths.
However, as Wy, is non-predacious, it follows from the result of Okrasa and Rzazewski [43]
that then even LiST W;-COLORING is quasipolynomial-time solvable in F-free graphs.

! The full proofs of the statements marked with (ﬁ) can be found in the full version of the paper [16].
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2 Preliminaries

For an integer k, by [k] we denote the set {1,2,...,k}.

Let G be a graph, v be a vertex and X be a set of vertices. By Ng(v) we denote the
set of neighbors of v, and by Ng[v] we denote the set Ng(v) U {v}. If G is clear from the
context, we omit the subscript, and write, respectively, N (v), and N[v]. By G[X] we denote
the subgraph induced by X, and by G — X we denote G[V(G) — X]. By G we denote the
complement of G.

We write ¢ : G — H to indicate that ¢ is a homomorphism from G to H. We also write
G — H to indicate that some homomorphism from G to H exists.

For a fixed graph H, an instance of H-COLORINGEXT is a triple (G, U, ¢), where G is a
graph, U is a subset of V(G), and ¢ is a function that maps vertices from U to elements of
V(H). We ask whether there exists a homomorphism + : G — H such that ¢|y = ¢.

For a k-wheel Wy, we will always denote the consecutive vertices of the induced k-
cycle in Wy, by 1,2,3,...,k, and the universal vertex by 0. The following observation is
straightforward and will be used implicitly throughout the paper.

» Observation 4. Let k > 5 be an odd integer. Let ¢ be a homomorphism from a graph G
to Wy. Let X be the set of vertices of G mapped by ¢ to 0. Then the following properties are
met: (i) G is 4-colorable, (ii) G is Ky-free, (iii) X is an independent set, and (iv) G — X
has a homomorphism to Cy, in particular it is 3-colorable and triangle-free.

For a graph G, a function tv : E(G) — NU {0}, and a set E' C E(G), we define w(E’) :=
g (0.

Consider a certain variant of the MAXIMUM WEIGHT MATCHING problem. An instance
of MAXIMUM WEIGHT MATCHING* (MWM*) is a tuple (G, U, to, k), where G is a graph, U
is a subset of its vertices, w : E(G) — NU {0} is an edge weight function, and & is an integer.
We ask whether G has a matching M such that ro(M) > k and M covers all vertices from U.
By a simple reduction to the MAXIMUM WEIGHT MATCHING problem we show that MWM*
can be solved in polynomial time.

» Lemma 5 (ﬁ) The MWM* problem can be solved in polynomial time.

3 |ITTE in Sy, :-free graphs

In this section we show that in Sy ; ;-free graphs the W5-COLORINGEXT problem can be
reduced to a variant of the problem of finding an independent set intersecting all triangles.
We denote the consecutive vertices of C5 by 1,2,3,4,5. We will refer to the vertices of
C5 as colors. We will say that two colors are neighbors if they are neighbors on the cycle Cs.
Let G be a graph, let W C V(G), and let ¢ : W — V(C5) be a coloring of vertices of W.
We say that a pair of vertices {u,v} C V(G) is conflicted if u,v € W and there is a u-v path
P of length at most 3 such that W NV (P) = {u,v} and ¢|, ) cannot be extended to a
homomorphism from P to Cs. Equivalently, a pair {u,v} C W of vertices of G is conflicted
in a coloring ¢ of G if and only if
(i) v € Ng(u), and ¢(v) is non-adjacent to ¢(u) in Cs, or
(ii) there exists a path u,w,v in G with w € W, and ¢(v) is adjacent to p(u), or
(iii) there exists a path u,wy,ws,v in G with wy,ws € W, and ¢(u) = ¢(v).
We say that ¢ is conflict-free, if there is no pair of conflicted vertices in G.
Clearly, being triangle-free and conflict-free are necessary conditions to be a yes-instance
of C5-COLORINGEXT. It turns out that in Sa 1,1-free graphs they are also sufficient.
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» Lemma 6 (ﬁ) Let G be an {S2,1.1, K3}-free graph, let W C V(G), and let p : W — V(C5).
If p is conflict-free, then ¢ can be extended to a homomorphism v : G — Cs.

The following auxiliary problem plays a crucial role in our algorithm.

INDEPENDENT TRIANGLE TRANSVERSAL EXTENSION (ITTE)
Instance: A graph G, sets X', Y’ C V(G), and E' C E(G)
Question: Ts there an independent set X C V(G), such that (i) X’ C X, (ii) for every
e € E' it holds that eN X # 0, (iii) Y' N X =0, (iv) G — X is triangle-free?

We observe that if G' contains a K4, then at most one vertex of such a clique can belong
to an independent set, and the graph induced by the remaining part is not triangle-free. Thus
every yes-instance of ITTE must be Ky-free. We use this observation implicitly throughout
the paper.

As the final result of this section we show that W5-COLORINGEXT in Sy ; ;-free graphs
can be reduced in polynomial time to I'TTE in Sy ; ;-free graphs.

» Theorem 7. The W5-COLORINGEXT in S 1,1-free graphs can be reduced in polynomial
time to the I'T'TE problem in Ss 1,1-free graphs.

Proof. Let (G,U, ¢) be an instance of W5-COLORINGEXT. Note that we can assume that
there are no vertices u,v € U such that wv € E(G) and p(u)p(v) ¢ E(Ws), otherwise we
immediately report a no-instance (formally, we can return a trivial no-instance of ITTE,
e.g., (K4,0,0,0)). This can be verified in polynomial time.

We define the instance (G, X', Y’ E’) of ITTE as follows. We initialize X', Y’ and
E’ as empty sets. We add to X’ every vertex precolored with 0 and we add every vertex
precolored with a vertex other than 0 to Y’. To construct E’, consider each pair u,v € U
of conflicted vertices with respect to ¢ : Y’ — [5], and let P be a witness of u and v. By
our first assumption, |P| > 2. If the consecutive vertices of P are u,w,v, then we add w to
X'. If the consecutive vertices of P are u, w7, ws, v, then we add the edge wywy to E’. This
completes the construction of the instance (G, X', Y’, E’) of ITTE. Clearly the reduction is
done in polynomial time.

Let us verify that the instance (G, X', Y’, E’) of ITTE is equivalent to the instance
(G, U, ¢) of Ws-COLORINGEXT. First assume that there is a set X C V(G) that is a solution
to the instance (G, X', Y’ E’) of ITTE. Then G — X is triangle-free. Suppose that there is
a conflicted pair of vertices u,v in G — X and let P be the path such that the precoloring of
u,v cannot be extended to P. Observe that by the construction of E’ at least one vertex
of P must be in X, a contradiction. Hence, by calling Lemma 6 on G — X, we conclude
that the precoloring of G — X can be extended to all vertices of G — X using only colors
1,2,3,4,5, and then extended to the whole graph G by coloring every vertex of X with 0.

So now suppose that (G, U, ¢) is a yes-instance of W5-COLORINGEXT. Then there exists
a Ws-coloring v of G that extends ¢. Define X :=¢~1(0). Let us verify that X satisfies
the desired properties. If follows from the definition that X is an independent set. Suppose
that G — X contains a triangle. Then G — X 4 C5, and thus the vertices of G — X cannot
be colored using only colors 1,2,3,4,5, a contradiction. Consider a vertex x € X’. Then
either ¢(z) = 0, or there is a path with consecutive vertices u, z,v with u,v € U, such that
¢ cannot be extended to z using only colors 1,2,3,4,5. Therefore in both cases ¢ (z) = 0,
so x € X. Now consider y € Y. Then ¢(y) # 0, so y ¢ ¢»~1(0) = X. Finally, consider an
edge vy € E’. Then there is a path with consecutive vertices u, z,y,v with u,v € U, so that
¢ cannot be extended to z,y using only colors 1,2,3,4,5. We conclude that one of z,y is
mapped by ¢ to 0, and thus one of x,y is in X. That completes the proof. <



M. Debski, Z. Lonc, K. Okrasa, M. Piecyk, and P. Rzgzewski

3.1 ITTE: basic toolbox

In this section we prove that ITTE behaves well under standard graph decompositions:
modular decomposition, clique-cutset decomposition, and tree decomposition.

Modular decomposition and prime graphs. Let G be a graph and let M C V(G). We say
that M is a module of G if for every vertex v € V(G) — M either v is adjacent to any vertex
of M or is non-adjacent to every vertex of M. We say that a module M is non-trivial if
|M| > 1, otherwise M is trivial. We say that G is prime if every module of G is trivial.

In the next lemma we show that I'TTE combines well with modular decompositions.

» Lemma 8 (ﬁ) Let X be a hereditary class of graphs and let X* be the class of all induced
subgraphs of the graphs in X that are either prime or cliques. If ITTE can be solved in
polynomial time on X*, then it can be solved in polynomial time on X.

Clique cutsets and atoms. A (possibly empty) set C C V(G) is a cutset in G, if V(G) — C
is disconnected. We say that C' is a clique cutset if C is a cutset and a clique. We say that
G is an atom if it does not contain clique cutsets. Note that, in particular, every atom is
connected. A triple (A, C, B) is a clique cutset partition if it is a partition of V(G) such that
C is a clique cutset, there is no edge between A and B, and G[A U C] is an atom.

We show that we can reduce ITTE to instances (G, X', Y’ E’) such that G is an atom.
The algorithm is a standard recursion that exploits the existence of clique cutsets [48].

» Lemma 9 (ﬁ) Let X be a family of graphs, and let X* be the family of all atoms in X.
If ITTE can be solved in polynomial time in X°, then ITTE can be solved in polynomial
time in X.

Bounded-treewidth graphs. Monadic Second-Order Logic (MSOs2) over graphs consists of
formulas with vertex variables, edge variables, vertex set variables, and edge set variables,
quantifiers, and standard logic operators. We also have a predicate inc(v, €), indicating that
the vertex v belongs to the edge e.

For a graph G, let tw(G) denote the treewidth of G. The classic result of Courcelle [15]
asserts that problems that can be expressed in MSO4 can be efficiently solved on graphs of
bounded treewidth. As ITTE can be expressed in such a way, we obtain the following.

» Corollary 10 (ﬁ) ITTE can be solved in polynomial time on bounded-treewidth graphs.

4 Solving ITTE in claw-free graphs

Let G be a connected graph. A strip structure of G is a pair (D,n) that consists of a

simple graph D, a set n(zy) C V(G) for every zy € E(D), and its non-empty subsets

n(zy, ), n(zy,y) C n(zy), satisfying the following conditions:

(S1) |E(D)| > 3, and there are no vertices of degree 2 in D,

(S2) the set {n(e) : e € E(D)} forms a partition of V(G),

(S3) if u € nle),v € n(f), for some e, f € E(D), then uv € E(G) if and only if there exists
x € V(D) such that e and f are incident to x, u € n(e, ) and w € n(f,z),

(S4) for every x € V(D), the set ¢, n(zy, ) induces a clique in G.

14:9
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Chudnovsky and Seymour [14] proved that every claw-free graph G is either very simple
or admits a strip structure where the subgraphs induced by vertices assigned to a single
edge have “simple” structure. If G is additionally of bounded maximum degree, then this
result becomes particularly usuful. The following corollary of the result of Chudnovsky and
Seymour comes from the paper of Abrishami et al. [1, Corollary 3.5].

» Theorem 11 (Chudnovsky, Seymour [14]). If G is a connected claw-free graph with mazimum
degree at most A, then either tw(G) < 4A + 3, or G admits a strip structure (D, n) such
that for every e € E(D), we have tw(G[n(e)]) < 4A + 4. Moreover, (D,n) can be found in
time polynomial in |V (G)|.

The main result of this section is the following theorem.
» Theorem 12. ITTE can be solved in polynomial time in claw-free graphs.

Proof. Let (G, X',Y’, E’) be an instance of ITTE such that G is claw-free. By Lemma 9,
we can assume that G is an atom, and, in particular, G is connected.

Recall that we can safely assume that G is Ky-free, as otherwise we deal with a no-instance.
This implies that A(G) < 5. Indeed, if G has a vertex v of degree at least six, then v either
has three pairwise non-adjacent neighbors (and hence a claw), or three pairwise adjacent
neighbors (and hence a Ky).

Since G is claw-free and A(G) < 5, by Theorem 11, either (i) tw(G) < 23 or (ii) there
exists a strip structure (D,7n) such that for every e € E(D) we have tw(G[n(e)]) < 24.
By Corollary 10, if (i) holds, it can be checked in polynomial time if G is a yes-instance.
Therefore, we will assume that (ii) holds. By Theorem 11 the strip structure (D,n) can be
computed in polynomial time. As G is connected, so is D.

Recall that by the definition of a strip structure, if yi,...,y4 are neighbors of some
x € V(D), the set Uie[d] n(zy;, «) induces a clique in G. Hence, as G is Ky-free, we have
A(D) < 3, which implies that the vertices of D are either of degree 1 or 3. Moreover, if x is of
degree 3, let N(z) = {y1,y2,y3} and note that since G is Ky-free, |n(zy1, z)| = [n(zys, x)| =
In(zys, x)| = 1. In this case, we denote the single member of n(zy, x) by vg.y.

On the other hand, if D contains a vertex y of degree 1, two things can happen: either D
is isomorphic to Ko, or y is adjacent to a vertex z that is of degree 3 in D. In the first case,
if we denote by e the edge of D, we have tw(G) = tw(G[n(e)]) < 24, so again, we can solve
the problem in polynomial time by Corollary 10. In the second case, let y1,y2 be the other
(than y) neighbors of z in D. We observe that {vg y,, Vs, } Or {vz4} is a clique cutset in G,
a contradiction with G being an atom. Hence, we can assume that D is 3-regular.

For z € V(D) and y1,y2,y3 € Np(z), let E(x) = {Va,y,Vz,yss Va,ys Uz,yss Va,ys Vz,y1 }-
Recall that by the definition of a strip structure, G[E(z)] is a triangle. The following
reduction rule is straightforward.

» Reduction Rule 12.1. If E(z) C E', then (G,X')Y'|E') is a no-instance. If
Vg Vs yas Voo Vs ys € By DU Vg yeVp oy, ¢ E', we can safely add vy, to X' and remove
V1 Va,ya» Uz,ys Va,ys from E'. Hence, for every x € V(D) it holds that |E(x) N E'| < 1.

Consider an edge zy of D. Let Gyy := Gn(zy)], and let I, = {vg,, vy} — Y. Let
A(zy) be the (possibly empty) set of these sets A that satisfy X' NI, C A C I, and

Ta = (Gay, (X' NV(Gyy)) UA, (Y NV (Gyy)) U Iy — A), E' N E(Gyy))

is a yes-instance of ITTE. Observe that if there exists a solution X of ITTE for
(G,X")Y',E'), then X Nn(zy) is a solution to Z4/ for A’ = {v, 4, vy} N X, and in this case
A’ € A(xy). We obtain the following.
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» Reduction Rule 12.2. If A(zy) = 0 for some zy € E(D), then (G,X")Y',E') is a
no-instance.

Our aim is to reduce the ITTE problem to the MWM* problem. Let £ := {zy € E(D) :
0 ¢ A(zy)}. We construct an instance (D', U, w,|£]) of MWM* as follows. To obtain D’,
we take a copy of the set V(D), and for every zy; € E(D) we introduce an additional vertex
tyy. Then, for every xy € E(D), we do the following (below we always use the notation
Np(z) ={y,y",y"}).
(1) if {vgy, vy} € Alzy), we add zy to E(D’),
(2) if {vy,} € A(zy), we add zt,, to E(D’),
(3) if {vy .} € A(zy), we add yt,, to E(D").
(4) if {vg,y Vg } = E'NE(x), we remove xy and xt,, from E(D’) (if they were introduced).

Let U = V(D) C V(D'), i.e., the set of original vertices of D. For zy € E(D), we define
T(zy) = {zy, xtgy, ytey } N E(D'). Weset o : E(D') — {0,1} to be to(uv) =1 if wv € T'(zy)
for some zy € &, and ro(uv) = 0 otherwise. This concludes the construction of (D', U, 1w, |£]).

By the definition of the strip structure, each edge uv € V(@) is either contained in
E(Gyy), for some zy € E(D), or u = vy, and v = v, for some x € U. In the first case,
we say that uv is of type I for xy, in the latter — that uwv is of type II for {zy’,zy"}. Similarly,
each triangle uvt € V(G) is is either contained in E(G,,), for some 2y € E(D) (so it is of
type I for xy), or u = vy, V= vy, and t = v, for some x € U (so it is of type II for x).

> Claim 13 (W). (G, X', Y’ E') is a yes-instance of ITTE if and only if (D', U, w, |]) is a
yes-instance of MWM*.

Sketch of proof of Claim. There is a correspondence between a matching M which is a solution

to (D', U, w, |€|) and a set X which is a solution to (G, X', Y, E'). Let us present the intuition.

Consider zy € E(D) and note that X Nn(zy) is a solution of the instance induced by
n(zy). Note that the only way how such a partial solution interacts with the rest of the
graph is by including (or not) vertices v, , and v, , to X. Each of the four possibilities is
reflected by the way how M intersects T'(zy) (see the definition of E(D’)). The requirement
that M is of weight at least |£| means that for each zy € E(D) such that § ¢ A(zy) we
have to choose some edge from T'(x,y) to M. This is crucial as for these edges there are no
solutions of ITTE restricted to n(xy) containing neither v, , nor vy .

Finally, the set U is used to ensure that the partial solutions chosen for distinct edges of
D are compatible with each other. It enforces that for each x € V (D), the set X intersects

the triangle U, e p(p) n(2y, 2). <

Therefore, for an instance (G, X', Y”,|€|) of ITTE, we create an equivalent (by Claim 13)
instance (D', U, w,|&|) of MWM*. Then we solve (D', U, w, |E|).

It remains to estimate the running time. We check in polynomial time whether G contains a
K,. Asfor each xy € E(D), the set n(zy) is non-empty, |E(D)| < n. For every zy € E(D) we

compute A(zy), which requires solving at most four instances Zgp, Z(y, .1 (v, o} L{ve.y vy .0} -

Each of them consists of a graph G, with tw(G4,) < 24 (by Theorem 11), hence this can
also be done in polynomial time. Finally, the instance (D', U, to, |Ex|) of MWM* can be
constructed and solved in polynomial time by Lemma 5. |

5 Solving ITTE in S5 -free graphs

In this section we generalize the algorithm from Theorem 12 to the class of Sy 1,1-free graphs.

The main combinatorial tool is the following theorem used to solve MIS in this class [38].
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» Theorem 14 (Lozin, Milani¢ [38, Theorem 4.1]). Let G be an Sz 1 1-free prime graph and
let ve V(G). Let G' be an induced prime subgraph of G — N[v]. Then G’ is claw-free.

Equipped with Theorem 14, we can present our algorithm.
» Theorem 15. ITTE can be solved in polynomial time in So 1 1-free graphs.

Proof. Let (G,X',Y’, E’) be an instance of ITTE such that G is So 1 1-free. By calling
Lemma 8 for the class of S5 1 1-free graphs, it is enough to consider the case that G is either
a prime Sy 1 1-free graph or a clique. If Y/ = V(G), then we can verify in polynomial time if
X =0 is a solution. So since now we assume that Y’ is a proper subset of V(G). Observe
that if (G, X', Y’  E’) is a yes-instance, then there exists a solution X that is non-empty.
Indeed, for a solution X = ), we can safely add a vertex v € V(G) — Y".

For every v ¢ Y’ we define the instance Z,, := (G, X’ U{v},Y', E’). Now (G, X', Y', F’)
is a yes-instance if and only if there exists v ¢ Y’ for which Z, is a yes-instance. Consider one
fixed v ¢ Y. Clearly, for any solution X, we have that X N N(v) = 0, so if there is a vertex
in N(v) N X’ or there is an edge in E’ with both endpoints in N(v), we report a no-instance.

Define G, := G — N[v]. We initialize X" := X’ and Y" := Y’ — N[v], and let E” contain
these edges from E’ that have both endpoints in V(G,,). Consider a triangle zyz. If z € N(v)
and y,z € V(G,) we add yz to E”. If z,y € N(v) and z € V(G,) we add z to X”. Finally,
for every edge uw € E’ with v € N(v) and w € V(G,), we add w to X”. Hence, it is enough
to focus on the instance (G,, X", YY", E"), as it is clearly equivalent to the instance Z,. Note
that this reduction can be performed in polynomial time.

We call again Lemma 8, now for the class Y := {G,, | G € X,w € V(G)}, so it is enough
to solve the problem for the class Y* of all induced subgraphs of the graphs in ) that
are either prime or cliques. Clearly, every clique is claw-free. Together with Theorem 14,
it implies that every graph in Y* is claw-free. By Theorem 12, ITTE can be solved in
polynomial time on Y*, and therefore it can be solved in polynomial time on ). Since
G, € ), the instance (G,, X", Y" E") can be solved in polynomial time. <

Combining Theorem 7 with Theorem 15 we obtain our main algorithmic result.

» Theorem 1. W;5-COLORINGEXT can be solved in polynomial time in Ss 1 1-free graphs.

6 W;-ColoringExt in S; 3 5-free graphs is hard

In this section we prove the following hardness result.

» Theorem 16 (ﬁ) The W5-COLORINGEXT problem is NP-hard in Ss 3 3-free graphs of
mazimum degree at most 5. Furthermore, it cannot be solved in time 2°™ | where n is the
number of vertices of the input graph, unless the ETH fails.

Sketch of proof. Let G be an instance of 3-COLORING such that G is a claw-free graph of
maximum degree at most 4 [33]. Note that we can assume that the minimum degree of G is
at least 3. Since G is claw-free, this means that every vertex of G belongs to a triangle.

We construct an instance (G, U, ) of W5-COLORINGEXT. We initialize V(G) := V(Q),
E(G) := E(G), and U := (). For each v € V(G) we proceed as follows. We add to V(G)
vertices T, Yy, 2y and to E(é) we add z,Yy, Yu2y, and y,v. Moreover we add x,, z, to U
and set p(z,) := 0 and ¢(z,) := 4.

Note that the gadget attached to every vertex v of G simulates imposing the list {0, 1,2, 4}.
However, recall that every vertex of G belongs to a triangle, so it will never receive color 4.
Thus (G, U, ¢) is a yes-instance of W5-COLORINGEXT if and only if G is 3-colorable.
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It is straighforward to verify that G is S3 3 3-free: the central vertex of a hypothetical
S3,3.3 must be a vertex of GG, and at least one leg of S3 53 must be fully contained in the
gadget attached to v. Thus this path cannot have three vertices. |

7 Conclusion

Let us conclude the paper with pointing out some open questions and directions for future
research.

Variants of W;5-Coloring in S, .-free graphs. Recall that W5-COLORINGEXT is
polynomial-time solvable in S5 1 1 -free graphs but NP-hard in S3 3 3-free graphs. We point
out that this leaves an infinite family of open cases, and the minimal ones are S and
S3,3,3-

Initial research shows that Lemma 6 can probably be extended to S3 2 1-free graphs, at
least without precolored vertices. Thus there is hope to solve W5-COLORING by a reduction
to ITTE. However, an analogue of Lemma 6 does not hold for S 2 o-free and for Ss 11 -free
graphs; see Figure 1.

Figure 1 An {5222, Ks3}-free (left) and an {Ss,1,1, Ks}-free (right) graph that are not Cs-
colorable.

Of course this does not mean that some other approach cannot work for W5-COLORING.
However, as we show in Theorem 3, the problem becomes hard if we exclude some long
subdivided claw. This leads to a natural question about the boundary between easy and
hard cases.

» Question 1. For which a,b,c are W5-COLORING and W5-COLORINGEXT polynomial-time
solvable in Sg p c-free graphs?

Minimal obstructions. Recall that by Theorem 2 and Theorem 3, the only connected graphs
F for which we can hope for a finite family of F-free minimal Wy-obstructions are paths.
This leads to the following question.

» Question 2. For which k and t is the family of P;-free minimal Wy-obstructions finite?

Let us point out that for all k£, the number of Ps-free minimal Wy-obstructions is finite.
Indeed, Py-free graphs are perfect. Thus if G is P,-free and does not contain Ky, then G
is 3-colorable (and thus it admits a homomorphism to W). On the other hand, K4 is a
minimal graph that does not admit a homomorphism to Wj. Concluding, K, is the only
Py-free (even Ps-free) Wi-obstruction.

On the negative side, recall that there exists an infinite family of Pr-free 4-vertex-critical
graphs [9]. An inspection of this family shows that these graphs are minimal Wj-obstructions
for every odd k > 5. Note that for each such graph G, the fact that an induced subgraph G’
of G has a proper 3-coloring implies that G’ has a homomorphism to W},. However, it still
needs to be verified that G itself does not admit a homomorphism to Wi.

Thus the open cases in Question 2 are t =5 and t = 6.
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