
Distortion-Oblivious Algorithms for Scheduling on
Multiple Machines
Yossi Azar !

Tel Aviv University, Israel

Eldad Peretz !

Tel Aviv University, Israel

Noam Touitou !

Tel Aviv University, Israel
Amazon, Tel Aviv, Israel1

Abstract
We consider the classic online problem of scheduling on multiple machines to minimize total flow
time and total stretch where the input consists of estimates on the processing time provided for
each job once released. The performance of such algorithms should depend on µ, the error in the
estimates of the processing time for that instance (such an algorithm is called a distortion oblivious
algorithm). Previously, a distortion oblivious algorithm to minimize flow time was provided only
for a single machine. In this paper we extend the work to multiple machines and also consider
the total stretch objective. In particular, we design a non-migrative distortion oblivious algorithm
to minimize total flow time with a competitive ratio of O(µ log P), where P is the ratio between
the maximum to minimum processing time. We show that with immediate-dispatching one cannot
achieve a competitive ratio which is a function of µ and P ; moreover, a competitive ratio which
is sub-polynomial in the number of jobs is also impossible. We also present the first distortion-
oblivious algorithm for minimizing the stretch time, both on a single and on multiple machines. The
competitive ratio of these algorithms are O(µ2) which is optimal as we also prove a matching Ω(µ2)
lower bound.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases Online, Scheduling, Predictions, Stretch, Flow Time

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2022.16

Funding Yossi Azar : Supported in part by the Israel Science Foundation (grant No. 2304/20).

1 Introduction

We consider the online scheduling problem on multiple parallel machines, where n jobs arrive
over time and the completion of a job requires processing time on the m ≥ 1 machines. The
machines are parallel, so at at any given time a job can be executed on a single machine
only. The goal of a scheduling algorithm is to minimize a certain objective function. In this
paper, we consider both the total flow time objective, which is the sum of the jobs flow-time
(time from release to completion), and the total stretch objective, which normalizes the flow
time of each job by the required processing time for that job. We consider the variant of the
problem in which preemption is allowed (i.e., the algorithm is allowed to halt and resume
the processing of jobs as desired).

In classic scheduling, the processing times of the jobs are exactly known at the job
release time. In a single machine setting, it is well known that the algorithm SRPT (shortest
remaining processing time) [23] is 1-competitive. It has been shown that on multiple machines

1 This work was done prior to joining Amazon.

© Yossi Azar, Eldad Peretz, and Noam Touitou;
licensed under Creative Commons License CC-BY 4.0

33rd International Symposium on Algorithms and Computation (ISAAC 2022).
Editors: Sang Won Bae and Heejin Park; Article No. 16; pp. 16:1–16:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:azar@tau.ac.il
mailto:eldad.peretz@mail.tau.ac.il
mailto:noam.touitou@cs.tau.ac.il
https://doi.org/10.4230/LIPIcs.ISAAC.2022.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Distortion-Oblivious Algorithms for Scheduling on Multiple Machines

the problem is more difficult and depends on the ratio between the largest processing time of
a job to the minimum one (denoted by P). Specifically, every online algorithm is Ω(log P)
competitive. In addition, SRPT algorithm is an optimal online scheduling algorithm which
achieves a tight competitive ratio of O(log P) [15].

However, in practice usually the assumption that the job processing time is known at
the job release time does not hold. For example, in computer programs scheduling it is very
unlikely to know the job’s exact processing time in advance.

Scheduling with estimates, introduced in [4], addresses this lack of processing-time
knowledge. In this setting, upon job release the algorithm is provided with an estimate
of the job’s processing time, which might be inaccurate up to a multiplicative error of µ;
this parameter µ is called the distortion of the input. Naturally, as µ increases, the best
achievable competitive ratio becomes worse. A possible result in this model is a robust
family of algorithms {ALGµ}, such that ALGµ is tailored to appropriately handle inputs of
distortion at most µ. To use such a family, one needs to know the distortion of the input
µ in advance to choose the correct algorithm. However, in practical settings, knowing the
distortion in advance is infeasible; moreover, guessing the distortion could yield unbounded
competitiveness (see [5]). Thus, a preferable result is a single algorithm (rather than a family)
that handles any input, while achieving a competitive ratio as a function of the distortion
of that input. Such an algorithm is called distortion-oblivious. In our paper, we define the
parameter P to be the maximum ratio between estimated job sizes. We focus on presenting
distortion-oblivious algorithms for scheduling with estimates.

In this paper, we consider preemptive scheduling on multiple machines. In such
scheduling problems, certain properties are desired in a good algorithm. For example, such
a property is being non-migrative, i.e., once the algorithm decides to process a job on a
machine, the job can never be processed on a different machine. Another, stronger property
is immediate dispatching, in which a job must also be assigned to a machine immediately
upon its release.

1.1 Our Results

In this paper, we present the following distortion-oblivious algorithms and lower bounds for
scheduling with estimates.
1. We show a non-migrative algorithm with a competitive ratio of O(µ log P) with respect

to the total flow time objective compared to optimal migrative algorithm (Theorem 2). If
migration is allowed we show using similar analysis that lowest class first also achieves a
competitive ratio of O(min(µ log P, µ log µ + µ log n

m)) (Corollary 16).
2. We present a tight non-migrative algorithm for minimizing total stretch on multiple

machines with a competitive ratio of O(µ2). (Theorem 6)
3. We present a matching lower bound for minimizing total stretch on multiple machines

(that even allows migration) of Ω(µ2). (Theorem 11)
In particular, Results 2, 3 also apply for a single machine, and are the first known results in
this setting. Therefore, in this paper we completely solve the problem of distortion-oblivious
algorithms to minimize stretch time.

We also consider the immediate dispatching property for scheduling with estimates. Here,
we show that there exists no algorithm of competitiveness sub-polynomial in the number of
jobs, even for arbitrarily-small µ and P ; in particular, there is no algorithm with competitive
ratio as a function of only µ and P . This lower bound applies to both total flow time and
total stretch, and holds even when randomization is allowed. Details appear in Section 5.

Y. Azar, E. Peretz, and N. Touitou 16:3

1.2 Related Work
A similar setting to the robust setting is nonclairvoyant scheduling, studied in [21, 8, 7, 11, 10].
In this setting, the size of each job is completely unknown at release time, and is only revealed
to the algorithm upon completion of the job. In fact, this non-clairvoyant setting is a special
case of our model in which the distortion µ is equal to P (i.e., the predicted processing time
is meaningless). In this nonclairvoyant model, for multiple machines, the best known result
for minimizing flow time is O(log n log n

m) [8].
In the classic scheduling setting, the exact processing times of jobs are known at release

time; this classic model is a special case of the robust setting in which µ = 1. In this
setting, [15] presented an O(log P) algorithm and a matching lower bound of Ω(log P). It is
also known that the same algorithm achieves an upper bound of O(log(n/m)); without mi-
gration, [3] presented an O(log n)-competitive algorithm. A result of similar competitiveness
was introduced by [2] for the immediate dispatching variant of this problem. For minimizing
stretch, an O(1) non-migrative competitive algorithm is known [9].

Scheduling with distortion falls within the field of algorithms with predictions. In this
model, an online algorithm is given somewhat-accurate predictions of the incoming online
input. A good algorithm should be able to benefit from these predictions to the degree to
which they are precise; its competitive ratio would thus be a function of the predictions’
accuracy. Many problems related to scheduling have been addressed using algorithms with
predictions; for example, see [22, 13, 19, 12, 6, 16]. Algorithms with predictions have also
been used for many other online problems [17, 18, 20]. Additional papers on algorithms with
predictions can be found in [1].

1.3 Paper Organization
The non-migrative algorithm for minimizing total flow time is presented and analyzed in
Section 3. The non-migrative algorithm for minimizing total stretch is presented and analyzed
in Section 4. In Section 5 we show lower bound for immediate dispatching distortion oblivious
algorithms, for both the flow time and total stretch objectives. In Appendix A, we show
additional results for the total flow time objective; specifically, we analyze the LCF algorithm
and give tight examples for the shown algorithms.

2 Preliminaries

In our scheduling problem, jobs are released over time. There are m parallel machines; that
means at any given time a job can be processed only on one of the m machines. Each job q

must be processed for exactly pq time (pq is called the processing time of q). For a job q,
we denote by rq its release time and upon the job release time the algorithm gets the job
estimated processing time p̃q; the actual processing time of the job is unknown and revealed
only at the job completion time cq.

We define µ1 = maxj
pj

p̃j
as the maximum underestimation factor of a job in the input.

Similarly, also define µ2 = maxj
p̃j

pj
as the maximum overestimation factor of a job in the

input. Hence, for any job q:

p̃q

µ2
≤ pq ≤ p̃q · µ1

Finally, we define the distortion parameter µ := µ1 ·µ2. It is natural to assume that µ1, µ2 ≥ 1,
although it is not required for our proofs.

ISAAC 2022

16:4 Distortion-Oblivious Algorithms for Scheduling on Multiple Machines

Let P be the ratio between the maximal job estimated size and the minimal job estimated
size in the input, P = maxq p̃q

minq p̃q
.

Note that since P is a function of the input the algorithm has no prior knowledge on P .
For the same reason, unless the algorithm is not distortion oblivious it also has no knowledge
on the parameters µ1, µ2 and µ.

Objectives. In our paper we discuss 2 objectives: total flow time and total stretch. The
total flow time objective is one of the most basic performance measures in multiprocessor
scheduling problems, and is defined as the overall time the jobs are spending in the system.
This includes the delay of waiting for processing as well as the actual processing time.
Formally, using the defined notations the total flow time objective is:

F =
∑

q

cq − rq

Another natural objective is the total stretch objective. The total stretch objective is defined
as follows:

W =
∑

q

cq − rq

pq
.

To refer to the objective of an algorithm A, we use the superscript A, e.g., F A or W A.
Unlike the classic setting, in scheduling with estimates the total stretch objective is not a
special case of the total weighted time objective since the algorithm does not know the actual
processing times of the alive jobs and therefore does not know their weights.

Throughout the paper, we often use the following definition of a job class:

▶ Definition 1 (job class). We define the class of a job q, denoted ℓq, to be the unique integer
i such that p̃q ∈ [2i, 2i+1).

This definition refers to the estimated processing times provided in the input (rather than
actual processing times, or remaining processing times). In particular, the class of a job does
not change over time and the definition does not depend on the algorithm (either it is an
algorithm or the optimal solution the job classes are defined the same).

Notations. In the paper we use notations that have been defined by previous work:
V A(t) is the remaining time of alive jobs for algorithm A at time t

δA(t) is the number of alive jobs for algorithm A at time t.
γA(t) is the number of non-idle machines for algorithm A at time t.

Where the algorithm is clear from context, we sometimes omit the superscript for these
definitions. In addition, for a function f (e.g., V or δ) we define the following notations:

∆f(t) = fA(t) − fOP T (t), the difference at f value between the algorithm A and the
optimal solution at time t.
f=k(t) is the value of f at time t for class k.
f≤k(t) is the value of f at time t over all jobs of class at most k. Similarly, f≥k(t) is the
value of f at time t over all jobs of class at least k

We also use ∗ to denote the optimal solution. For example, V ∗(t) is the remaining time of
alive jobs for the optimal solution at time t.

Y. Azar, E. Peretz, and N. Touitou 16:5

3 Minimizing Flow Time

In this section, we describe and analyze a distortion-oblivious algorithm for minimizing total
flow time for the non-migrative setting with competitive ratio of O(µ log P) against even an
migrative optimal algorithm. Note that when µ is a constant this is the best known upper
bound.

3.1 Algorithm for the Non-Migrative Setting
The algorithm maintains a pool of jobs that are released and have not been processed at
all. In addition, it maintains at every machine a stack of alive jobs that have already been
processed by that machine. At any time, each machine processes the job at the top of its
stack. The algorithm handles two events: job release and job completion.

At job release, the algorithm checks whether there exists a machine that is empty or
currently processing a job of higher class. If such a machine exists, the algorithm places the
job at the top of that machine’s stack. Otherwise, the job is added to the pool.

Upon job completion, the algorithm pops the completed job from its associated machine
stack. Then, it observes the job q′ currently at the top of that stack. If the lowest-class job
q′′ in the pool has a lower class than q′ (or if q′ does not exist) then q′′ is moved to the top
of the stack of that machine.

The online algorithm is given as Algorithm 1.

Algorithm 1 Distortion Oblivious Non Migrative Scheduling Algorithm.

1 Event Function UponJobRelease(q)
2 if Exists an idle machine or a machine that currently processes a job of class

higher than ℓq then
3 Insert q to the top of that machine stack.
4 else
5 Insert q to the pool.

6 Event Function UponJobCompletion(q)
7 Denote by mj the machine q was processed on.
8 Pop q from the stack of mj , and let q′ be the next job in that stack.
9 if the job with lowest class in the pool q′′ has class strictly less than that of q′ or

q′ does not exist then
10 Remove q′′ from the pool and insert it to the top of the stack of mj .

The following theorem (Theorem 2) shows that Algorithm 1 has a bounded competitive
ratio against an optimal offline solution for the input; in Appendix A.2, we show that
Theorem 2 is in fact tight for m ≥ 2.

▶ Theorem 2. Algorithm 1 is O(µ log P)-competitive for inputs with distortion µ.

3.2 Proof of Theorem 2
A useful and classic concept that we use in the proof, is called local competitiveness. An
algorithm is locally competitive if at every point in time t, the number of living jobs in
the algorithm at t is at most some factor from that of the optimal solution at t. A classic
observation is that a locally c-competitive algorithm is in particular (globally) c-competitive;
this observation results simply from integrating over time. Observation 3 states this formally.

ISAAC 2022

16:6 Distortion-Oblivious Algorithms for Scheduling on Multiple Machines

▶ Observation 3. If for an input I it holds that at every time t we have δA(t) ≤ c(I) · δ∗(t)
then the algorithm A is c(I)-competitive with respect to total flow time on input I.

Note that at any time every machine stack has at most one job of each class. There are
⌈log P ⌉ classes, therefore at any time the number of partial jobs is at most m log P . Also
note that if at time t there is an idle machine (i.e., γ(t) < m) then the pool is empty and the
the total number of alive jobs of the algorithm at time t is δALG(t) ≤ m log P .

We define T to be the set of times t that γALG(t) = m; that is, the set of times in which
all machines are busy.

We start by proving the following lemma, that for every k bounds the total remaining
processing time difference on jobs of class at most k between the algorithm and the optimal
solution.

▶ Lemma 4. If t ∈ T then ∆≤kV (t) ≤ mµ1 · 2k+2.

Proof. Let t0 be the earliest time such that [t0, t) ⊂ T . We define tk ∈ [t0, t) as the latest
time in [t0, t) that the algorithm has processed a job of class greater than k (if no such job
was processed during this interval then tk = t0). At time tk we know that there are no
pending jobs of class at most k in the pool. Therefore, all jobs of class at most k are already
assigned to a machine. Since every machine process at most one job of any class, there are
at most m jobs of any class at most k in the system. The worst case actual processing time
of a job of class i is mµ12i+1, thus

∆≤kV (tk) ≤
k∑

i=1
mµ12i+1 ≤ mµ12k+2.

In [tk, t) ⊂ T we processed only jobs of class at most k, implies that

∆≤kV (t) ≤ ∆≤kV (tk) ≤ mµ12k+2.

Note that arrival of new jobs adds to both V ∗ and V ALG the same amount and therefore
does not affect the proof. ◀

▶ Lemma 5. If t ∈ T then δALG(t) ≤ (µ + 3)γALG(t) log P + 2µδ∗(t)

Proof.

δALG(t) =
kmax∑

i=kmin

δALG
=i (t)

≤
kmax∑

i=kmin

(
V ALG

=i (t)
2i/µ2

+ m

)

≤
kmax∑

i=kmin

V ∗
=i(t) + ∆V=i(t)

2i/µ2
+ m log P

≤
kmax∑

i=kmin

δ∗
=i(t)µ12i+1

2i/µ2
+

kmax∑
i=kmin

∆V≤i(t) − ∆V≤i−1(t)
2i/µ2

+ γALG(t) log P

≤ 2µδ∗(t) +
kmax∑

i=kmin

∆V≤i(t)
2i+1/µ2

+ ∆V≤kmax
(t)

2kmax+1/µ2
+ γALG(t) log P

≤ 2µδ∗(t) + γALG(t)µ log P + 2µγALG(t) + γALG(t) log P

≤ (µ + 3)γALG(t) log P + 2µδ∗(t)

Y. Azar, E. Peretz, and N. Touitou 16:7

where the first inequality is since there are at most m partial jobs at each class. The
third inequality is since t ∈ T thus γALG(t) equals m. The fourth inequality is since
δ∗(t) =

∑kmax

i=kmin
δ∗(t). The fifth inequality is applying Lemma 4. ◀

Now we turn to prove Theorem 2:

Proof of Theorem 2. Using the analysis above, we can now bound the total flow time of
the algorithm.

F ALG =
∫

t

δALG(t)dt

=
∫

t∈T

δALG(t)dt +
∫

t/∈T

δALG(t)dt

≤
∫

t∈T

(µ + 3)γALG(t) log (P) + 2µδ∗(t)dt +
∫

t/∈T

γALG(t) log(P)dt

≤ (µ + 3) log P

∫
t

γALG(t)dt + 2µ

∫
t

δ∗(t)dt

≤ (µ + 3) log P · F ∗ + 2µ · F ∗

= O(µ log P)F ∗

where the first inequality follows by applying Lemma 5. The last inequality follows since
F ∗ =

∫
t
δ∗(t)dt and

∫
t
γALG(t)dt ≤ F ∗. ◀

4 Minimizing Total Stretch

In this section, we study the distortion-oblivious, non-migrative Algorithm 1 for minimizing
total stretch. We show that Algorithm 1 achieves the best possible competitive ratio for
non-migrative algorithms. We show that Algorithm 1 competitive ratio is O(µ2) against
even an migrative optimal algorithm (Theorem 6). In addition, we also prove a matching
lower bound of Ω(µ2) even for the migrative case. Those results concludes that Algorithm 1
is optimal (Theorem 11) for minimizing the total stretch objective in the online setting.

The weight of a job q is inversely proportional to q’s (actual) processing time; we denote
this weight by wq := 1

pq
. Similarly, for a set of jobs Q we define wQ as the sum of the weights

wQ :=
∑

q∈Q wq.
In addition, we define W A(t) to be the total weight of the currently-alive jobs of an

algorithm A at time t (and omit A whenever the algorithm is clear from context). We also
use a subscript predicate to restrict this notation to specific classes; for example, W=i(t) is
the total weight of living jobs of class exactly i in the algorithm at time t.

4.1 Non-Migrative O(µ2) Scheduling on Parallel Machines
In this subsection, we prove the following theorem.

▶ Theorem 6. Algorithm 1 is O(µ2)-competitive for inputs with distortion µ to minimize
total stretch.

Since stretch scheduling involves weights, here local competitiveness means that at every
time t, the total living weight in the algorithm is bounded by the total living weight in the
optimal solution. Through integration over time, it is easy to see that local-competitiveness
implies competitiveness, as stated in Observation 7.

ISAAC 2022

16:8 Distortion-Oblivious Algorithms for Scheduling on Multiple Machines

▶ Observation 7. If for any input I, at any time t, W A(t) ≤ c(I) · W ∗(t) then the algorithm
A is c(I)-competitive with respect to total stretch.

We start with the following notation:
Let cj(t) be the currently processed job of machine j at time t (i.e., the job at the top of
machine j stack).
Let R(t) = {cj(t)|j ∈ [m]} is the set of jobs being processed at time t.
Let Sj(t) denote the the set of alive jobs that are on machine j stack, excluding the
currently processed job cj(t). Let S(t) =

⋃
j Sj(t) the set of alive jobs in one of the

machines stack and not currently processed.
Let P (t) denote the set of alive jobs in the pool at time t.

▶ Observation 8. For any scheduling algorithm A,
∫

t

∑
x∈RA(t) wx = n from the definition of

the stretch objective, since every job q is executed exactly pq time in the algorithm. Therefore,
both OPT and Algorithm 1 has total stretch of at least n (W ∗ ≥ n).
We will split the proof into two lemmas. The first lemma (Lemma 9) will show that the
total stretch added from jobs being in the machines stacks is bounded by 2nµ and therefore
from Observation 8 we get that this part is O(µ) competitive with OPT. The second lemma
(Lemma 10) shows that the rest of the jobs time in the system add at most 4µ2W ∗ + 12µ2n

stretch, which is O(µ2) competitive with OPT. From this two lemmas, Theorem 6 follows.

▶ Lemma 9.
∫

t

∑
x∈S(t) wx ≤ 2nµ.

Proof. At every machine stack, there is at most one job of each class. Every job x ∈ Sj(t) is
of class strictly greater than of cj(t).

wSj(t) =
∑

x∈Sj(t)

wx ≤
kmax∑

i=ℓcj (t)

µ2

2i
≤ µ2

2ℓcj (t)
.

The weight of the currently running job of machine j is wcj(t) ≥ 1
2

ℓcj (t)+1
µ1

. Hence,

wSj(t) ≤ 2µwcj(t).

Therefore, wS(t) ≤ 2µ · wR(t) and since
∫

t
wR(t) = n we get wS(t) ≤ 2µn that concludes the

proof. ◀

Let V P
=i(t) denote the volume of jobs in the pool of class i, V P

≤i(t) =
∑

z≤i V P
=z(t) and

∆V P
≤i(t) = V P

≤i(t) − V ∗
≤i(t). Let ρ(t) denote maxx∈R(t) ℓx, the maximal class of a running job

at time t. From algorithm definition, all jobs in the pool are of class at least ρ(t), therefore
V P

<ρ(t)(t) = 0. We also define α(t) to be the largest class of an alive job. We now turn to
prove the lemma that bounds the weight of jobs in the pool.

▶ Lemma 10.
∑

x∈P (t) wx ≤ 6µ2W ∗(t) + 12µ2∑
x∈R(t) wx.

Proof. Note that in case γ(t) < m, then the pool is empty and the lemma is trivially true;
since the left hand side is 0. Denote by Ci the set of jobs of class i. The number of jobs in
Ci ∩ P (t) is upper bounded by µ2V P

=i(t)
2i since the jobs in the pool aren’t processed yet. Each

job has a weight at most µ2
2i . Hence we get that

Y. Azar, E. Peretz, and N. Touitou 16:9

α(t)∑
i=ρ(t)

∑
x∈Ci∩P (t)

wx ≤
α(t)∑

i=ρ(t)

µ2
V P

=i(t)
2i

· µ2

2i

=µ2
2

α(t)∑
i=ρ(t)

V P
=i(t)

2i · 2i

≤µ2
2

α(t)∑
i=ρ(t)

V ∗
=i(t) + ∆V P

=i(t)
2i · 2i

≤µ2
2

α(t)∑
i=ρ(t)

V ∗
=i(t)

2i · 2i
+ µ2

2

α(t)∑
i=ρ(t)

∆V P
=i(t)

2i · 2i
.

First, we bound µ2
2
∑α(t)

i=ρ(t)
V ∗

=i(t)
2i·2i . At time t, OPT has at least V ∗

=i(t)
2i+1µ1

jobs of class i with
weight at least 1

2i+1µ1
. Therefore:

W ∗
=i(t) ≥ V ∗

=i(t)
2i+1µ1

· 1
2i+1µ1

which is equivalent to

µ2
2 · V ∗

=i(t)
2i · 2i

≤ 4µ2W ∗
=i(t)

and concludes that

µ2
2

α(t)∑
i=ρ(t)

V ∗
=i(t)

2i · 2i
≤ 4µ2W ∗(t).

It remains to show that µ2
2
∑α(t)

i=ρ(t)
∆V P

=i(t)
2i·2i ≤ 6µ2∑

x∈R(t) wx + 2µ2W ∗(t):

µ2
2

α(t)∑
i=ρ(t)

∆V P
=i(t)

2i · 2i
≤µ2

2

α(t)∑
i=ρ(t)

∆V P
≤i(t) − ∆V P

≤i−1(t)
2i · 2i

=µ2
2

α(t)∑
i=ρ(t)

∆V P
≤i(t)

2i+1 · 2i
+ µ2

2
∆V≤α(t)(t)

2α(t)+1 · 2α(t) − µ2
2

∆V P
≤ρ(t)−1(t)

2ρ(t)+1 · 2ρ(t)

=µ2
2

α(t)∑
i=ρ(t)

∆V P
≤i(t)

2i+1 · 2i
+ µ2

2
∆V≤α(t)(t)

2α(t)+1 · 2α(t) + µ2
2

V ∗
≤ρ(t)−1(t)

2ρ(t)+1 · 2ρ(t)

≤µ2
2

α(t)∑
i=ρ(t)

∆V P
≤i(t)

2i+1 · 2i
+ µ2

2
∆V≤α(t)(t)

2α(t)+1 · 2α(t) + µ2
2

W ∗
≤ρ(t)−1(t) · µ2

1 · 22ρ(t)+2

2ρ(t)+1 · 2ρ(t)

≤µ2
2

α(t)∑
i=ρ(t)

(m − 1)µ1

2i
+ µ2

2
4(m − 1)µ1

2α(t) + 2µ2W ∗(t)

≤6µ2
2µ1(m − 1) · 1

2ρ(t) + 2µ2W ∗(t)

≤6mµ2
∑

x∈R(t)

wx + 2µ2W ∗(t)

ISAAC 2022

16:10 Distortion-Oblivious Algorithms for Scheduling on Multiple Machines

where the second inequality is since δ∗
≤ρ(t)(t) ≥ V ∗

≤ρ(t)
µ1·2ρ(t)+1 and the minimal weight of a job

of class at most ρ(t) is 1
µ1·2ρ(t)+1 . The first two terms of the third inequality are according

to Lemma 4 of previous section (and the fact that ∆V P
≤i(t) ≤ ∆V≤i(t)). The right most

term of the third inequality is since W ∗
≤ρ(t)(t) ≤ W ∗(t). The last inequality is since for every

x ∈ R(t), wx ≥ 1
2ρ(t)µ1

we get that 6µ2
2µ1(m − 1) 1

2ρ(t) ≤ 6mµ2∑
x∈R(t) wx. We showed that

µ2
2
∑α(t)

i=ρ(t)
∆V P

=i(t)
2i·2i ≤ 6µ2∑

x∈R(t) wx + 2µ2W ∗(t) which concludes the proof. ◀

Now we can prove the algorithm is O(µ2) competitive:

Proof of Theorem 6.∫
t

∑
x∈Jobs(t)

wx =
∫

t

∑
x∈S(t)

wx +
∫

t

∑
x∈P (t)

wx

≤ 3nµ +
∫

t

6µ2W ∗(t) + 6µ2
∑

x∈R(t)

wx

≤ 3nµ + 6µ2W ∗ + 6µ2n

≤ 15µ2W ∗

where the second inequality is since
∫

t

∑
x∈R(t) wx = n (Observation 8) and the last inequality

is since n ≤ W ∗ (Observation 8). ◀

4.2 Total Stretch Lower Bound
We show Ω(µ2) lower bound for online distortion oblivious scheduling on multiple machines
even if job migrations is allowed. This lower bound proves that the online algorithm presented
in this section is optimal for total stretch minimization.

▶ Theorem 11. For every number of parallel machines m and for every constant distortion
µ, every deterministic online algorithm ALG to minimize total stretch time has a competitive
ratio of Ω(µ2).

Proof. Without loss of generality the algorithm is non-idle; since every algorithm with
idle-time can be transformed to a non-idle algorithm by simply processing a arbitrary job
during the idle time. Also assume that µ > 2. Let t = µ5

2 . We analyze the local competitive
ratio of the algorithm at time t and then extend the result to (global) competitive ratio.

At time 0 release m · µ4 jobs of estimated size 1 (their actual size is in [1, µ]). For every
job q denote by xq the amount of time ALG processes job q until time t. For every job q,
define the actual processing time of q to be:

pj = min(max(1, xj + ϵ), µ)

where ϵ = 1
µ . Note that the sum of the jobs processing time is at least m · t, since we assume

the algorithm is non-idle and there is enough volume to be processed. Denote:
1. D is the set of jobs that pj = µ.
2. F is the set of jobs that xj ≤ 1 − ϵ. In particular for all j ∈ F , pj = 1.
3. P is the set of all the other jobs.
The above implies that:

|D| + |F | + |P | = m · µ4.

Y. Azar, E. Peretz, and N. Touitou 16:11

OPT processes the jobs with Shortest Time First. Therefore, OPT finishes all the jobs of size
at most µ

2 (in particular, all the jobs in F). Note that the total remaining volume for all jobs
at t in the algorithm is at most ϵ(|P | + |D|) + |F |. Since the optimal solution is non-idle, this
is also an upper bound for the total remaining volume in the optimal solution at t. However,
all pending jobs in the optimal solution at t (with the exception of at most m jobs currently
being processed) have a remaining processing time of at most µ

2 . Thus, the total number
of pending jobs in the optimal solution at t is at most m + 2

µ · (ϵ(|P | + |D|) + |F |), which
is O(m · µ2 + |F |

µ). Those jobs are in P and D and of size at least µ
2 . Therefore the total

weight of the optimal solution at time t is:

W ∗(t) = O

(
m · µ + |F |

µ2

)
.

We turn to analyze the weight of the algorithm at time t. Note that |D| ≤ m·µ4

2−2 ϵ
µ

≤ m·µ4

1.5
since otherwise there must be a job q ∈ D that xq < µ − ϵ. The algorithm ALG, remains
with the jobs in the sets P and F . Their combined size is |P | + |F | = m · µ4 − |D| ≥ m·µ4

3 .
Since the algorithm ALG does not complete any of the jobs in F , it remains with weight of
at least |F | since the weight each job in F is 1. Therefore:

W ALG(t) ≥ |F |.

Analyzing in different way, the algorithm remains with at least m·µ4

3 jobs (of the sets P and
F) where the minimal weight of a job is 1

µ . Therefore, the weight of the algorithm ALG at
time t is:

W ALG(t) ≥ Ω
(

m · µ4

3 · 1
µ

)
= Ω(m · µ3).

That means:

W ALG(t) = Ω(m · µ3 + |F |).

Combining all, the local competitiveness at time t is:

Ω
(

m · µ3 + |F |
m · µ + |F |

µ2

)

which is Ω(µ2) local competitive ratio. To finish the proof, we use the standard “bombardment”
technique: at time t, we start releasing m jobs of size ϵ = 1

µ every ϵ time. The total weight
of the released jobs in each interval is mµ. This is easily seen to extend the Ω(µ2) lower
bound from local competitiveness to general (global) competitiveness. ◀

5 Impossibility of online Immediate-Dispatching algorithms for Robust
Scheduling

In this part, we will show lower bounds on immediate dispatching algorithms in the distortion-
oblivious setting. We show that for both total flow time and total stretch objectives, there
are polynomial lower bounds in terms of the number of jobs n for arbitrarily close to 1 values
of µ and P , even if randomization is allowed. We first prove the lower bound version for
deterministic algorithms (Theorem 12). Then we extend the proof to allow algorithms that
use randomness (Theorem 13).

ISAAC 2022

16:12 Distortion-Oblivious Algorithms for Scheduling on Multiple Machines

▶ Theorem 12. For m > 1, every online immediate dispatching deterministic algorithm
ALG, for every constant distortion factor µ, has a competitive ratio of Ω

(√
n
m

)
with respect

to the total flow time objective.

Proof. Theorem 12. At the beginning (i.e., time 0) we release k jobs of estimated size 1,
the value of k will be determined later. Let xi and be the number of jobs assigned to machine
i by the algorithm ALG.∑

i∈[m]

xi = k.

Let j be the machine with the largest number of assigned jobs by the algorithm (i.e.,
j = argmaxi∈[m]xi). For jobs assigned to machine j we set their actual size to be µ, and for
the rest of the we set their actual size to 1.

The optimal solution, completes all the released jobs by time t = xjµ+(m−1)xj

m , with round
robin algorithm. The total flow time of the jobs until time t is O(k2

m · µ).
By that time, the algorithm remains with volume of at least xjµ − t of remaining jobs

assigned to machine j. Plug in the value of t and the remaining volume is:

xjµ − t = Ω
(

k

m
· (µ − 1)

)
.

From time t until time t + (k/m)2 · µ we release in intervals of µ (i.e., t, t + µ, t + 2µ, t + 3µ, ...)
m jobs of actual processing time µ and estimated processing time 1. In total, during the
construction we release k + m · (k/m)2 jobs.

At each interval, the optimal solution assigns the m released jobs to the m machines and
completes them by the end of the interval. Thus the optimal solution total flow time is

F ∗ = m · (k/m)2 · µ + O

(
k2

m
· µ

)
= O

(
k2

m
· µ

)
.

The algorithm at time t remains with Ω
(

k
m (µ − 1)

)
volume (of jobs assigned to machine

j), therefore, since the maximum processing time of a job is µ, at any tine between t and
t + (k/m)2 · µ, the algorithm has at least Ω

(
k
m (1 − 1

µ)
)

alive jobs. Hence, the algorithm
ALG total flow time is

F ALG ≥ (k/m)2 · µ ·
(

k

m
·
(

1 − 1
µ

)
+ m

)
+ Ω

(
k2

m
· µ

)
.

Therefore the algorithm ALG is Ω(k
m (1 − 1/µ))-competitive with the optimal solution. The

number of released jobs during execution is n = k + m · (k/m)2 = O
(

k2

m

)
and therefore, in

other terms the algorithm ALG competitive ratio is Ω
(√

n
m (1 − 1/µ)

)
, which for a constant

µ is Ω
(√

n
m

)
. ◀

Now we prove the second theorem, Theorem 13 with the same technique we used at the
proof of Theorem 12.

▶ Theorem 13. For m > 1, every online immediate dispatching algorithm ALG that can
use randomness, for every constant distortion factor µ, has a competitive ratio of Ω

(
n1/4
√

m

)
with respect to the total flow time objective.

Y. Azar, E. Peretz, and N. Touitou 16:13

Proof. Theorem 13. We use Yao’s principle and describe a lower bound for deterministic
algorithms on a given distribution over the input. This yields a lower bound for randomized
online algorithms.

Release k jobs of estimated size 1 at the beginning, k/2 of them with actual size 1 and
the rest with actual size µ. The algorithm ALG assigns the jobs to the machines. Let xi be
the number of jobs that the algorithm assigned to machine i. Since the algorithm does not
know the actual sizes at the assignment time, in expectation, every machine has xi

2 jobs of
actual size 1 and xi

2 jobs of actual size µ.
We denote by zi the number of jobs of actual size µ that are assigned to machine i by the

algorithm. Similarly, we denote by yi the number of jobs of actual size 1 that are assigned to
machine i by the algorithm. Note that for every machine i, zi + yi = xi.

The optimal solution, can perform round robin algorithm and complete all the released
jobs at time t = k(µ+1)

2m . The total flow time of the jobs until time t is O
(

k2

m · µ
)

.
Let j be the machine with the largest number of assigned jobs by the algorithm (i.e.,

j = argmaxi∈[m]xi). As before, xj ≥ k
m . The random variable zj is a binomial random

variable, zj ∼ B(xj , 0.5). Let G be the event that zj ≥ k
m +

√
k
m , note that the event G

happens with probability at least 1
4 (i.e., P (G) ≥ 1

4). We analyze only the case that G

happens, in any other case we let the total flow time of the algorithm to be 0.

If G happens, then the algorithm ALG at time t is left with Ω
(√

k
m · (µ − 1)

)
of volume

of jobs that assigned to machine j.
Repeating the last part of the previous proof, from time t until time t + (k/m)2 · µ we

release in intervals of µ (i.e., t, t + µ, t + 2µ, t + 3µ, ...) m jobs of actual processing time µ and
estimated processing time 1. In total, during the construction we release k + m · (k/m)2 jobs.

At the beginning of each interval, the optimal solution assigns the m released jobs to the
m machines and completes them at the end of each interval. Thus the optimal solution total
flow time is

F ∗ = m · (k/m)2 · µ + O

(
k2

m
· µ

)
= O

(
k2

m
· µ

)
.

At the time between t to t + (k/m)2 · µ, ALG has at least k
m · (1 − 1/µ) + m alive jobs. Hence,

the algorithm ALG total flow time is

E[F ALG] ≥ P (G) ·

(
(k/m)2 · µ ·

(√
k

m
· (1 − 1/µ) + m

)
+ Ω

(
k2

m
· µ

))
.

Therefore the algorithm ALG is Ω
(√

k
m (1 − 1/µ)

)
-competitive with the optimal solution.

The number of released jobs during execution is n = k + m · (k/m)2 and therefore, the
algorithm ALG competitive ratio is Ω(n1/4

√
m

(1 − 1/µ)). ◀

The lower bound also applies for stretch since all the jobs are in the range of [1, µ], therefore
considering the weights of the jobs can only decrease the competitive ratio by factor of µ,
which is negligible related to the number of jobs n.

6 Discussion and Open Problems

In this paper, we present the first distortion-oblivious algorithms for total stretch, which have
optimal competitive ratio. This provides an optimal deterministic distortion-obliviousness
algorithm for the total stretch objective on both single and multiple machines. We also present

ISAAC 2022

16:14 Distortion-Oblivious Algorithms for Scheduling on Multiple Machines

nearly-optimal, distortion-oblivious algorithms for total flow time on multiple machines. We
also show that with immediate dispatching no algorithm with sub-polynomial competitive
ratio exists. It would be interesting to close the gap between the presented algorithms for
flow time, that achieve O(µ log P)-competitiveness, to the previously known lower bound of
Ω(µ + log P). Another direction of future work would be randomized distortion-oblivious
algorithms for minimizing total stretch.

References
1 Algorithms with predictions. https://algorithms-with-predictions.github.io.
2 Nir Avrahami and Yossi Azar. Minimizing total flow time and total completion time with

immediate dispatching. In Proceedings of the Fifteenth Annual ACM Symposium on Parallel
Algorithms and Architectures, SPAA ’03, pages 11–18, New York, NY, USA, 2003. ACM.
doi:10.1145/777412.777415.

3 Baruch Awerbuch, Yossi Azar, Stefano Leonardi, and Oded Regev. Minimizing the flow
time without migration. SIAM Journal on Computing, 31(5):1370–1382, 2002. doi:10.1137/
S009753970037446X.

4 Yossi Azar, Stefano Leonardi, and Noam Touitou. Flow time scheduling with uncertain
processing time. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd
Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25,
2021, pages 1070–1080. ACM, 2021. doi:10.1145/3406325.3451023.

5 Yossi Azar, Stefano Leonardi, and Noam Touitou. Distortion-oblivious algorithms for minimiz-
ing flow time. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA,
USA, January 9 - 12, 2022, pages 252–274. SIAM, 2022. doi:10.1137/1.9781611977073.13.

6 Eric Balkanski, Tingting Ou, Clifford Stein, and Hao-Ting Wei. Scheduling with speed
predictions, 2022. doi:10.48550/ARXIV.2205.01247.

7 Nikhil Bansal, Kedar Dhamdhere, Jochen Könemann, and Amitabh Sinha. Non-clairvoyant
scheduling for minimizing mean slowdown. Algorithmica, 40(4):305–318, 2004. doi:10.1007/
s00453-004-1115-0.

8 Luca Becchetti and Stefano Leonardi. Non-clairvoyant scheduling to minimize the average
flow time on single and parallel machines. In Proceedings of the thirty-third annual ACM
symposium on Theory of computing, pages 94–103, 2001.

9 Chandra Chekuri, Sanjeev Khanna, and An Zhu. Algorithms for minimizing weighted flow
time. In Proceedings on 33rd Annual ACM Symposium on Theory of Computing, July 6-8,
2001, Heraklion, Crete, Greece, pages 84–93, 2001. doi:10.1145/380752.380778.

10 Sungjin Im, Janardhan Kulkarni, and Kamesh Munagala. Competitive algorithms from
competitive equilibria: Non-clairvoyant scheduling under polyhedral constraints. Journal of
the ACM (JACM), 65(1):1–33, 2017.

11 Sungjin Im, Janardhan Kulkarni, Kamesh Munagala, and Kirk Pruhs. Selfishmigrate: A
scalable algorithm for non-clairvoyantly scheduling heterogeneous processors. In 2014 IEEE
55th Annual Symposium on Foundations of Computer Science, pages 531–540. IEEE, 2014.

12 Sungjin Im, Ravi Kumar, Mahshid Montazer Qaem, and Manish Purohit. Non-clairvoyant
scheduling with predictions. In Proceedings of the 33rd ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA ’21, pages 285–294, New York, NY, USA, 2021. Association
for Computing Machinery. doi:10.1145/3409964.3461790.

13 Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Online schedul-
ing via learned weights. In Proceedings of the Thirty-First Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2020, New Orleans, LA, USA, January 5 - 8, 2020., 2020.

14 Stefano Leonardi. A Simpler Proof of Preemptive Total Flow Time Approximation on Parallel
Machines, pages 203–212. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006. doi:10.1007/
11671541_7.

https://algorithms-with-predictions.github.io
https://doi.org/10.1145/777412.777415
https://doi.org/10.1137/S009753970037446X
https://doi.org/10.1137/S009753970037446X
https://doi.org/10.1145/3406325.3451023
https://doi.org/10.1137/1.9781611977073.13
https://doi.org/10.48550/ARXIV.2205.01247
https://doi.org/10.1007/s00453-004-1115-0
https://doi.org/10.1007/s00453-004-1115-0
https://doi.org/10.1145/380752.380778
https://doi.org/10.1145/3409964.3461790
https://doi.org/10.1007/11671541_7
https://doi.org/10.1007/11671541_7

Y. Azar, E. Peretz, and N. Touitou 16:15

15 Stefano Leonardi and Danny Raz. Approximating total flow time on parallel machines. In
Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Computing, STOC
’97, pages 110–119, New York, NY, USA, 1997. ACM. doi:10.1145/258533.258562.

16 Alexander Lindermayr and Nicole Megow. Permutation predictions for non-clairvoyant
scheduling. arXiv, 2022. doi:10.48550/arXiv.2202.10199.

17 Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned ad-
vice. In Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, pages 3302–3311, 2018. URL:
http://proceedings.mlr.press/v80/lykouris18a.html.

18 Andres Muñoz Medina and Sergei Vassilvitskii. Revenue optimization with approxim-
ate bid predictions. In Advances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems 2017, 4-9 December 2017,
Long Beach, CA, USA, pages 1858–1866, 2017. URL: http://papers.nips.cc/paper/
6782-revenue-optimization-with-approximate-bid-predictions.

19 Michael Mitzenmacher. Scheduling with Predictions and the Price of Misprediction. In
Thomas Vidick, editor, 11th Innovations in Theoretical Computer Science Conference (ITCS
2020), volume 151 of Leibniz International Proceedings in Informatics (LIPIcs), pages 14:1–
14:18, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.ITCS.2020.14.

20 Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with predictions. arXiv preprint,
2020. doi:10.48550/arXiv.2006.09123.

21 Rajeev Motwani, Steven Phillips, and Eric Torng. Nonclairvoyant scheduling. Theoretical
computer science, 130(1):17–47, 1994.

22 Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ml
predictions. In Advances in Neural Information Processing Systems, pages 9661–9670, 2018.

23 Wayne E. Smith. Various optimizers for single-stage production. Naval Research Logistics
Quarterly, 3(1-2):59–66, 1956. doi:10.1002/nav.3800030106.

A Total Flow Time Appendix

A.1 LCF algorithm analysis for total flow time

In this setting, we use the LCF (Lowest Class First) algorithm. The algorithm maintains a
list of jobs L; first sorted by jobs’ class and then by release time. At any time the algorithm
processes the m first jobs of the list L.

▶ Theorem 14. LCF is O(µ log P) competitive for inputs with distortion µ.

▶ Theorem 15. LCF is O(µ log µ + µ log n
m) competitive for inputs with distortion µ.

▶ Corollary 16. For every µ, LCF is O(min(µ log P, µ log µ+µ log n
m))-competitive for inputs

with distortion µ.

Proof of Theorem 14. We skip most of the proof since it is almost similar to the proof of
Theorem 2. The proof is based on the following two lemmas, which their proof is omitted.

▶ Lemma 17. If t ∈ T then ∆≤kV (t) ≤ mµ12k+1.

▶ Lemma 18. If t ∈ T then δ≥k1≤k2(t)LCF ≤ m(µ + 3)(k2 − k1 + 2) + 2δ∗
≤k2

(t).

Similar steps as in the proof of Theorem 2 and plugging in Lemma 18 concludes the proof. ◀

ISAAC 2022

https://doi.org/10.1145/258533.258562
https://doi.org/10.48550/arXiv.2202.10199
http://proceedings.mlr.press/v80/lykouris18a.html
http://papers.nips.cc/paper/6782-revenue-optimization-with-approximate-bid-predictions
http://papers.nips.cc/paper/6782-revenue-optimization-with-approximate-bid-predictions
https://doi.org/10.4230/LIPIcs.ITCS.2020.14
https://doi.org/10.4230/LIPIcs.ITCS.2020.14
https://doi.org/10.48550/arXiv.2006.09123
https://doi.org/10.1002/nav.3800030106

16:16 Distortion-Oblivious Algorithms for Scheduling on Multiple Machines

Proof of Theorem 15. Lets define the group of a job q as the unique integer i such that
pq ∈ [2i, 2i+1), differently from the class of the job, the group is defined over the actual
processing time rather than the estimated.

Let k̄ be the maximum integer k such that for some time t ∈ T , δLCF
≥k (t) ≥ m (note that

δLCF
≥k (t) ≥ m is the number of alive jobs of class at least k, not group). If such integer does

not exists, then the set T is empty. In addition, for this proof we define kmin differently; as
the lowest group of a job. Let Tj ⊂ T , j = kmin...k̄, be the set of times that all the machines
are busy and the maximal currently processed job group is j. Let Tk̄+1 ⊂ T be the set of
times when all machines are busy and at least one machine is processing a job of group higher
than k̄. Observe that Tkmin

...Tk̄+1 defines a partition of T . We can write the total flow time
of LCF as:

F LCF =
∫

t/∈T

δLCF dt +
∫

t∈T

δLCF dt

=
∫

t/∈T

γLCF (t)dt +
k̄+1∑

j=kmin

∫
t∈Tj

δLCF (t)dt.

Note that ∀t ∈ Tj we have δ<j−⌈log µ⌉(t) < m since the algorithm currently process a job of
group j. Also note that for any time t we have δ>k̄(t) < m from the definition of k̄. By these
two observations we get that for any group j, ∀t ∈ Tj δLCF (t) ≤ 2m + δLCF

≥j−⌈log µ⌉,≤k̄+1(t).

F LCF ≤
∫

t/∈T

γLCF (t)dt +
k̄+1∑

j=kmin

∫
t∈Tj

(2m + δLCF
≥j−⌈log µ⌉,≤k̄+1(t))dt.

By plugging in Lemma 18:

F LCF ≤
∫

t/∈T

γLCF (t)dt +
k̄+1∑

j=kmin

∫
t∈Tj

(2m + mµ(k̄ − j + 3 + ⌈log µ⌉) + 2δ∗
≤k̄+1(t))dt

which implies:

F LCF ≤
∫

t/∈T

γLCF (t)dt + (3µ + 2)
∫

t∈T

mdt +
k̄+1∑

j=kmin

mµ(k̄ − j)|Tj |

+
k̄+1∑

j=kmin

|Tj |mµ⌈log µ⌉ + 2
∫

t∈T

δ∗
≤k̄+1(t)dt

where the first two terms
∫

t/∈T
γLCF (t)dt + (3µ + 2)

∫
t∈T

mdt are at most (3µ + 2)F ∗

since
∫

t
γALG(t) ≤ F ∗ and for any t ∈ T we have γALG(t) = m. The fourth term,∑k̄+1

j=kmin
|Tj |mµ⌈log µ⌉ equals µ⌈log µ⌉

∫
t∈T

γALG(t)dt since Tj defines a partition of T . Us-
ing the fact

∫
t∈T

γALG(t)dt ≤ F ∗ we have that the fourth term is bounded by µ⌈log µ⌉F ∗.
The right most term,

∫
t∈T

δ∗
≤k̄+1(t)dt ≤ F ∗, from the definition of local competitiveness. In

addition, for j = k̄ the mid term is negative. Therefore we can write:

F LCF ≤ (µ⌈log µ⌉ + 3µ + 4)F ∗ + µ

k̄∑
j=kmin

m(k̄ − j)|Tj |.

Now we have the following lemma, which its proof is adapted from [14] (lemma 8). Their
lemma was proved for SRPT. We show that it also holds for LCF. Note that in our proof,
the sets Tj are defined according to the original group while in the original proof the sets Tj

are defined according to the remaining processing time group.

Y. Azar, E. Peretz, and N. Touitou 16:17

▶ Lemma 19. F (n) =
∑k̄

j=kmin
m(k̄ − j)|Tj | = O(F ∗ · log n

m).

Proof of Lemma 19. Let T l
j be the set of times that machine l processes a job of group

j. At every time t ∈ Tj is also a part of m sets T l
jl

where jl denotes the group of the job
processed on machine ℓ. Also, at every time t ∈ Tj the maximal group of a job is j, therefore
k̄ − j ≤ k̄ − jℓ for any machine ℓ and the following inequality follows:

F (n) =
k̄∑

j=kmin

m(k̄ − j)|Tj | ≤
k̄∑

kmin

∑
j∈[m]

(k̄ − j)|T l
j |.

Every job of group i gives a contribution to the above equation of at most (k̄ − i)2i+1. Let
nj denote the number of jobs of group j, therefore:

F (n) ≤
k̄∑

j=kmin

(k̄ − j)nj2j+1.

Note that this is only possible because we consider the group of the job, and therefore the
maximal processing time of the job is 2j+1 rather than 2j+1 · µ1. Let Ii = nk̄−i · 2k̄−i, for
i = kmin, ..., k̄. Then the sum becomes:

F (n) ≤ 2 ·
k̄−kmin∑

i=0
i · Ii

In order to bound the function F (n), we maximize the function subject to two obvious
constraints:

k̄−kmin∑
i=0

Ii ≤
∑

q

pq

k̄−kmin∑
i=0

2i · Ii ≤ n · 2k̄.

To complete the proof we use the following lemma proved in [14].

▶ Lemma 20. Given a sequence a1, a2, ... of non-negative numbers such that
∑

i≥1 ai ≤ A

and
∑

i≥1 2i · ai ≤ B then
∑

i≥1 i · ai ≤ log(4B
A) · A.

We use Lemma 20 by setting ai = Ii for i = 0, ..., k̄ − kmin, A =
∑

q pq and B = n · 2k̄.

k̄−kmin∑
i=0

i · Ii ≤ log(4n · 2k̄∑
q pq

) ·
∑

q

pq

By the definition of k̄ and that
∑

q pq ≤ F ∗ we get that:

F (n) ≤
k̄−kmin∑

i=0
i · Ii = O(F ∗ · log n

m
)

and that concludes the proof. ◀

Note that Lemma 19 concludes the proof, since:

F LCF ≤ (µ⌈log µ⌉ + 3µ + 4) · F ∗ + O(µ log n

m
) · F ∗ = O(µ log µ + µ log n

m
) · F ∗

as required. ◀

ISAAC 2022

16:18 Distortion-Oblivious Algorithms for Scheduling on Multiple Machines

A.2 LCF and Algorithm 1 are Ω(µ log P)-competitive
We argue that the theorems Theorem 14 and Theorem 2 are tight for m ≥ 2. We show that
by a single construction for both algorithms, that is built using L = ⌈logµ P ⌉ − 1 phases. We
first describe the input construction, prove for the LCF algorithm and then explain that on
this input both algorithms act exactly the same and the proof holds for both. For simplicity
we assume that m and µ are even. Denote by ri the time that phase i begins and is defined
as follows:

Pi = P

(2µ)i
.

r0 = 0 ; ri = ri−1 + 2Pi

For i = 0, 1, ..., L − 1; at time ri, we release 3m
2 jobs of actual processing time Pi, their

estimated processing time is also Pi (i.e., with no estimation error). Let ei = ri + 3Pi

2 . At
time ei we release mµ

2 jobs of processing time Pi

µ with estimated time Pi.
The optimal solution can perform round robin algorithm and completes all the jobs that

has been released at time ri by time ei and the jobs released at time ei it completes by time
ri+1. Therefore at time rL, the optimal solution completes all of the released jobs.

The algorithm LCF will always prefer jobs released at phase i+1 over phase i. Therefore,
by time ei LCF completes precisely m jobs that released at time ri and the remaining m/2
jobs are processed precisely for Pi

2 time. In addition, LCF also process jobs of previous
phases. Inductively, we show that for i ≥ 1, those jobs are with remaining processing time
of at least 2Pi at time ri (and therefore also at ri + Pi). Hence, the jobs from previous
phases will be left with at least Pi processing time until phase i + 1. Therefore neither of the
remaining jobs at any phase until i is ever finished.

At the time between ei and ri+1, LCF continues to process the m/2 jobs released at time
ri and on the other m/2 machines it processes the jobs released by time ei. LCF completes
mµ

4 and remains with mµ
4 with processing time Pi

µ (unprocessed). Since Pi

µ ≥ 2Pi+1 this
completes the induction.

At every phase, LCF added mµ
4 jobs, that as discussed are not completed, and therefore

δLCF (rL) = Ω(L · mµ) = Ω(mµ logµ(P))

while the optimal solution remains with no jobs. To finish the proof, we use the stand-
ard “bombardment” technique: at time rL, we start releasing m unit-jobs. This is easily
seen to extend the Ω(µ logµ P) lower bound from local competitiveness to general (global)
competitiveness.

Note that on this instance, since LCF does not need to do any migration and therefore
Algorithm 1 actually behaves the same and the analysis also shows that Algorithm 1 analysis
is tight.

	1 Introduction
	1.1 Our Results
	1.2 Related Work
	1.3 Paper Organization

	2 Preliminaries
	3 Minimizing Flow Time
	3.1 Algorithm for the Non-Migrative Setting
	3.2 Proof of nmalogp

	4 Minimizing Total Stretch
	4.1 Non-Migrative mus Scheduling on Parallel Machines
	4.2 Total Stretch Lower Bound

	5 Impossibility of online Immediate-Dispatching algorithms for Robust Scheduling
	6 Discussion and Open Problems
	A Total Flow Time Appendix
	A.1 LCF algorithm analysis for total flow time
	A.2 LCF and Algorithm 1 are Omega(mu log P)-competitive

