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Abstract
For a fixed graph H, the H-free Edge Deletion/Completion/Editing problem asks to delete/add/edit
the minimum possible number of edges in G to get a graph that does not contain an induced subgraph
isomorphic to the graph H. In this work, we investigate H-free Edge Deletion/Completion/Editing
problems in terms of the hardness of their approximation. We formulate a conjecture according to
which all the graphs with at least five vertices can be classified into several groups of graphs with
specific structural properties depending on the hardness of approximation for the corresponding
H-free Edge Deletion/Completion/Editing problems. Also, we make significant progress in proving
that conjecture by showing that it is sufficient to resolve it only for a finite set of graphs.
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1 Introduction

A graph modification problem is usually formulated in the following way. There is a fixed
set of allowed graph modifications, e.g., removing vertices or edges. Given a graph G, the
problem asks to find the minimum number of allowed modifications such that the resulting
graph satisfies a certain property. Some of the well-known graph problems can be formulated
as graph modification problems. For example, in the Vertex Cover problem, the task is to
remove the minimum possible number of vertices to make the resulting graph contain no
edges. Usually, graph modification problems are NP-hard. In [19], Lewis and Yannakakis
showed that if the property that a graph should satisfy after modifications is non-trivial
(that means that it holds for an infinite set of graphs and does not hold either for an infinite
set of graphs) and inherited (that means that if a graph G satisfies that property then each
induced subgraph of G also satisfies that property), and the only allowed modification is
removing vertices, then such problems are NP-hard. However, for edge modification problems
the situation is more complicated. In the early works [21, 12] devoted to edge modification
problems, it has been observed that although we can obtain results for specific classes of
problems, it can be difficult to generalize them to all edge modification problems.

Graph modification problems are extensively studied from the point of view of paramet-
erized complexity [1, 4, 5, 7, 9, 11, 13, 16, 20], because for practical reasons the number
of allowed modifications is usually small compared to the size of the graph, and then it is
reasonable to consider the number of modifications as a parameter. For a detailed survey of
parameterized algorithms for modification problems we recommend [9].

One of the typical representatives of graph modification problems are H-free Edge
Deletion, H-free Edge Completion and H-free Edge Editing for every fixed graph H. In
the H-free Edge Deletion problem, given a graph G, the task is to remove the minimum
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24:2 Hardness of Approximation for H-Free Edge Modification

number of edges from G such that the resulting graph does not contain an induced subgraph
isomorphic to H. Similarly, in H-free Edge Completion we need to add the smallest number
of edges and in H-free Edge Editing we are allowed to use both edge deletion and edge
completion.

Using a branching method, Cai [6] showed that H-free Edge Deletion (Completion,
Editing) can be solved in ck · poly(n) time, where k is an upper bound for the number of
allowed modifications, n is the size of graph, and c depends only on the graph H, which is
fixed for each problem. Also, in general it is unlikely that H-free Edge Deletion (Completion,
Editing) can be solved in time significantly less than ck · poly(n), because Aravind et al. [1]
showed that for all graphs H with at least two edges (non-edges), H-free Edge Deletion
(Completion) are NP-hard and cannot be solved in 2o(k) · poly(n) time, if the ETH holds,
and for all graphs H with at least three vertices, H-free Edge Editing is NP-hard and cannot
be solved in 2o(k) · poly(n) time, if the ETH holds.

H-free Edge Deletion (Completion, Editing) are also considered from the kernelization
point of view, in particular, in terms of polynomial kernel existence. Kratsch and Wahlström
[18] presented a graph H such that H-free Edge Deletion and H-free Edge Editing do not
admit a polynomial kernel unless NP ⊆ coNP/poly. Later, Guillemot et al. [15] showed
that for all graphs H, which are cycles on at least four vertices or paths on at least seven
vertices, H-free Edge Deletion does not admit a polynomial kernel unless NP ⊆ coNP/poly.
That result was improved in [7, 8] by Cai et al. They showed that if H is a path or a cycle,
then H-free Edge Deletion (Completion, Editing) does not admit a polynomial kernel unless
NP ⊆ coNP/poly, if and only if H contains at least four edges. Also, Cai et al. [7, 8] showed
that if H is a 3-connected graph and NP ⊈ coNP/poly, then H-free Edge Deletion and
H-free Edge Editing do not admit a polynomial kernel if and only if H is not a complete
graph, and H-free Edge Completion does not admit a polynomial kernel if and only if H

contains at least two non-edges. Marx and Sandeep [20] made an attempt to classify all
graphs H on at least five vertices depending on the existence of polynomial kernels for the
corresponding problems. They formulated conjectures that if NP ⊈ coNP/poly then, for a
graph H on at least five vertices, H-free Edge Editing admits polynomial kernel if and only
if H is complete or empty, and H-free Edge Deletion admits polynomial kernel if and only if
H is either complete or contains at most one edge. Despite the fact that those conjectures
are not yet proven, Marx and Sandeep [20] showed that to prove them it is sufficient only to
show that graphs from some finite set do not admit a polynomial kernel.

H-free Edge Deletion (Completion, Editing) are also studied in terms of approximation
complexity. Since removing and adding edges can create new subgraphs isomorphic to H, it
is unlikely to find an exact or approximate solution using greedy methods. Generally, there
is a connection between the existence of polynomial kernel and poly(OPT )-approximation
for a problem, because usually one can find poly(OPT )-approximation having polynomial
kernel, and vice versa. Despite the fact that this connection is not formal and there are
problems [14] that act differently, it is quite possible that such connection exists for the
H-free Edge Deletion (Completion, Editing) problems and we can use results for kernelization
complexity in the case of approximation complexity. Bliznets et al. [3] showed that for H

which is a 3-connected graph with at least two non-edges, and for H, which is a cycle on
at least four vertices or a path on at least five vertices, H-free Edge Deletion and H-free
Edge Completion do not admit poly(OPT )-approximation unless P = NP . Those results
are similar to results for kernelization complexity obtained by Cai et al. in [7, 8]. However,
in contrast to the kernelization case, in case of approximation complexity, the existence of at
least two non-edges in H is crucial for H-free Edge Deletion. Bliznets et al. [3] also showed
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Table 1 Conjecture.

Deletion Completion Editing

Exact Kn, Kn − e Kn, Kn − e —

Constant Kn Kn Kn, Kn

Min Horn Deletion Kn − e Kn − e Kn − e, Kn − e

no poly(OPT) all other graphs all other graphs all other graphs

For each of H-free Edge Deletion/Completion/Editing problems, the table represents a partition of
all graphs on at least five vertices into classes depending on the hardness of approximation for the
corresponding problems.

Deletion, Completion and Editing columns correspond to H-free Edge Deletion, H-free Edge Completion
and H-free Edge Editing problems, respectively.

Exact row corresponds to the existence of exact polynomial-time algorithm.
Constant row corresponds to the existence of constant approximation.
Min Horn Deletion row corresponds to Min Horn Deletion-completeness.
no poly(OPT) row corresponds to non-existence of poly(OP T )-approximation unless P = NP .

that (Kn − e)-free Edge Deletion problem is Min Horn Deletion-complete for every n ≥ 5.
Min Horn Deletion-complete problems form a separate class of problems, and for now we
do not know much about them. Khanna et al. [17] showed that those problems belong to
the class poly-APX, but they do not admit 2log1−ε n-approximation for any ε > 0 unless
P = NP .

Our results. Taking into account a significant progress in classification of H-free Edge
Modification problems from the point of view of kernelization in [20] and mentioned similarities
of approximation and kernelization [2], we make an attempt to classify all graphs on at
least five vertices depending on approximation complexity of the corresponding H-free
Edge Deletion (Completion, Editing) problems. Let us formulate a conjecture about such
classification for each of the H-free Edge Deletion, H-free Edge Completion and H-free Edge
Editing problems.

▶ Conjecture 1. Let H be a graph with at least five vertices. Then, the approximation
complexity of H-free Edge Deletion (Completion, Editing) can be determined according to
Table 1.

In fact, this conjecture repeats the conjectures for the case of kernelization, except that it
has an additional claim about Min Horn Deletion-complete problems. Thus, on the one hand,
we believe that approximation complexity and kernelization complexity for the H-free Edge
Deletion (Completion, Editing) problems behave very similarly, and on the other hand, in
the case of approximation complexity, it seems that we observe a slightly more complicated
situation.

Unfortunately, we were unable to prove the statement of the conjecture. However, we
manage to prove the following theorem.

▶ Theorem 2. There exists a set G (see Table 2) of seventeen graphs such that:
(i) ∀H ∈ G ∪ G, H-free Edge Deletion (Completion) does not admit poly(OPT )-

approximation ⇔ conjecture for H-free Edge Deletion (Completion) holds;
(ii) ∀H ∈ G, H-free Edge Editing does not admit poly(OPT )-approximation ⇔ conjecture

for H-free Edge Editing holds.

ISAAC 2022



24:4 Hardness of Approximation for H-Free Edge Modification

We think we achieve a significant progress in classification of H-free Edge Deletion/
Completion/Editing problems as well as a huge step in resolving conjecture from [3] that
assumes that H-free edge modification problems behave in similar way from approximation
and kernelization points of view.

As we note before, for the edge modification problems there are similarities between
kernelization and approximation results. However, the proofs of approximation and kerneliz-
ation results are far from being identical, one of the reasons of this stems from the fact that
(Kn − e)-Free Edge Deletion is only Min Horn Deletion-complete from approximation point
of view and yet it does not admit a polynomial kernel unless NP ⊆ coNP/poly. This fact
could potentially lead to the existence of a significantly bigger class of graphs H for which
H-Free Edge Deletion is Min Horn Deletion-complete.

It seems that from approximation point of view classification is more complicated than
from kernelization point of view. For example, in [7], a full classification for H being
3-connected graph was given, while in its approximation analog paper [3] almost a full
classification was given with only exception of H = Kn − e. It was shown that (Kn − e)-Free
Edge Deletion is Min Horn Deletion-complete, however, it neither rules out the possibility
of the existence of poly(OPT )-approximation nor shows that such an approximation exists.
Similarly, in [20], for full classification of kernelization it is left to prove a lack of kernel for 9
graphs for H-Free Edge Editing problem and 19 graphs for H-Free Edge Deletion/Completion
problems, while the respective numbers that we achieve for approximation classification are
17 and 33 graphs.

We note that we significantly extend results for H-free Edge Deletion (Completion) from
work [3], but we also consider Editing version of the H-free Edge Modification problem. The
H-free Edge Editing problem was not considered in [3].

All proofs here are omitted due to space constraints, they can be found in the full version
of the paper.

Table 2 G ∪ G.

G1 G1 G7 G7 G13 G13

G2 G2 G8 G8 G14 G14

G3 G3 G9 G9 G15 G15

G4 G4 G10 G10 G16 G16

G5 G5 G11 G11 G17 G17

G6 G6 G12 G12
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2 Preliminaries

In this paper, we consider only simple graphs. All used notations for graphs are standard
and can be found in [10]. For a fixed graph G, let Vℓ be the set of vertices in G with the
minimum degree, and let Vh be the set of vertices with the maximum degree. For a set of
graphs X , let X be the set of complements of the graphs in X . According to [20], we define
the following sets of graphs: H, A, D, B, S, F and their complements H, A, D, B, S and
F . The graphs from sets H, H, A, A, D, D, B, B, S and S are shown in Tables 3, 4, 5
and 6. F is a union of sets of graphs Fi which are shown in Table 7. Let W be the set
H ∪ H ∪ A ∪ A ∪ D ∪ D ∪ B ∪ B ∪ S ∪ S ∪ F ∪ F . We notice that W = W.

In the H-free Edge Deletion problem, given a graph G and an integer k, we need to
determine whether one can delete at most k edges from G such that the resulting graph does
not contain an induced graph isomorphic to H. Let us call a set of edges F a solution for an
instance (G, k) of H-free Edge Deletion if |F | ≤ k and G − F does not contain an induced
graph isomorphic to H. H-free Edge Completion and H-free Edge Editing and solutions for
them are defined in a similar way. In the optimization version of the H-free Edge Deletion
(Completion, Editing) problem, given a graph G, we need to determine the minimum possible
k such that there exists a solution F for an instance (G, k). We will refer to both decision
and optimization versions, it should be clear from the context which version we refer to.

In the Sandwich H-free Edge Deletion problem, given a graph G and a set D ⊆ E(G) of
undeletable edges, we need to determine whether there exists a subset F ⊆ E(G) \ D such
that G − F does not contain H as an induced subgraph. Let us call such F a solution for
the instance (G, D) of Sandwich H-free Edge Deletion. Sandwich H-free Edge Completion
and its solution are defined in a similar way. The size of solution F is not important for us,
we are interested only in its existence.

Let f : N → N be a non-decreasing function. An f(OPT )-approximation for an instance I

of a minimization problem X is a solution F for I such that |F | ≤ f(OPT (I)) ·OPT (I) where
OPT (I) is the size of the optimal solution for I. An algorithm for a minimization problem
X is called f(OPT )-approximation algorithm if for any instance I of X it finds an f(OPT )-
approximation for I. We say that a minimization problem X admits f(OPT )-approximation
if there exists an f(OPT )-approximation algorithm for X working in polynomial time. It is
easy to show the following results.

▶ Lemma 3.
(i) H-free Edge Deletion admits f(OPT )-approximation ⇔ H-free Edge Completion admits

f(OPT )-approximation.
(ii) H-free Edge Editing admits f(OPT )-approximation ⇔ H-free Edge Editing admits

f(OPT )-approximation.

Table 3 H ∪ H.

H1 H1 H4 H4 H7 H7

H2 H2 H5 H5 H8 H8

H3 H3 H6 H6 H9 H9

ISAAC 2022
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Table 4 A ∪ A.

A1 A1 A4 A4 A7 A7

A2 A2 A5 A5 A8 A8

A3 A3 A6 A6 A9 A9

Table 5 D ∪ D ∪ B ∪ B.

D1 D1 B1 B1 B3 B3

D2 D2 B2 B2

▶ Lemma 4. Kn-free Edge Deletion, Kn − e-free Edge Deletion, Kn-free Edge Completion
and (Kn − e)-free Edge Completion admit polynomial-time algorithms.

▶ Lemma 5. Kn-free Edge Deletion, Kn-free Edge Completion, Kn-free Edge Editing and
Kn-free Edge Editing admit

(
n
2
)
-approximation.

3 Min Horn Deletion-complete problems

Now let us consider graphs H such that H-free Edge Deletion (Completion, Editing) is
Min Horn Deletion-complete. At first, we describe which problems are called Min Horn
Deletion-complete and introduce some definitions. In [17], there was an attempt to classify
all constraint satisfaction problems by their approximation complexity. For some problems,
the complexity of approximation was not established, but they were divided into classes in
which all problems are equivalent to each other with respect to A-reduction, which we define
below. Then, for each such class, we can choose any problem as a representative. Min Horn
Deletion problem was chosen as one of those representatives. In Min Horn Deletion problem,
we are given a Boolean formula φ in CNF, such that each clause of φ contains either a single
literal or three literals where exactly one literal is negative. The task is to find an assignment
that minimizes the number of unsatisfied clauses of φ.

We say that there is an A-reduction from a problem P to a problem Q, or P A-reduces
to Q, if there exist two polynomial-time algorithms F and G and a constant α such that:
1. Let I be an instance of P . Then F (I) is an instance of Q.
2. Let I be an instance of P , let S be a solution for F (I). Then G(I, S) is a solution for I.
3. Let I be an instance of P , and r ≥ 1. Then, if S is an r-approximation for F (I), then

G(I, S) is an (αr)-approximation for I.

We observe that A-reductions are transitive, that is if P A-reduces to Q, and Q A-reduces
to R then P A-reduces to R.

Let P and Q be two problems. We say that P is Q-complete with respect to A-reductions,
or Q-complete, if there exist A-reductions from P to Q and from Q to P . Bliznets et al. [3]
showed that (Kn − e)-free Edge Deletion is Min Horn Deletion-complete.
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Table 6 S ∪ S.

S1 S1 S13 S13 S25 S25

S2 S2 S14 S14 S26 S26

S3 S3 S15 S15 S27 S27

S4 S4 S16 S16 S28 S28

S5 S5 S17 S17 S29 S29

S6 S6 S18 S18 S30 S30

S7 S7 S19 S19 S31 S31

S8 S8 S20 S20 S32 S32

S9 S9 S21 S21 S33 S33

S10 S10 S22 S22 S34 S34

S11 S11 S23 S23 S35 S35

S12 S12 S24 S24 S36 S36

▶ Lemma 6 ([3]). For any n ≥ 5, (Kn −e)-free Edge Deletion is Min Horn Deletion-complete
with respect to A-reductions.

We observe that H-free Edge Deletion and H-free Edge Completion are equivalent, so
the same result follows for Kn − e-free Edge Completion. We extend the results for editing
case and prove the following lemma.

▶ Lemma 7. For any n ≥ 5, (Kn − e)-free Edge Editing and Kn − e-free Edge Editing are
Min Horn Deletion-complete with respect to A-reductions.

As a result, at this point we can prove statements mentioned in the first three rows of
Table 1. The only remaining statements of the conjecture are the ones mentioned in the last
row. We observe that if P = NP then they are trivially true, so from now on, we assume
that P ̸= NP .

ISAAC 2022



24:8 Hardness of Approximation for H-Free Edge Modification

Table 7 F ∪ F .

F1 K2,t F1 Kt ∪ K2 t ≥ 4

F2 K1,t F2 Kt ∪ K1 t ≥ 5

F3 K2 ⊠ tK1 F3 Kt ∪ 2K1 t ≥ 4

F4 Tt,1 F4 Tt,1 t ≥ 4

F5 (Kt − e) ∪ 2K1 F5 (Kt − e) ∪ 2K1 t ≥ 4

F6 (Kt − e) ∪ K2 F6 (Kt − e) ∪ K2 t ≥ 4

F7 K1,t ∪ K2 F7 K1,t ∪ K2 t ≥ 4

F8 (Kt − e) ∪ K1 F8 (Kt − e) ∪ K1 t ≥ 6

F9 Jt F9 Jt t ≥ 3

F10 Qt F10 Qt t ≥ 3

Figure 1 Gadgets for Sandwich H-free Edge Deletion.

(a) Variable gadget

ex e¬x

H ∪ ex ∪ e¬x

(b) Clause gadget

el2 el3

el1

H

(c) Connector gadget

eout

H ∪ ein

ein

4 Problems without poly(OP T )-approximation

In this section, we consider several classes of graphs H such that H-free Edge Deletion
(Completion, Editing) does not admit poly(OPT )-approximation. To prove it, we use a
technique introduced in [3]. We also generalize that technique and use it to prove that H-free
Edge Editing does not admit poly(OPT )-approximation for some graphs H.

Let us first prove NP -hardness of Sandwich H-free Edge Deletion and Sandwich H-free
Edge Completion by constructing polynomial reductions from 3-SAT, which is a well-known
NP -hard problem (we show those results only for H with some specific properties). In the
3-SAT problem, we are given a Boolean formula φ in CNF where each clause contains exactly
3 literals, and the task is to determine whether φ is satisfiable or not.

Let us define Variable, Clause and Connector gadgets for Sandwich H-free Edge Deletion
(see Figure 1). Variable gadget for a variable x is a copy of H with two added edges ex and
e¬x (so H has at least two non-edges), where only these two edges are allowed to be deleted
from the graph by making all other edges undeletable. Removing the edge ex corresponds
to x = 1, and removing the edge e¬x corresponds to x = 0. Clause gadget for a clause
c = (ℓ1 ∨ ℓ2 ∨ ℓ3) is a copy of H where only three of its edges eℓ1 , eℓ2 and eℓ3 are allowed to be
deleted by making all other edges undeletable (so H has at least three edges). Removing the
edge eℓi

corresponds to the case when the literal ℓi satisfies the clause c. Connector gadget is
a copy of H with one added edge ein, where ein and some other edge eout that does not share
any endpoint with ein, are allowed to be deleted, and all other edges are made undeletable.
Using Connector gadgets, we connect Clause gadgets with Variable gadgets in such a way



T. Belova and I. Bliznets 24:9

Figure 2 An illustration of how a Connector gadget connects a Variable gadget with a Clause
gadget.

H ∪ ex ∪ e¬x H ∪ ein

eout eout

ein

eout

ein

eout

ein

H ∪ ein

eout

ein

Variable gadget
for variable x

Clause gadget for
clause ¬x ∨ y ∨ z

Connector gadgets

ex

e¬x

H ∪ ein H ∪ ein H ∪ ein H

e¬x

ey

ez

ein

that the edges corresponding to variables and their literals are removed consistently (see
Figure 2). We give the exact construction below. For Sandwich H-free Edge Completion,
we define those gadgets in a similar way with slight differences, for example ein becomes a
non-edge as it will be on a place of some deleted edge in H.

▶ Construction 1. Given an instance φ of 3-SAT with an assignment τ and a set S =
{V ariable, Clause, Connector} of gadgets for Sandwich H-free Edge Deletion (Completion),
we construct a graph G. For each variable we introduce its own copy of Variable gadget, and
for each clause we introduce its copy of Clause gadget. For each clause c = (ℓ1 ∨ ℓ2 ∨ ℓ3)
and each literal ℓ ∈ c, we introduce a chain of Connector gadgets Gℓ,c

1 , Gℓ,c
2 , . . . , Gℓ,c

p+2 where
p = |V (H)|. For each 1 ≤ i ≤ p + 1, we glue Gℓ,c

i to Gℓ,c
i+1 in such a way that the edge

(non-edge) eout of Gℓ,c
i coincide with the edge (non-edge) ein of Gℓ,c

i+1. Similarly, we identify
the edge (non-edge) eout of Gℓ,c

p+2 with the edge (non-edge) eℓ of the Variable gadget for the
variable corresponding to the literal ℓ. We also identify the edge (non-edge) ein of Gℓ,c

1 with
the edge (non-edge) eℓ of the Clause gadget for the clause c. Let G be the resulting graph,
and let D be the set of undeletable edges (not fillable non-edges). Let F ⊆ E(G) (F ⊆ E(G))
contain all edges (non-edges) eℓ from Variable and Clause gadgets, where τ(ℓ) = 1. Also, let
F contain all edges (non-edges) ein and eout from Connector gadgets Gℓ,c

i , where τ(ℓ) = 1.
The result of the construction based on φ, τ and gadgets is the graph G△F .

We say that H intersects a set {Variable, Clause, Connector} of gadgets if there exist an
instance φ of 3-SAT and a satisfying assignment τ for φ, so if Gτ

φ is the result of applying
Construction 1 to φ, τ and {Variable, Clause, Connector}, then there exists an induced
subgraph of Gτ

φ isomorphic to H, which is not fully contained within one gadget.

▶ Lemma 8. Let H be a graph, let {Variable, Clause, Connector} be a set of
gadgets for Sandwich H-free Edge Deletion (Completion), and let H not intersect
{Variable, Clause, Connector}. Then Sandwich H-free Edge Deletion (Completion) is NP-
hard.

Now we introduce two more gadgets: Deletion Enforcer and Completion Enforcer. Deletion
Enforcer for a graph H is a copy of H with one added edge, and Completion Enforcer for a
graph H is a copy of H with one deleted edge. The added (deleted) edge we call highlighted
edge (non-edge). By using these two gadgets, for some graphs H we show that H-free Edge
Deletion (Completion, Editing) does not admit poly(OPT )-approximation.

ISAAC 2022
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Figure 3 Examples of how we enforce an edge to be undeletable or a non-edge to be non-fillable.

(a) Deletion Enforcers

uv

(p + 1) × (H ∪ uv)
Huv

1 Huv
2

Huv
3

Huv
p+1

(b) Completion Enforcers

uv

(p + 1) × (H − uv)
Huv

1 Huv
2

Huv
3

Huv
p+1

We say that H intersects Deletion (Completion) Enforcer X if there exists a graph G such
that if we join X and G by identifying a highlighted edge (non-edge) of X with some edge
(non-edge) of G, then the resulting graph contains an induced copy of H, which contains a
vertex from V (X) \ V (G) and a vertex from V (G) \ V (X). Gluing a large amount of Deletion
(Completion) Enforcers to an instance of Sandwich H-free Edge Deletion (Completion) (see
Figure 3), we can convert it into H-free Edge Deletion (Completion) in some sense. Precisely,
we can prove the following lemma.

▶ Lemma 9. Let H be a graph, let X be a Deletion (Completion) Enforcer for H, and let H

not intersect X. Then (i) Sandwich H-free Edge Deletion (Completion) is NP-hard ⇒ H-free
Edge Deletion (Completion) does not admit poly(OPT )-approximation; (ii) H-free Edge
Completion (Deletion) does not admit poly(OPT )-approximation ⇒ H-free Edge Editing
does not admit poly(OPT )-approximation.

It was shown in [3] that H-free Edge Deletion and H-free Edge Completion do not admit
poly(OPT )-approximation when H is a 3-connected graph with at least two non-edges or
when H is a cycle with at least four vertices or a path with at least five vertices. Taking into
account Lemma 3, the following lemma was shown.

▶ Lemma 10 ([3]). Let H be a 3-connected graph with at least two non-edges, or a cycle with at
least four vertices or a path with at least five vertices. Then H-free Edge Deletion (Completion)
and H-free Edge Deletion (Completion) do not admit poly(OPT )-approximation.

Using Lemma 9, we can prove a similar result for H-free Edge Editing.

▶ Lemma 11. Let H be a 3-connected graph with at least two non-edges, or a cycle with at
least four vertices, or a path with at least five vertices. Then H-free Edge Editing and H-free
Edge Editing do not admit poly(OPT )-approximation.

Slightly adapting results from [20] for our needs, we obtain the following lemma.

▶ Lemma 12. Let H be a regular graph which is not complete or empty. Then H-free Edge
Deletion (Completion, Editing) does not admit poly(OPT )-approximation.

5 General case

In this section, we show that to complete the proof of the conjecture it is sufficient to show
that H-free Edge Deletion (Completion, Editing) does not admit poly(OPT )-approximation
for any H from some specific set of graphs. To do this, we introduce an algorithm that, given
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a graph H, constructs another graph H ′, such that if H-free Edge Deletion (Completion,
Editing) admits poly(OPT )-approximation then H ′-free Edge Deletion (Completion, Editing)
also admits poly(OPT )-approximation.

Our algorithm is similar to the algorithm given by Marx and Sandeep in [20], where they
studied the existence of polynomial kernels for H-free Edge Deletion (Completion, Editing).
In order to present the algorithm we introduce two sets X and Y.

X = {Cℓ, Cℓ | ℓ ≥ 4}
∪ {Pℓ, Pℓ | ℓ ≥ 5}
∪ {H | H is regular but is neither complete nor empty}
∪ {H | H is 3-connected with at least two non-edges}
∪ {H | H is 3-connected with at least two non-edges}

Y = {Kn, Kn | n ≥ 5}
∪ {Kn − e, Kn − e | n ≥ 5}
∪ {H | H ̸= C4, H ̸= C4, |V (H)| ≤ 4}

Note that to finish the proof of the conjecture it is sufficient to prove that for graphs H /∈ Y
H-free Edge Deletion (Completion, Editing) does not admit poly(OPT )-approximation. Let
us show that it is sufficient to prove that only for some subset of those graphs. To do this,
we consider the following algorithm.

Churn(H) :
Step 1: if H is regular, then return H.

Step 2: if H − Vℓ /∈ Y, then return Churn(H − Vℓ).
Step 3: if H − Vh /∈ Y, then return Churn(H − Vh).
Step 4: return H.

▶ Lemma 13. If H-free Edge Deletion (Completion, Editing) admits poly(OPT )-
approximation, then Churn(H)-free Edge Deletion (Completion, Editing) also admits
poly(OPT )-approximation.

Thus, if there exists a graph H /∈ Y such that H-free Edge Deletion (Completion, Editing)
admits poly(OPT )-approximation, then Churn(H)-free Edge Deletion (Completion, Editing)
also admits poly(OPT )-approximation, so it is sufficient to prove that there is no poly(OPT )-
approximation only for graphs from the set {Churn(H) | H /∈ Y}. Our goal is to obtain a
finite set of graphs for which the conjecture holds if and only if it holds for the set of all graphs
with at least five vertices. In order to do that, we first consider the set {Churn(H) | H /∈ Y},
and then we gradually reduce it.

Let us call a set of graphs L good for Deletion (Completion, Editing) problems, if it
does not contain graphs from Y and the following property holds. If H contains at least
five vertices, H /∈ Y, and H-free Edge Deletion (Completion, Editing) admits poly(OPT )-
approximation then there exists a graph H ′ ∈ L such that H ′-free Edge Deletion (Completion,
Editing) admits poly(OPT )-approximation and |V (H ′)| ≤ |V (H)|. We call a set L good, if
it is good for Deletion, Completion and Editing problems simultaneously. Note that both
{H | H /∈ Y} and {Churn(H) | H /∈ Y} are good sets.
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▶ Lemma 14. Let L be good for Deletion (Completion, Editing) problems. If for each graph
H ∈ L H-free Edge Deletion (Completion, Editing) does not admit poly(OPT )-approximation,
then for each graph H /∈ Y H-free Edge Deletion (Completion, Editing) does not admit
poly(OPT )-approximation.

Now, we want to understand which graphs form the set {Churn(H) | H /∈ Y}. First
of all, it can be regular graphs. Observe, that we run Churn(H) only on graphs H that
are not complete or empty, and we never obtain a complete or empty graph during the
algorithm, since such a graph belongs to Y. If we obtain a regular graph H as an output of
the algorithm, then H is not complete or empty, and then H ∈ X . If we obtain a graph H

which is not regular, then we know that H − Vℓ ∈ Y and H − Vh ∈ Y.
Let W be a set of graphs introduced in Section 2. In [20] (Lemmas 3.7 – 3.23), Marx and

Sandeep proved the following lemma.

▶ Lemma 15 ([20]). Let H /∈ X ∪ Y, H − Vℓ ∈ Y \ {Kn − e | n ≥ 5} and H − Vh ∈
Y \ {Kn − e | n ≥ 5}. Then H ∈ W.

This lemma covers almost all graphs H /∈ X ∪Y such that H −Vℓ ∈ Y and H −Vh ∈ Y . It
remains to understand what happens to graphs H for which {H − Vℓ, H − Vh} = {Kn − e, S},
where n ≥ 5 and S ∈ Y. We can show that the only case when Lemma 15 is not applicable,
is when S = Km − e, where m ≥ 5. Let us call the set of such graphs U . We obtain the
following lemma.

▶ Lemma 16. Let H /∈ X ∪ Y, H − Vℓ ∈ Y and H − Vh ∈ Y. Then H ∈ W ∪ U .

▶ Corollary 17. Let H /∈ Y. Then Churn(H) ∈ X ∪ W ∪ U .

Using Lemma 13, Corollary 17 and the fact that problems corresponding to graphs from
X do not admit poly(OPT )-approximation, we obtain the following lemma.

▶ Lemma 18. W ∪ U is a good set.

We note that at this stage in [20], W was shown to be a good set for kernelization
lower bounds. The necessity to handle graphs from U is one of the key differences between
approximation and kernelization cases.

From now on, we consider only graphs from W ∪ U . Later we remove some graphs from
this set and obtain a finite good set.

▶ Lemma 19. Let L be a good set for Deletion (Completion, Editing) problems. If H ∈ L is
a graph such that H-free Edge Deletion (Completion, Editing) does not admit poly(OPT )-
approximation, then L \ {H} is a good set for Deletion (Completion, Editing) problems.

▶ Lemma 20. Let L be a good set for Deletion (Completion, Editing) problems. Let H ∈ L,
and let H ′ be such a graph that the fact that H-free Edge Deletion (Completion, Editing)
admits poly(OPT )-approximation implies that H ′-free Edge Deletion (Completion, Editing)
admits poly(OPT )-approximation. If H ′ /∈ Y and |V (H ′)| < |V (H)| then L \ {H} is good
for Deletion (Completion, Editing) problems.

Let us call a graph H uninteresting for Deletion (Completion, Editing) problems, if either
H-free Edge Deletion (Completion, Editing) does not admit poly(OPT )-approximation or
there exists a graph H ′ /∈ Y such that |V (H ′)| < |V (H)| and the existence of poly(OPT )-
approximation for H-free Edge Deletion (Completion, Editing) implies the existence of
poly(OPT )-approximation for H ′-free Edge Deletion (Completion, Editing). Let us call a
graph H uninteresting, if it is uninteresting for Deletion, Completion and Editing problems
simultaneously. Using Lemmas 19 and 20, we obtain the following corollary.
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▶ Corollary 21. Let L be a good set, and let H be an uninteresting graph. Then L \ {H} is
a good set.

Thus, we have shown that we can remove uninteresting graphs from a good set and still
get a good set. Now let us show that all graphs from U are uninteresting and can be left out
of consideration. In order to do that, we introduce some definitions.

For a fixed n ≥ 5, a graph G = (V, E) is called Kn − e with V-shapes, if there exists
a partition V = V1 ⊔ V2 such that G[V1] is isomorphic to Kn − e, G[V2] does not contain
any edges, and each vertex in V2 has degree 2 in G. Each vertex v ∈ V2 we call a peak. A
subgraph that contains v, its two neighbours and two edges incident to v we call a V-shape. A
set of two vertices that are neighbours of the peak in a V -shape we call base of the V -shape.

▶ Lemma 22. Let H be Kn −e with V-shapes for some n ≥ 5. Let there be two V-shapes with
non-intersecting bases. Then, if Sandwich H-free Edge Deletion (Completion) is NP-hard,
then H-free Edge Deletion (Completion) does not admit poly(OPT )-approximation.

▶ Lemma 23. Let H be Kn −e with V-shapes for some n ≥ 5. Then, if H-free Edge Deletion
does not admit poly(OPT )-approximation, then H-free Edge Editing also does not admit
poly(OPT )-approximation.

Using those results, we can now prove that all graphs from U are uninteresting. For
H ∈ U , {H − Vℓ, H − Vh} = {Kn − e, Km − q}, where n, m ≥ 5. We consider several cases
depending on location of edge q and non-edge e in H, and show that all graphs from U are
uninteresting. Then, using Corollary 21, we obtain the following lemma.

▶ Lemma 24. W is a good set.

Using the technique by Marx and Sandeep from [20], we show that all graphs from
F ∪ F ∪ S ∪ S are uninteresting. Hence, we prove the following lemma.

▶ Lemma 25. H ∪ H ∪ A ∪ A ∪ D ∪ D ∪ B ∪ B is a good set.

Additionally, we show that H-free Edge Deletion (Completion, Editing) does not admit
poly(OPT )-approximation for some of the remaining graphs. Our proofs for these graphs
are constructed according to the scheme introduced earlier: we show that Sandwich H-free
Edge Deletion (Completion) is NP-hard, then, using some Deletion (Completion) Enforcer,
we show that H-free Edge Deletion (Completion) does not admit poly(OPT )-approximation,
and then, using some Completion (Deletion) Enforcer, we show that H-free Edge Editing
does not admit poly(OPT )-approximation.

As a result, we show that graphs A2, A2, A3, A3, A4 = A4, A5 = A5, B1, B1, B3, B3 are
uninteresting. So, the set of graphs G ∪ G presented in Table 2 is a good set. Observe that,
by Lemma 3, if ∀H ∈ G H-free Edge Editing does not admit poly(OPT )-approximation,
then ∀H ∈ G H-free Edge Editing also does not admit poly(OPT )-approximation. So, we
have proved Theorem 2.

We note that it is left to resolve the conjecture for more graphs than in the kernelization
case. In [20], Marx and Sandeep also use a two step proof. They first prove that there is no
polynomial kernel for Restricted H-free Edge Deletion (Completion), which is a version of
Sandwich H-free Edge Deletion (Completion) where we also want to minimize the number of
deleted (added) edges. Then, using similar enforcers, they give a reduction from Restricted
H-free Edge Deletion (Completion) to H-free Edge Deletion (Completion, Editing). To
prove that Restricted H-free Edge Deletion (Completion) does not admit a polynomial
kernel, they use a reduction from Propagational-f Satisfiability on 3-regular conjunctive
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formulas (every variable appears exactly three times) that does not admit a polynomial
kernel. In the case of approximation, we cannot use the same trick, because Propagational-f
Satisfiability on 3-regular conjunctive formulas is Min Horn Deletion-complete, so it gives
us only Min Horn Deletion-hardness, and we need stronger results. That is why we use a
technique from [3]. But in this case, we need to show hardness for Sandwich H-free Edge
Deletion (Completion) instead of Restricted H-free Edge Deletion (Completion), and it can
be harder, or even impossible. For example, Sandwich (Kn − e)-free Edge Deletion admits a
polynomial-time solution, while Restricted (Kn − e)-free Edge Deletion (Completion) does
not admit a polynomial kernel unless NP ⊆ coNP/poly [7].

6 Conclusion

In this work, we consider the hardness of approximation for H-free Edge Deletion (Completion,
Editing) and we formulate Conjecture 1, according to which all graphs on at least five vertices
can be classified into several groups of graphs with specific structural properties depending
on the hardness of approximation for H-free Edge Deletion (Completion, Editing) problems
corresponding to them. We think that we make a significant progress in proving those
conjectures by proving Theorem 2. To make the complete classification of H-free Edge
Deletion (Completion, Editing) problems for graphs H on at least five vertices by the hardness
of their approximation, it is now enough to determine the hardness of approximation for those
problems only for graphs H ∈ G ∪ G, where G is a set of seventeen graphs. The hardness of
approximation for Min Horn Deletion-complete problems and the hardness of approximation
for H-free Edge Deletion (Completion, Editing) problems for graphs H on at most four
vertices are still open questions.

Also, we trace the relationship between the complexity of approximation and the com-
plexity of kernelization for H-free Edge Deletion (Completion, Editing). We have shown that,
in this case, the approaches introduced to prove that a problem does not admit a polynomial
kernel can be used to prove that a problem does not admit poly(OPT )-approximation. We
believe that the complexity of approximation for H-free Edge Deletion (Completion, Editing)
is closely connected with the complexity of kernelization for those problems. However, in case
of the approximation complexity, the situation is more complicated, because of the problems
corresponding to graphs with exactly one edge or non-edge that form a separate class. So, in
the paper, we make a significant step towards resolving conjecture from [3] asking whether
kernelization and approximation behave in the same way for H-free Edge Modification.
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