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Abstract
When considering motion planning for a swarm of n labeled robots, we need to rearrange a given start
configuration into a desired target configuration via a sequence of parallel, continuous, collision-free
robot motions. The objective is to reach the new configuration in a minimum amount of time;
an important constraint is to keep the swarm connected at all times. Problems of this type have
been considered before, with recent notable results achieving constant stretch for not necessarily
connected reconfiguration: If mapping the start configuration to the target configuration requires a
maximum Manhattan distance of d, the total duration of an overall schedule can be bounded to
O(d), which is optimal up to constant factors. However, constant stretch could only be achieved if
disconnected reconfiguration is allowed, or for scaled configurations (which arise by increasing all
dimensions of a given object by the same multiplicative factor) of unlabeled robots.

We resolve these major open problems by (1) establishing a lower bound of Ω(
√

n) for connected,
labeled reconfiguration and, most importantly, by (2) proving that for scaled arrangements, constant
stretch for connected reconfiguration can be achieved. In addition, we show that (3) it is NP-hard
to decide whether a makespan of 2 can be achieved, while it is possible to check in polynomial time
whether a makespan of 1 can be achieved.
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1 Introduction

Motion planning for sets of objects is a theoretical and practical problem of great importance.
A typical task arises from relocating a large collection of agents from a given start into
a desired goal configuration, while avoiding collisions between objects or with obstacles.
Previous work has largely focused on achieving reconfiguration via sequential schedules, where
one robot moves at a time; however, reconfiguring efficiently requires reaching the target
configuration in a timely or energy-efficient manner, with a natural objective of minimizing
the time until completion, called makespan. Achieving minimum makespan for reconfiguring a
swarm of labeled robots was the subject of the 2021 Computational Geometry Challenge [19];
see [8, 25, 37] for successful contributions.
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17:2 Reconfiguring a Connected Swarm of Labeled Robots

Exploiting parallelism in a robot swarm to achieve an efficient schedule was studied in
recent seminal work by Demaine et al. [11]: Under certain conditions, a labeled set of robots
can be reconfigured with bounded stretch, i.e., there is a collision-free motion plan such that
the makespan of the schedule remains within a constant of the lower bound that arises from
the maximum distance between origin and destination of individual robots; see also the video
by Becker et al. [4] that illustrates these results.

A second important aspect for many applications is connectivity of the swarm throughout
the reconfiguration, because disconnected pieces may not be able to regain connectivity, and
also because of small-scale swarm robots (such as catoms in claytronics [22]), which need
connectivity for local motion, electric power and communication; see the video by Bourgeois
et al. [5]. Connectivity is not necessarily preserved in the schedules by Demaine et al. [11]. In
more recent work, Fekete et al. [18] presented an approach that does achieve constant stretch
for unlabeled swarms of robots for the class of scaled arrangements; such arrangements arise
by increasing all dimensions of a given object by the same multiplicative factor and have been
considered in previous seminal work on self-assembly, often with unbounded or logarithmic
scale factors (along the lines of what has been considered in self-assembly [31]). The method
by Fekete et al. [18] relies strongly on the exchangeability of indistinguishable robots, which
allows a high flexibility in allocating robots to target configurations, which is not present in
labeled reconfiguration.

These results have left two major open problems.
1. Can efficient reconfiguration be achieved in a connected manner for a swarm of labeled

robots in a not necessarily scaled arrangement?
2. Is it possible to achieve constant stretch for connected reconfiguration of scaled arrange-

ments of labeled objects?

1.1 Our contributions
We resolve both of these open problems.
1. We show that connected reconfiguration of a swarm of n labeled robots may require a

stretch factor of at least Ω(
√

n).
2. We present a framework for achieving constant stretch for connected reconfiguration of

scaled arrangements of labeled objects.
3. In addition, we show that it is NP-hard even to decide whether a makespan of 2 for

labeled connected reconfiguration can be achieved.

1.2 Related work
Algorithmic efforts for multi-robot coordination date back to the seminal work by Schwartz
and Sharir [30] from the 1980s. Efficiently coordinating the motion of many agents arises in a
large spectrum of applications, such as air traffic control [9], vehicular traffic networks [17, 29],
ground swarm robotics [27, 28], or aerial swarm robotics [7, 36]. In both discrete and geometric
variants of the problem, the objects can be labeled, colored or unlabeled. In the labeled case, the
objects are all distinguishable and each object has its own, uniquely defined target position.
In the colored case, the objects are partitioned into k groups and each target position can
only be covered by an object with the right color; see Solovey and Halperin [32]. In the
unlabeled case, objects are indistinguishable and target positions can be covered by any object;
see Kloder and Hutchinson [23], Turpin et al. [35], Adler et al. [1], and Solovey et al. [34].
On the negative side, Solovey and Halperin [33] prove that the unlabeled multiple-object
motion planning problem is PSPACE-hard. Calinescu, Dumitrescu, and Pach [6] consider the
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sequential reconfiguration of objects lying on vertices of a graph. They give NP-hardness and
inapproximability results for several variants, a 3-approximation algorithm for the unlabeled
variant, as well as upper and lower bounds on the number of sequential moves needed.

We already described the work by Demaine et al. [11] for achieving constant stretch for
coordinated motion planning, as well as the recent practical CG Challenge 2021 [8, 19, 25, 37].
None of these approaches satisfy the crucial connectivity constraint, which has previously
been investigated in terms of decidability and feasibility by Dumitrescu and Pach [14] and
Dumitrescu, Suzuki, and Yamashita [16]. Furthermore, these authors have also proposed
efficient patterns for fast swarm locomotion in the plane using sequential moves that allow
preservation of connectivity [15]. A closely related body of research concerns itself with
sequential pivoting moves that require additional space around moving robots, limiting
feasibility and reachability of target states, see publications by Akitaya et al. [2, 3].

Very recently, Fekete et al. [18] presented a number of new results for connected, but
unlabeled reconfiguration. In addition to complexity results for small makespan, they showed
that there is a constant c∗ such that for any pair of start and target configurations with
a (generalized) scale of at least c∗, a schedule with constant stretch can be computed in
polynomial time. The involved concept of scale has received considerable attention in self-
assembly; achieving constant scale has required special cases or operations. Soloveichik and
Winfree [31] showed that the minimal number of distinct tile types necessary to self-assemble
a shape, at some scale, can be bounded both above and below in terms of the shape’s
Kolmogorov complexity, leading to unbounded scale in general. Demaine et al. [13] showed
that allowing to destroy tiles can be exploited to achieve a scale that is only bounded by a
logarithmic factor, beating the linear bound without such operations. In a setting of recursive,
multi-level staged assembly with a logarithmic number of stages (i.e., “hands” for handling
subassemblies), Demaine et al. [10] achieved logarithmic scale, and constant scale for more
constrained classes of polyomino shapes; this was later improved by Demaine et al. [12]
to constant scale for a logarithmic number of stages. More recently, Luchsinger et al. [26]
employed repulsive forces between tiles to achieve constant scale in two-handed self-assembly.

For further related work see Demaine et al. [11].

1.3 Preliminaries
We consider robots at nodes of the (integer) infinite grid G = (V, E), where two nodes
are connected if and only if they are in unit distance. A configuration is a mapping
C : V → {1, . . . , n, ⊥}, i.e., each node is mapped injectively to one of the n labeled robots, or
to ⊥ if the node is empty. For a robot ℓ, C−1(ℓ) = (xℓ, yℓ) refers to its x- and y-coordinate.
The configuration C is connected if the subgraph H ⊂ G induced by occupied nodes in C is
connected. The silhouette of a configuration C is the respective unlabeled configuration, i.e.,
C without labeling. Unless stated otherwise, we consider labeled connected configurations.

Two configurations overlap, if they have at least one occupied position in common.
A configuration C is c-scaled, if H is the union of c × c squares of vertices. The scale of a
configuration C is the maximal c such that C is c-scaled. This corresponds to objects being
composed of pixels at a certain resolution; note that this is a generalization of the uniform
pixel scaling studied in previous literature (which considers a c-grid-based partition instead
of an arbitrary union), so it supersedes that definition and leads to a more general set of
results. Two robots are adjacent if their positions v1, v2 are adjacent, i.e., {v1, v2} ∈ E(H).

A robot can move in discrete time steps by changing its location from a grid position v to an
adjacent grid position w; denoted by v → w. Two moves v1 → w1 and v2 → w2 are collision-
free if v1 ≠ v2 and w1 ̸= w2. Note that a swap, i.e., two moves v1 → v2 and v2 → v1, causes
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17:4 Reconfiguring a Connected Swarm of Labeled Robots

a collision and is not allowed in our model. A transformation between two configurations
C1 and C2 is a set of collision-free moves {v → w | C1(v) = C2(w) ̸= ⊥ ∧ |v − w| ≤ 1}.
Note that a robot is allowed to hold its position. For M ∈ N, a schedule is a sequence
C1 → · · · → CM+1 (also abbreviated as C1 ⇒ CM+1) of transformations, with a makespan
of M . A stable schedule C1 ⇒χ CM+1 uses only connected configurations. In the context of
this paper, we use these notations equivalently.

Let Cs and Ct be two connected configurations with equally many robots called start
and target configuration, respectively. The diameter d of the pair (Cs, Ct) is the maximal
Manhattan distance between a robot’s start and target position. The stretch (factor) of a
schedule is the ratio between its makespan M and the diameter d of (Cs, Ct).

2 Fixed makespan

Given two labeled configurations, it is easy to see that it can be determined in linear time
whether there is a schedule with a makespan of 1 that transforms one into the other: For
every robot, check whether its target position is in distance at most 1; furthermore, check
that no two robots want to swap their positions. This involves O(1) checks for every robot,
thus O(n) checks in total. We obtain the following.

▶ Theorem 1. It can be decided in O(n) time whether there is a schedule Cs ⇒χ Ct with
makespan 1 for any pair (Cs, Ct) of labeled configurations, with n robots each.

On the other hand, Fekete et al. [18] showed that it is already NP-hard to decide whether
a schedule with a makespan of 2 can be achieved, if the robot swarm is unlabeled. Due to
the desired makespan, the respective target position of every robot is highly restricted. Thus,
it is straightforward to provide a suitable labeling of the configurations such that the very
same construction shows NP-hardness for the variant of labeled robot swarms.

For technical details, see the full version [20].

▶ Theorem 2. It is NP-hard to decide whether there is a schedule Cs ⇒χ Ct with makespan 2
for any pair (Cs, Ct) of labeled configurations, with n robots each.

3 Lower bound on stretch factor

We sketch a lower bound of Ω(
√

n) on the stretch factor. For this, we consider the pair of
configurations (Cs, Ct) shown in Figure 1(a), both consisting of n robots. The difference
between both configurations is that adjacent robots need to swap their positions. Thus, the
diameter of (Cs, Ct) is d = 1. Because swaps are not allowed within the underlying model,
some robots have to move orthogonally.

Ct

(a) (b)

Cs

Figure 1 Pairs of robots must swap their positions (a), using moves that involve all robots (b).

Any robot occupying a position adjacent to the line after moving orthogonally can be
utilized to perform swaps between robots still contained within the line itself. However,
for each robot we move out of the line, we have to simultaneously perform a “shrinking”
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motion along the line itself to preserve connectivity, see Figure 1(b). Acquiring λ such robots
therefore takes λ/2 steps. To perform n pairwise swaps, we then need roughly n/λ steps. This
sum has a minimum at λ =

√
n, and thus we obtain the following theorem.

▶ Theorem 3. There are pairs of labeled configurations Cs and Ct, each with n vertices, so
that every schedule Cs ⇒χ Ct has a stretch factor of at least Ω(

√
n).

4 Schedules of constant stretch

In this section, we describe an approach to determine stable schedules with constant stretch
for labeled configurations of sufficient scale. In particular, we show the following result.

▶ Theorem 4. There is a constant c∗ such that for any pair (Cs, Ct) of labeled configurations
with n robots each and scale of at least c∗, there exists a constant stretch schedule Cs ⇒χ Ct.

4.1 Overview of the algorithm
Our approach works in different phases; Figure 2 provides an overview. Based on (1) pre-
processing steps (Section 4.4) in which we determine the scale c and the diameter d of the
configurations, we (2) build a tile-based scaffolding structure (Section 4.5) that guarantees
connectivity during the reconfiguration. Then the actual reconfiguration (3+4) consists of
shifting robots between adjacent tiles based on flow computations (Sections 4.6–4.9), and
(5) reconfiguring tiles in parallel (Sections 4.3 and 4.10). Finally, the deconstruction of the
scaffold yields the target configuration. The phases can be summarized as follows.

cd

5cd

startrobots neighborstarget

(1)

(2)

(3)

5cd
(4)

(5)*

Figure 2 Overview of our algorithm. ∗Note that ideas of Phase (5) are also used as a subroutine
in Phases (2) to (4).

Phase (1) Preprocessing: Compute scale c, diameter d, a tiling T1 of the grid into squares
of size cd × cd, and a larger tiling T5 covering all non-empty tiles of T1.

Phase (2) Scaffold construction: Construct a scaffold along the edges of T5, resulting in a
tiled configuration, guaranteeing connectivity during reconfiguration.

Phase (3) Interior flow: Create a flow graph GT5 to model the movement of interior (non-
scaffold) robots between adjacent tiles of T5. Convert the flow into a series of moves,
placing all interior robots in their target tiles.
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17:6 Reconfiguring a Connected Swarm of Labeled Robots

Phase (4) Boundary flow: Analogously to Phase (3), create a flow for the robots that were
used to construct a scaffold in Phase (2). Afterwards, move all of those robots into the
boundary of their target tiles.

Phase (5) Local tile reconfiguration: Locally reconfigure all tiles of the resulting tiled con-
figuration.

Phase (6) Scaffold deconstruction: Reverse of Phase (2).

In the remainder of this section we provide details of the different phases. We start by
providing some preliminaries needed for the detailed descriptions.

4.2 Preliminaries for the algorithm

In the following we give definitions that are fundamental for the understanding of the
algorithm. We give additional definitions in each section as needed.

As an intermediate result for the labeled case, Demaine et al. [11] proposed an algorithm
that computes schedules with stretch factors that are linear in the dimensions of a fully
occupied rectangular area that is to be reconfigured.

▶ Lemma 5. Let Cs and Ct be two labeled configurations of an n1 × n2 rectangle with
n1 > n2 ≥ 2. There is a schedule Cs ⇒χ Ct with makespan O(n1 + n2).

In a follow-up paper, Fekete et al. [18] considered arbitrary unlabeled configurations,
computing stable schedules of constant stretch. Note that stretch in the unlabeled case is
defined via a bottleneck matching of robots between the start and target configuration. They
make use of so-called tilings, neighborhoods of tiles, layers in tiles, a scaffold based on these
layers, and tiled configurations, which we define as follows.

An m-tiling is a subdivision of a configuration’s underlying grid into squares (called tiles)
of side length m ∈ N, each of them anchored at coordinates that are multiples of m in both
dimensions. With scale c, diameter d, and m = cd, we refer to this tiling as T1. For a tiling T
and a subset of tiles T ′ ⊆ T , the k-neighborhood Nk[T ′] is the set of all tiles from T with
Chebyshev distance at most k to any tile T ∈ T ′. The boundary of a tile consists of all nodes
in the underlying grid graph that are immediately adjacent to its edge. The first layer of the
tile is then the set of inward neighboring nodes of the boundary. This relationship applies to
successive higher-order layers as well. The scaffold of a tiling is the union of all boundaries
of its tiles. A tiled configuration is a configuration that is a subset of the given tiling and a
superset of its scaffold. The interior of a tiled configuration is the set of all robots not part
of the scaffold.

As an intermediate result they showed the following.

▶ Lemma 6. Let Cs and Ct be two tiled unlabeled configurations such that Cs and Ct contain
the same number of robots in the interior of each tile T . There is a schedule Cs ⇒χ Ct with
makespan O(d).

4.3 Subroutine: Single tile reconfiguration

A key insight for our approach is that we can efficiently exploit a globally connected structure
locally. Before explaining how we achieve this global structure, we show how to exploit
it locally. This provides a fundamental subroutine that is used to locally transform tiled
configurations within a makespan of O(d). In particular, we obtain the following.
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▶ Theorem 7. For any two tiled connected configurations Cs and Ct for which each tile
consists of the same robots, there is a stable schedule of makespan O(d) that transforms one
into the other.

In the remainder of this subsection we provide several lemmas that yield a proof of
Theorem 7, see full version [20] for details. To this end, we first show that the interior of a
tile can be reconfigured arbitrarily, followed by a description of how this can be adapted to
include the reconfiguration of the boundary, as well as arbitrary exchanges of robots between
a tile’s interior and its boundary.

We start by showing how the interior of a tile can be transformed arbitrarily. As moves are
reversible, proving that a canonical configuration is reachable is sufficient. Using a technique
outlined by Fekete et al. [18], we can gather all robots in a corner of a tile. A straightforward
compacting process then yields a configuration that is a subset of a square. Overall this
takes O(d) transformations. We thus obtain the following lemma.

▶ Lemma 8. For any two connected configurations consisting of an immobile m×m boundary
for m ∈ O(d) and k ≤ (m − 2)2 interior robots, there is a stable schedule of makespan O(d)
that moves all interior robots into a subset of a ⌈

√
k⌉ × ⌈

√
k⌉ square.

By applying Lemma 5 to this square we can rearrange the robots in O(d) steps. We obtain
the following lemma; see Figure 2, Phase (5) for the resulting procedure.

▶ Lemma 9. Given k ∈ [1, (m − 2)2] robots arranged in a subset of a ⌈
√

k⌉ × ⌈
√

k⌉ square,
the robots may be arbitrarily rearranged by a stable schedule of makespan O(d).

Note that if the ⌈
√

k⌉ × ⌈
√

k⌉ square is not completely occupied, we apply Lemma 5 at most
three times on different parts of the square to obtain any desired configuration. See the full
version for details [20].

We now show how to exchange robots between the tiles’ interiors and their boundaries.

▶ Lemma 10. For any tiled configuration of m × m-tiles for m ∈ O(d), it is possible to
exchange any number of robots from each tile’s interior with its boundary in O(d) steps.

Proof. Place at most 4(m−4) robots that need to be swapped into the boundary, adjacent to
the respective boundary robots that need to swap into the interior. Afterwards apply Lemma 5
to the disjoint areas in parallel. As there are fewer positions on a successive layer, we have
to repeat this process at most once. As this operation is performed entirely within a single
tile, it may be applied to all tiles simultaneously. ◀

It remains to show that the scaffolding structure can be reconfigured arbitrarily, without
modifying its silhouette. To reorder any given tile’s boundary, we make use of the 2 × d

scaffold robots that separate it from a neighbor’s interior. By doing a full revolution of the
boundary, we can collect any subset of d robots in that portion of the scaffold, which we
then reorder using Lemma 5, see Figure 3. Repeating this at most four times yields a sorted
boundary, so we obtain the following lemma. Details can be found in the full version [20].

Figure 3 An illustration of the first iteration of the boundary reconfiguration approach.
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17:8 Reconfiguring a Connected Swarm of Labeled Robots

▶ Lemma 11. The boundaries of all tiles within a tiled configuration that consists of
m × m-tiles with m ∈ O(d) may be locally reordered by a schedule of makespan O(d).

4.4 Phase (1): Preprocessing
Consider start and target configurations Cs and Ct. Let c refer to the minimum of the
two configurations’ scales and let d be the diameter of the pair (Cs, Ct). Without loss of
generality, assume that the configurations overlap in at least one position. Otherwise, we
move the target configuration, such that it overlaps with the start configuration. This can
be done in O(d) steps, and results in a new diameter d′ ≤ 2d.

Using c and d, we define a cd-tiling T1 of the underlying grid. Let T1(Cs) and T1(Ct) refer
to the set of tiles in T1 that contain robots in Cs and Ct, respectively (see red and green
area in Figure 4). We observe that N1[T1(Cs) ∪ T1(Ct)] is both a subset of N2[T1(Cs)] and of
N2[T1(Ct)], because T1(Cs) and T1(Ct) are fully contained in each other’s 1-neighborhoods.

Demaine et al. [11] exploited an O(d)-tiling to guarantee that every robot’s target position
is either within its starting tile, or an immediate neighbor. In an extension of this approach,
Fekete et al. [18] employed a cd-tiling; they constructed a scaffold along the tiling boundaries,
achieving connectivity during the reconfiguration process. For configurations of sufficient
scale, they drew robots from 2-neighborhoods in order to construct each tile’s boundary. In
our case, robots have individual target positions, so we must take their heading into account
when constructing a scaffold. As a result, we consider a higher-resolution tiling, which allows
us to ensure that the diameter of the instance does not increase due to scaffold construction.

Based on the non-empty tiles in T1, we compute the higher-resolution cover of the relevant
area by a grid of 5 × 5 squares of cd-tiles, see Figure 4. Let T1, . . . , Tn be n tiles of T1, such
that the distance between any two of them is a multiple of 5 on both the x- and y-axis, and
N1[T1(Cs) ∪ T1(Ct)] ⊆ N2[T1] ∪ · · · ∪ N2[Tn]. We define the tiling T5 := {N2[T1], . . . , N2[Tn]}.

c cd

5cd

Figure 4 We derive a cd-tiling T1 (center) from the scale c (left) and the diameter of the instance.
We then cover the neighborhood (right, in gray) of non-empty start and target tiles (dashed red and
green, respectively) of T1 by a larger tiling T5 around which we construct a scaffold for stability.

This concludes the theoretical foundation of our approach. We will now proceed with the
first transformation phase, which constructs the fundamental scaffold.

4.5 Phase (2): Scaffold construction
Having determined a cover of Cs and Ct in shape of the 5cd-tiling T5, a scaffold spanning this
cover is to be constructed. For this purpose, a robot is placed at every boundary position
in T5, which requires (5 · 4cd − 4) robots per tile. We show that there are sufficiently many
robots to build the scaffold. For this, we refer to the locally available material for a given
tile T ∈ T5 as the set of robots contained within T itself and its immediate neighborhood
N1[T ] over T5.
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▶ Lemma 12. There is a constant c, such that for all Cs and Ct with scale at least c, there
is sufficient locally available material to construct a boundary around all tiles of T5.

As T5 is a cover of N1[T1(Cs)∪T1(Ct)], every tile T ∈ T5 contains at least one T ′ ∈ N2[T1(Cs)].
We can thus guarantee sufficient locally available material for the boundary of T if we can
show that it exists in the 4-neighborhood of any such T ′.

To achieve this, we distinguish donor and recipient tiles. A donor tile contains enough
robots to construct a boundary around itself and all eight immediate neighbors – any tile
that cannot do this will be referred to as a recipient. Suppose there is a recipient T such
that N1[T ] does not contain a donor. Due to connectivity, we can show that there must be a
path that connects T with some tile non-adjacent tile T ′ /∈ N1[T ]. Because the path must
cross N1[T ], one of the neighboring tiles must have at least (c2d)/4 robots and is thus a donor
tile, contradicting the premise. This directly implies that the 1-neighborhood N1[T ] of any
T ∈ T5 contains at least one donor.

Because every tile is a donor or has a donor as its neighbor, we can construct the scaffold
as follows: First, construct the boundary of each donor. Afterwards, each donor can push
out robots to neighboring recipients to construct their boundaries. By a careful analysis
we can guarantee that the boundary of a recipient T only consists of robots that have their
target position in T or in an adjacent tile. Overall we obtain the following.

▶ Lemma 13. Constructing the scaffold takes no more than O(d) transformations.

A detailed description with a proof of this construction are described in the full version [20].
With the help of this global scaffold structure, connectivity is ensured during the actual

reconfiguration. It remains to show how we shift robots between tiles, and reconfigure
robot arrangements within the constructed scaffold. The latter has been already described
in Section 4.3, so we describe how to relocate robots between tiles. This is modeled as
a supply-demand flow for interior robots in three subphases: Phase (3.1) – Interior flow
computation; Phase (3.2) – Interior flow partition; and Phase (3.3) – Interior flow realization.
A similar approach is used to model the flow for boundary robots, see Section 4.9. We give
descriptions of the different phases, and start with Phase (3.1): Interior flow computation.

4.6 Phase (3.1): Interior flow computation
Given any tile T ∈ T5, its interior robots either need to stay within it or move into a
neighboring tile. The anticipated motion is represented as a supply-demand flow GT5 :=
(T5, ET5 , fT5) of the dual graph of T5. The flow value of an edge fT5(e) corresponds to the
cardinality of the set of robots that need to move from one tile into another. A tile T ∈ T5
is a source (sink) if and only if the sum of flow values of incoming edges is smaller (larger)
than the sum of flow values of outgoing edges. Otherwise, we call T flow-conserving. The
difference of weights is called supply and demand for sources and sinks, respectively. If the
flow value of every edge within a given flow graph is bounded from above by some value k,
we refer to it as a k-flow. For simplicity, we consider the number of robots in the flow model,
rather than the specific robots themselves. We observe that the flow value fT5(e) of each
edge e ∈ ET5 is bounded from above by the interior space of the tiles, as each may contain
at most (5cd − 2)2 < 25c2d2 robots.

We say that a schedule realizes a flow graph GT5 = (T5, ET5 , fT5) if for each pair v, w ∈ T5
of tiles, the number of robots moved by it from their start tile v to their target tile w is
fT5((v, w)), where we let fT5((v, w)) = 0 if (v, w) /∈ ET5 . Additionally, we define an (a, b)-
partition of a flow graph as a set that contains b many a-flows that sum up to the original
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17:10 Reconfiguring a Connected Swarm of Labeled Robots

flow. By construction, the realization of a flow like the one above never requires us to fill a
tile over capacity or to remove robots from an empty tile, as this would imply an invalid
start or target configuration.

▶ Lemma 14. It is possible to efficiently compute a stable schedule of makespan O(d) that
realizes GT5 .

In the remainder of this section we provide an overview of the properties of GT5 along
with a detailed description of additional measures that split the graph into an acyclic and
another totally cyclic component. For each of these components, we will provide an algorithm
which computes a (d, O(d))-partition of it. Finally, we discuss a set of unified movement
patterns that realize each such flow partition through a schedule of makespan O(d).

Note that the initial flow graph may contain diagonal, bidirectional, or crossing edges.
By exchanging robots between neighboring tiles, we obtain a configuration with a planar,
unidirectional flow graph GT5 . See the full version for details [20].

4.7 Phase (3.2): Interior flow partition
GT5 is now a planar graph, but neither guaranteed to be acyclic nor totally cyclic. Due to the
standard result from the theory of network flows (e.g., see [21, 24]) the algorithm partitions
GT5 into two flows G→ and G⃝, one being acyclic and the other totally cyclic.

▶ Lemma 15. It is possible to efficiently compute a partition of GT5 into an acyclic component
G→ and a totally cyclic component G⃝.

For the case of configurations that do not have to be connected, Demaine et al. [11]
considered tiles of side length 24d. Thus, they obtained a totally cyclic flow graph G⃝ with
an upper bound of 24d · 24d = 576d2 for the flow value of each edge. Furthermore, they
showed that it is possible to compute a (d, O(d))-partition of G⃝. In our case, we have
to keep configurations connected, resulting in tiles of side length cd. Thus, we extend the
peeling algorithm from [11], resulting in a specific flow partition to a more general version.

▶ Lemma 16. A (d, O(d))-partition of the totally cyclic k · d2-flow G⃝ for k ∈ N into totally
cyclic flows can be computed efficiently.

In the context of unlabeled robots, Fekete et al. [18] proposed an algorithm for computing
a (O(d2), 28)-partition of G→. Due to the much more complex situation of labeled robots, we
employ a number of more refined ideas to provide an algorithm that guarantees the following.

▶ Lemma 17. A (d, O(d))-partition of the acyclic k · d2-flow G→ for k ∈ N into acyclic flows
can be computed efficiently.

See the full version [20] for detailed proofs of above lemmas and the respective algorithms.

4.8 Phase (3.3): Interior flow realization
In order to exchange robots between tiles as modeled by the flow GT5 , we have to determine
a collision-free protocol that allows robots to pass through the scaffold and into adjacent
tiles. To this end, we describe a set of movement patterns for the robots of a single tile;
these realize a single d-subflow in a stable manner within O(d) steps. To achieve a compact
concatenation of these movement patterns, an invariant type of local tile configuration is
of significant importance. Using this invariant, we then provide more compact movement
patterns that realize up to d such d-subflows via a schedule of makespan O(d).
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These invariant configuration of a tile T ∈ T5 are push-stable (with respect to a flow
GT5), defined by the following connectivity conditions for every robot r on an ith layer of the
interior of T . If i ≤ d then r is connected to the closest boundary robot by a straight line of
robots. Otherwise, r is connected to a robot r′ on layer d by a path of robots in higher-order
layers than d, such that the closest side to r′ of the boundary of T rests on an edge without
outgoing flow.

Figure 5 An example of a push-stable configuration of a tile with two incoming and two outgoing
edges (left). Highlighted are a robot on layer d (center) and on a higher-order layer (right), with
paths that ensure their connectivity.

A total sink (total source) is a tile T that has four incoming (outgoing) edges of non-zero
value over GT5 . Conversely, a partial sink (partial source) is a tile T that is not flow-conserving
over GT5 , but has no more than three incoming (outgoing) edges of non-zero value. Note
that by definition, total sources can never be configured in a push-stable manner. As a
consequence, we handle both total sinks and total sources separately.

We briefly sketch our approach that realizes a single subflow.

▶ Lemma 18. Consider a d-subflow HT5 ⊆ GT5 and a tile T ∈ T5 that is flow-conserving with
respect to HT5 . There is a schedule of makespan O(d) that realizes the flow at its location.

For details, we refer the reader to the full version. However, the high-level idea is to
use Theorem 7 to construct a push-stable configuration and connect incoming and outgoing
robots in a crossing-free manner by using higher-order layers, see Figure 6(c). We then
move every robot along its respective path if it lies on layer at most d, or if the partial path
from the incoming position to the robot contains no empty position; see the dashed lines
in Figure 6(c). By a careful analysis we obtain the following lemma.

(a) (b) (c) (d)

Figure 6 A tile T ∈ T5 during the realization of a single d-subflow. The dashed portions of paths
indicate that no motion actually occurs in this segment due to the described pushing behavior.

▶ Lemma 19. The realization of a d-subflow can be performed in a way that results in
another push-stable configuration of T .
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By slightly modifying this approach, mainly by leaving a specific set of positions empty
(partial sources) or letting them become empty (partial sinks) during a sequence of parallel
motions, this method becomes applicable for non-flow-conserving tiles.

▶ Lemma 20. Consider a d-subflow HT5 ⊆ GT5 and a tile T ∈ T5 that is not a total sink or
total source with respect to GT5 . There is a schedule of makespan O(d) that realizes the flow
at its location and yields another push-stable configuration.

The previously described movement patterns may be compactly combined into a single
schedule of makespan O(d) that realizes up to d many d-subflows at once. Intuitively, this
can be achieved by stacking the outgoing robots against the target tile’s boundary during the
push-stable construction, see Figure 7. Because there are at most d subflows, these stacks of
robots have height at most d. Therefore, we can successively realize each flow after another
O(1) steps per subflow.

▶ Lemma 21. Consider a tile T ∈ T5 that is not a total sink or total source with respect to
GT5 and a sequence ST5 := (H1

T5
, . . . , Hℓ

T5
) of d-subflows of GT5 with ℓ ≤ d. There exists a

stable schedule of makespan O(d) that realizes all ℓ many d-subflows.

(a) (b) (c) (d)

Figure 7 A tile T ∈ T5 during the realization of ℓ d-subflows.

Total sinks and sources (as defined above) form a special case and are handled separately
from the described push-stable patterns. Every total sink has at least as many empty
positions as the number of incoming robots. By carefully rearranging the interior of the
respective tile, we can realize each subflow by filling empty positions with robots. For the set
of total sources, we consider the reverse operation.

▶ Lemma 22. Consider a tile T ∈ T5 that is a total sink or total source with respect to GT5

and a sequence ST5 := (H1
T5

, . . . , Hℓ
T5

) of d-subflows of GT5 with ℓ ≤ d. There exists a stable
schedule of makespan O(d) that realizes all ℓ many d-subflows.

By applying Lemmas 21 and 22, up to d many d-subflows of GT5 may be realized in O(d)
transformations. As we created O(d) such subflows in Section 4.7, all of them may be realized
through O(d)/d = O(1) repetitions. These repetitions require a total of O(d) transformations.

4.9 Phase (4): Boundary flow
The next phase of our algorithm deals with the movement of robots that are part of the
scaffold. As described in Section 4.5, the robots forming the scaffold in a tiled configuration
must remain in the 1-neighborhood of their target tile over T5. The intermediate mapping
step in the construction process guarantees that this remains the case even after that phase
concludes. However, the scaffold does not necessarily consist of the same robots in the tiled
configurations C ′

s and C ′
t. We observe that for any given tile T ∈ T5, up to 20cd − 4 robots

exist in its neighborhood N1[T ] that need to become part of its boundary structure.
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This observation induces another supply-demand flow graph similar to the one in Sec-
tion 4.6, with each edge’s flow value bounded from above by 20cd − 4. Using the techniques
discussed in Sections 4.6 and 4.7, we obtain a (d, O(1))-partition of this flow graph. This
requires minor modifications to the involved methods. See full version [20] for details.

Each of the computed subflows can then be realized by a schedule of makespan O(d). As
no tile can ever end up with fewer than 20cd − 4 total robots in the tiled target configuration,
we can simply rearrange all tiles according to Theorem 7, placing outgoing robots adjacent
to their target tile before pushing them into the boundary of their target tile and displacing
part of the scaffold in the process. While this creates “gaps” in the boundary of all involved
tiles, such movement never causes a disconnection in the full scaffold, as the receiving tile’s
boundary preserves connectivity (see Figure 8). The resulting gap can thus be safely patched
up with incoming robots. We repeat this process until each tile contains the correct robots
for its scaffold.

Figure 8 We can employ the displayed movement patterns to exchange boundary robots between
adjacent tiles.

4.10 Phase (5): Local tile reconfiguration
Once Phase (4) concludes, we have reached a tiled configuration in which every tile contains
precisely the robots that it would in a tiled configuration C ′

t of the target configuration. This
means that we can reconfigure into C ′

t by a single application of Theorem 7, which forms the
entirety of Phase (5).

As Phase (6) is a reverse of Phase (2), this concludes the description of the algorithm.
Because each phase takes O(d) transformation steps, this proves Theorem 4.

5 Conclusion and future work

We resolved two major open problems for connected reconfiguration. Some open problems
still remain. Does any connected arrangement of n robots with diameter D ≤ n allow a
makespan of O(

√
D)? Can the involved constants of our methods be significantly reduced?

Of interest are also implementations of largely distributed computation and motion control
for efficient parallel motion schedules.
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