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Abstract
The concept of quantum bit commitment was introduced in the early 1980s for the purpose of basing
bit commitments solely on principles of quantum theory. Unfortunately, such unconditional quantum
bit commitments still turn out to be impossible. As a compromise like in classical cryptography,
Dumais et al. [17] introduce the conditional quantum bit commitments that additionally rely on
complexity assumptions. However, in contrast to classical bit commitments which are widely used in
classical cryptography, up until now there is relatively little work towards studying the application
of quantum bit commitments in quantum cryptography. This may be partly due to the well-known
weakness of the general quantum binding that comes from the possible superposition attack of the
sender of quantum commitments, making it unclear whether quantum commitments could be useful
in quantum cryptography.

In this work, following Yan et al. [43] we continue studying using (canonical non-interactive)
perfectly/statistically-binding quantum bit commitments as the drop-in replacement of classical bit
commitments in some well-known constructions. Specifically, we show that the (quantum) security
can still be established for zero-knowledge proof, oblivious transfer, and proof-of-knowledge. In spite
of this, we stress that the corresponding security analyses are by no means trivial extensions of
their classical analyses; new techniques are needed to handle possible superposition attacks by the
cheating sender of quantum bit commitments.

Since (canonical non-interactive) statistically-binding quantum bit commitments can be con-
structed from quantum-secure one-way functions, we hope using them (as opposed to classical
commitments) in cryptographic constructions can reduce the round complexity and weaken the
complexity assumption simultaneously.
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1 Introduction

Bit commitment is an important cryptographic primitive. A bit commitment scheme can
be viewed as a digital analogue of a non-transparent sealed envelope. Informally, a classical
bit commitment scheme is a classical two-stage interactive protocol between a sender and a
receiver, both of whom can be formalized by probabilistic polynomial-time algorithms. First
in the commit stage, the sender commits to a bit b such that the receiver should not be able
to guess its value better than a random guess; this is known as the hiding property. Later in
the reveal stage, the sender opens the bit commitment and reveals the bit b to the receiver.
The binding property guarantees that any cheating sender should not be able to open the bit
commitment as 1 − b.

As quantum technology develops quickly, in this work we study quantum bit commitments
that allow both the sender and the receiver of commitments to run quantum polynomial-
time algorithms and exchange quantum messages2 (whereas still a classical bit is secured)
[17, 13, 23, 24, 10, 43]. Unfortunately, neither unconditional quantum bit commitments are
possible [28, 26]. Based on quantum complexity assumptions, there are also two flavors
of quantum bit commitments: (computationally-hiding) statistically-binding quantum bit
commitments [17, 23, 24] and statistically-hiding (computationally-binding) quantum bit
commitments [43].

One reason that we are interested in quantum bit commitment is because it can be made
non-interactive in both the commit and the reveal stages (i.e. both stages consist of just
a single message from the sender to the receiver), even based on the seemingly minimum
quantum-secure one-way function assumption [43, 23, 24]. In contrast, classical constructions
of non-interactive statistically-binding bit commitments and constant-round statistically-
hiding bit commitments are only known relying on stronger complexity assumptions [19];
some negative results suggest that the interactivity seems inherent [27, 21].

Since (classical) bit commitments are extremely useful in classical cryptography, we
naturally will ask whether this is also true for quantum bit commitments in quantum
cryptography. In particular, we ask the following question that is the main motivation of
this work:

Motivating question: If we use non-interactive quantum bit commitments in existing
(classical or quantum) cryptographic constructions, then can we still base the (quantum)
security of those constructions on that of quantum bit commitment?

If the answer to the question is “yes”, then by turning to non-interactive quantum bit
commitments, we may reduce the round complexity and keep the complexity assumption of
cryptographic constructions to the minimum simultaneously.

2 A special case of quantum bit commitments considered in the post-quantum setting [1, 34, 36, 35], a.k.a.
classical bit commitments secure against quantum attacks, have classical construction; that is, honest
parties’ computation and communication are restricted to be classical.
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Inspired by the study of complete problems for quantum zero-knowledge proofs [38,
22, 40] and more general quantum interactive proofs [33, 11], canonical3 (non-interactive)
quantum bit commitments are introduced in [43]. Roughly speaking, a canonical quantum bit
commitment scheme can be represented by a quantum circuit pair ensemble {Q0(n), Q1(n)}n.
To commit a bit b ∈ {0, 1}, perform the quantum circuit Qb on the quantum registers
(C, R) initialized in all |0⟩’s state, and the quantum state of the commitment register C
will be treated as the commitment. The binding property of the scheme {Q0(n), Q1(n)}n,
a.k.a. honest-binding, requires that no unitary operation performing on the decommitment
register R can send the quantum state Q0 |0⟩ to Q1 |0⟩, and vice versa. This binding property
appears even weaker than sum-binding4 (which is considered as the general binding property
of quantum bit commitments [17, 13, 35]). Canonical statistically-binding quantum bit
commitments can be based on quantum-secure one-way functions [43].

This work. In this work, we answer the motivating question above affirmatively when
canonical statistically-binding quantum bit commitments are used. We remark that restricting
to consider quantum bit commitments of the canonical form in applications does not lose
generality (in theory); refer to Subsection 1.2. We also remark that another flavor of quantum
bit commitments, i.e. those that are computationally binding, turn out to be more exotic
[13, 16, 2, 36, 35] and beyond the scope of this work.

To the best of our knowledge, we are aware of no prior work besides [43] studying the
application of non-interactive quantum bit commitments solely based on quantum-secure
one-way functions in quantum cryptography. Follow-up work and recent developments are
referred to Subsection 1.5.

1.1 On the difficulty of basing security on that of quantum bit
commitment

New difficulties will arise when we try to use quantum instead of classical bit commitments
in cryptographic applications and establish their (quantum) security. This was already
realized in some pioneer works on quantum commitments [17, 13, 16, 34, 36]. For the
purpose of presenting this work, these new difficulties can be understood by examining
Blum’s zero-knowledge protocol for the NP-complete language Hamiltonian Cycle [8] with a
general quantum bit commitment scheme plugged in; we would like to show that the resulting
protocol is both zero-knowledge and sound against quantum attacks.

For zero-knowledge, recall that in the classical security analysis, it relies on the hiding
property of bit commitment; moreover, the security reduction will rewind the possibly
cheating verifier. Though quantum hiding is a straightforward generalization of classical
hiding, we cannot rewind a quantum verifier freely in general [37]. Thus, the classical analysis
does not extend to the quantum setting straightforwardly. Fortunately, this can be rescued
by using Watrous’s remarkable quantum rewinding technique [39].

The more challenging part of the security analysis lies in showing soundness, which is to
be (if possible) based on the binding property of quantum bit commitment. This is because
it is well-known that the general quantum sum-binding [17, 35] is much weaker than the
classical-style binding (or unique-binding hereafter). Roughly speaking, sum-binding only

3 Originally, it was called “generic” quantum bit commitment in [43] and early drafts of this work. The
name “canonical” is suggested by Ananth, Qian and Yuen [4] later, which (we agree) is more appropriate.

4 But this does not exclude the possibility that the seemingly weak honest-binding may imply stronger
binding properties such as sum-binding.
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guarantees that any cheating sender of bit commitment cannot open it such that p0 + p1 − 1
is non-negligible, where p0 (resp. p1) is the success probability of opening the commitment
as 0 (resp. 1). The reason of sum-binding for quantum bit commitments can be seen
such a superposition attack of the sender of bit commitment as follows. A cheating sender
can commit to an arbitrary superposition of the bit 0 and 1, in such a way that with this
superposition as the control, executes the commitment stage of the quantum bit commitment
scheme honestly [17, 13]. In this scenario, the “committed value” will become a superposition
(as opposed to a classical bit). Later in the reveal stage, the bit commitment can be opened
as the same superposition. At this moment, if the (honest) receiver measures (thus collapses)
this superposition, then the outcome will be a distribution over {0, 1}. In particular, both
0 and 1 could be revealed with a noticeable probability, e.g. when the superposition is
1/

√
2(|0⟩ + |1⟩).
Even worse, when quantum bit commitments are composed in parallel (to commit a

binary string) and used in some larger protocol, it is possibly the sender of commitments
who decides which bit commitments will be opened. In this case, not only the revealed value
but also the classical information about positions of bit commitments that will be opened
could be in an arbitrary superposition. This will make the quantum security analysis (if
possible) much more complicated than classical analysis.

Specific to the soundness of Blum’s protocol, the cheating prover (who will play the role
of the sender of commitments) may try to either open all quantum bit commitments as
a superposition of permuted input graphs (when the verifier’s challenge is 0), or open a
superposition of subsets (each corresponding to a possible location of Hamiltonian cycles)
of quantum bit commitments as all 1’s (when the verifier’s challenge is 1). A more formal
treatment about the cheating sender’s superposition attack is referred to the full paper [18,
Appendix A].

For the soundness analysis of Blum’s protocol, the most straightforward way is trying
to argue that superpositions can somehow be viewed as collapsed to their corresponding
probability distributions, so that the classical soundness analysis can be applied. This is
possible in the post-quantum setting (where quantum-secure classical bit commitments are
used) by introducing stronger (computational) collapse-binding commitments [36]. However,
current known constructions of collapse-binding commitments are interactive and rely on
stronger quantum complexity assumptions than quantum-secure one-way functions in the
standard model [35]. We still do not know if any non-interactive quantum bit commitment
based on quantum-secure one-way functions can satisfy some “meaningful” collapse-binding
property that could be useful in applications yet.

Alternatively, one can assume without loss of generality that the verifier will measure
nothing other than the qubit indicating whether to accept or not and then carries out a more
direct calculation involving superpositions in the analysis, like in [43]. A technical difficulty
towards this approach lies in that there could be exponentially many terms in superpositions
(even only polynomial many bits are committed), and naive applications of the triangle
inequality will cause an exponential blow-up of errors. One should try to avoid this potential
exponential blow-up when the binding error of commitments is only guaranteed negligible
(as typical in cryptography). In an earlier draft of [43], this difficulty was circumvented
by composing the given commitment scheme in parallel to reduce the statistical binding
error to be exponentially small. The technique to handle negligible binding errors is called
perturbation, as claimed in the final conference version of [43]. However, for some reasons,
the final full version of [43] has never appeared5.

5 This is partly because its technique will be generalized and its main result will be reproved (in a
conceptually much simpler way) in this paper. This will become clear later.
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Besides collapse-binding commitments [36] just mentioned, two other works [13, 16] also
try to base the security of cryptographic constructions on other binding properties of quantum
commitments. However, it is still open whether these quantum commitments can be realized
based on standard complexity assumptions.

1.2 Our contribution
In this work, we propose an analysis framework for basing security of cryptographic con-
structions on the perfect/statistical binding property of canonical (non-interactive) quantum
bit commitment used within, and devise several techniques/tricks for this purpose. For
applications, we plug canonical perfectly/statistically-binding quantum bit commitments
in three well-known constructions, including zero-knowledge, oblivious transfer, and (zero-
knowledge) proof-of-knowledge, and establish their (quantum) security. Our results exemplify
that (statistically-binding) quantum bit commitment could be a useful primitive in quantum
cryptography.

We remark that restricting to consider quantum bit commitments of the canonical form
does not lose generality (in theory) for two reasons: (1) It turns out that any quantum
bit commitment scheme can be compiled into the canonical form [41]; (2) We believe that
statistically-binding quantum bit commitments of other forms can be handled similarly (as
demonstrated by a more recent work [3]; refer to Subsection 1.5).

The analysis framework. It proceeds in two steps:
1. Lift the classical or quantum security of the construction based on the perfect/statistical

unique-binding property of bit commitment to the quantum security that is based on the
perfect binding property of canonical quantum bit commitment. This step may vary from
application to application, but the basic idea is the same: introduce what we will call
“commitment measurements” to collapse the potential superposition of the committed
value underlying quantum bit commitments.

2. Extend the security based on quantum perfect binding to quantum statistical binding.
We highlight that this step is not trivial, due to the potential exponential blow-up of the
error aforementioned. This is in contrast to the classical setting, where such an extension
is trivial by a simple union bound. The basic idea of this step is perturbation, as inspired
by [43]. Specifically, by perturbation it can be shown that the error also (like in the
classical setting, but for a completely different reason) grows linearly in the number of
bit commitments that will be opened. We remark this second step is standard, almost
the same for all applications. Hence, it allows us to focus on the first step of the analysis
framework for the whole security analysis.

Techniques/tricks supporting the analysis framework will be introduced in Subsection 1.3.

Applications. We will apply the analysis framework in three applications listed as below:

1. Quantum zero-knowledge proof. We plug a canonical statistically-binding quantum
bit commitment scheme in Blum’s protocol for the NP-complete language Hamiltonian
Cycle and establish its quantum security. The hard part of the security analysis lies in
showing its soundness, which was firstly established in [43]. Here, we give an alternative
proof following the analysis framework [18, Lemma 11, Corollary 12], which we believe is
conceptually simpler. We also note that this analysis can be easily extended to any other
GMW-type zero-knowledge protocols, which in particular include the GMW protocol for
Graph 3-Coloring [20].

ISAAC 2022
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As an immediate corollary, we reprove the following theorem (also firstly proved in [43]):

▶ Theorem 1. If quantum-secure one-way functions exist, then every language in NP
has a three-round public-coin quantum (computational) zero-knowledge proof with perfect
completeness and soundness error 1/2 + o(1).

By the virtue of non-interactive (quantum) commitments used, the protocol guaranteed
by the theorem above reduces one round compared with the classical protocol which uses
interactive bit commitments [31].

2. Quantum oblivious transfer. We plug a canonical perfectly/statistically-binding quantum
bit commitment scheme in the quantum oblivious transfer protocol [6, 12, 15] and establish
its quantum security. The hard part of the security analysis lies in establishing the security
against Bob, who is the receiver of oblivious transfer and plays the role of the sender of
quantum bit commitments in this larger protocol. Following our analysis framework, we lift
the security against Bob in the case where classical perfect unique-binding bit commitments
are used [6, 12, 29, 44, 9] to our setting [18, Lemma 13, Corollary 14]. As an immediate
corollary, we reprove the following well-known theorem:

▶ Theorem 2. If quantum-secure one-way functions exist, then there exists a constant-
round 1-out-of-2 quantum oblivious transfer that is computationally secure against Alice and
unconditionally secure against Bob, with the security is in the following sense: after the
interaction, Alice cannot guess Bob’s choice bit, while Bob is not aware of the other bit owned
by Alice.

We stress that the security achieved by the theorem above is not the full simulation-security
(as mostly desired in cryptography). However, it still could be useful in some applications. For
example, it can be used to construct statistically-hiding (computationally-binding) quantum
bit commitment [14, 41].

We also remark that there is no gain in the round complexity by using non-interactive
quantum bit commitments in the quantum oblivious transfer protocol. This is because,
for example when Naor’s bit commitment scheme [31] is used, the first message of the bit
commitment scheme can be absorbed into earlier Alice’s messages prescribed by the larger
quantum oblivious transfer protocol.

3. Quantum (zero-knowledge) proof-of-knowledge. Unruh [34] shows that if commitments
satisfying some specific binding property exists, then plugging it in a variant of Blum’s
protocol gives rise to a quantum (computational) zero-knowledge proof-of-knowledge for the
NP-complete language Hamiltonian Cycle [8]. Moreover, Unruh shows that such commitments
can be based on injective quantum-secure one-way functions. Here we plug a canonical
perfectly/statistically-binding quantum bit commitment in the same variant of Blum’s protocol
and show that the quantum proof-of-knowledge can also be fulfilled [18, Corollary 17,
Corollary 18]. As an immediate corollary, we arrive at the following new theorem that is
previously unknown:

▶ Theorem 3. If quantum-secure one-way functions exist, then every language in NP has
a three-round public-coin quantum (computational) zero-knowledge proof-of-knowledge with
perfect completeness and knowledge error 1/2.
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Compared with Unruh’s (post-quantum) result, we make use of quantum construction
and succeed in reducing the complexity assumption to general (removing the requirement of
injectiveness) quantum-secure one-way functions. This answers an open question raised by
Unruh [34] affirmatively.

Our analysis of quantum proof-of-knowledge is interesting. In some detail, in the analysis
we will construct a canonical knowledge extractor like the one constructed in [34], which
will make use of a quantum rewinding that is also similar to the one used in [34]. However,
commitments used in [34] ensure that the whole quantum system is only slightly perturbed
before the rewinding, whereas in our case the system may have collapsed significantly due to
the possible superposition attack of the cheating prover (who will play the role of the sender
of commitments). So why the quantum rewinding works in our setting seems for a different
reason than that in [34]. Interestingly, it turns out that the underlying reason is also the
same; but how to interpret it will be different, and not clear at all as it appears. Basically,
it will only become clear if one views sending a bit commitment to a superposition (using
a canonical (computationally-hiding) perfectly-binding quantum bit commitment scheme)
as an implicit measurement of this committed superposition without leaking the outcome.
More discussion on this point is referred to Subsection 1.4.

1.3 Our techniques/tricks
We give a brief overview of our techniques/tricks used in this work. Their formal treatment
is referred to the full paper [18, Section 4].

(Imaginary) commitment measurement. In the case that the canonical quantum bit com-
mitment scheme used is perfectly binding, we can introduce an imaginary binary projective
measurement performed on each claimed quantum bit commitment; we will call it “commit-
ment measurement” hereafter. It turns out that in many interesting situations, introducing
commitment measurements will not affect the receiver’s acceptance probability of opening
quantum bit commitments later. In more detail, the commitment measurement is just the
measurement that perfectly distinguishes the honest commitment (meaning the sender will
follow the scheme in the commit stage) to 0 and that to 1, which is not efficiently realizable
(otherwise, the commitment scheme is not computationally hiding). In spite of this, we
can introduce it for the purpose of the security analysis. The benefit of doing so is that
the superposition of the committed value underlying quantum bit commitments will then
collapse to its corresponding probability distribution. In turn, by averaging over all possible
committed values, it suffices for us to prove the security w.r.t. an arbitrary committed value.
But now the analysis is similar to the one based on perfect unique-binding. In summation,
this technique is useful in realizing Step 1 of the analysis framework. Similar techniques were
also used in [32, 14].

Measurement manipulation. In our quantum security analysis, we may add or remove
a measurement, or replace a measurement with other ones. This may seem tricky, but it
turns out useful. For example, without affecting the security, sometimes we may try to
collapse the quantum system as much as we can by introducing new measurements, so that
the analysis based on perfect unique-binding can be lifted to the our setting where canonical
perfectly-binding quantum bit commitments are used; in other situations, we may try to
collapse less by removing measurements, so that some quantum-specific techniques can be
applied, including the perturbation and the quantum rewinding that will be introduced shortly
below. In summation, this technique is useful in realizing Step 1 of the analysis framework.

ISAAC 2022
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Commit to secret coins. The trick of letting a cheating party commit to secret coins it
used in quantum cryptographic constructions was introduced by Unruh [34, 36]. It enables
a quantum rewinding to work in the security analysis, where the commitments used there
are unique binding. We find that the same trick also enables a similar quantum rewinding
even if canonical statistically-binding quantum bit commitments (whose binding property is
much weaker than unique-binding) are used. More detail is referred to the proof overview of
quantum proof-of-knowledge in Subsection 1.4.

Perturbation. We devise a generic procedure for realizing Step 2 of the analysis framework.
Our basic idea is to perturb the quantum circuit pair (Q0, Q1) that represents a canonical
statistically-binding quantum bit commitment scheme. The resulting perturbed scheme,
denoted by (Q̃0, Q̃1), will be sort of perfectly binding. We note that quantum circuits Q̃0, Q̃1
may be of super-polynomial size; but this is not a problem for the purpose of security analysis.
A key observation is that the error incurred by replacing the scheme (Q0, Q1) with the
scheme (Q̃0, Q̃1) in any quantum computation only grows linearly in the number of such
replacements. The zero-binding-error guaranteed by the quantum perfect binding property
of the scheme (Q̃0, Q̃1) can help us avoid the potential exponential blow-up of errors in the
security analysis as mentioned before. Similar techniques were also used in [11, 39].

A quantum rewinding lemma with improved bound. The quantum rewinding lemma
in [43] enables a similar quantum rewinding as the one used in [34]. In this work, we will
use the same lemma but with an improved lower bound on the success probability of the
quantum rewinding. It allows us to obtain the asymptotically optimal knowledge error in
the analysis of quantum proof-of-knowledge [18, Section 7].

1.4 Proof overview of our applications
While Step 2 of the analysis framework is standard, in the below we give an overview of
Step 1 of applying the analysis framework to the three applications aforementioned (i.e.
lifting the classical/quantum security based on the perfect unique-binding property of bit
commitment to the quantum security based on the perfect binding property of canonical
quantum bit commitment).

Zero-knowledge proof. Perform the commitment measurement on each claimed quantum
bit commitment sent by the cheating prover. Then the classical soundness analysis can be
lifted to our setting straightforwardly.

Quantum oblivious transfer. Call the sender of oblivious transfer Alice and the receiver
Bob. Consider the security against Bob, who will play the role of sender of commitments.
Compared with the GMW-type quantum zero-knowledge proof protocols, the quantum
oblivious transfer protocol will continue after Alice’s opening of quantum bit commitments.
Thus, compared with the soundness analysis of quantum zero-knowledge proof, we need
to take into account not only Alice’s acceptance probability of its verification but also the
post-verification state of the whole system. To show the security against Bob, we also perform
the commitment measurement to each claimed quantum bit commitment sent by Bob. It
turns out that via a simple reduction, the (quantum) analysis for the same quantum oblivious
transfer protocol but with perfect unique-binding commitments plugged in [44, 9] can be
lifted to our setting straightforwardly.
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Quantum proof-of-knowledge. Compared with the two applications above, the main
difficulty here comes from the quantum rewinding: our quantum rewinding lemma ([18,
Lemma 10], which is similar to the one used in [34]) only allows us to measure the qubit
indicating whether the verifier accepts or not; but for the purpose of extracting a witness,
we need to measure more!

In [34], the difficulty caused by quantum rewinding as mentioned above was circumvented
by a simple trick: let the prover additionally commit (using perfect unique-binding commit-
ments) to its secret random coins used in its first message. In this way, the prover’s second
message will become “unique” for the verifier to accept. In turn, removing the measurement
for extracting other classical information (than the single qubit just mentioned) will not
affect the success probability of the quantum rewinding. However, this argument seems not
to extend straightforwardly to our setting where canonical perfectly-binding quantum bit
commitments are used. This is because the potential superposition of the committed value
underlying commitments may collapse significantly by measurements for extracting other
classical information.

Interestingly, after a few thought, it turns out that the trick used in [34] to enable
quantum rewinding still works in our setting, and for a similar reason! But this is not clear
at all at first glance; one can only see this after one has come to realize that sending a
commitment to a superposition using a canonical (computationally-hiding) perfectly-binding
quantum bit commitment scheme amounts to an implicit measurement of this committed
superposition (due to perfect binding) without leaking the outcome (due to computational
hiding). Here, the “implicit measurement” is in a similar sense as the standard unitary
simulation of measuring a qubit in the computational basis6. Intuitively, one can view
commitments in this way is because the commitment to 0 and that to 1 are orthogonal, and
they will never be touched by the sender of commitments after they are sent.

In the analysis of quantum proof-of-knowledge, now that the prover has already collapsed
the quantum state by additionally sending commitments to its secret random coins used in
its first message, the (explicit) measurement of its response (i.e. its second message) by the
knowledge extractor to extract classical information will cause no more collapses. Therefore,
removing this measurement will enable us to apply our quantum rewinding lemma like in [34].

1.5 Follow-up work and recent developments
Since the first preprint of this paper uploaded to Cryptology ePrint Archive [18] back in
2020, significant progress has been made towards studying quantum commitments and their
applications. Now let us mention some of them that are most relavant to this work.

In two follow-up works, Yan [41] study general properties of quantum bit commitments
through the lens of canonical quantum bit commitments. Somewhat surprisingly, it turns
out that any interactive (as opposed to just non-interactive, which is already known in [43])
quantum bit commitment scheme can be compiled into the canonical form. Yan [42] manages
to base the computational soundness of Blum’s zero-knowledge protocol on the computational
binding property of canonical quantum bit commitment (when it is used in Blum’s protocol).
In its analysis, different techniques are used.

Also starting from Naor’s scheme [31] like [43], Bitansky and Brakerski [7] construct
another non-interactive statistically-binding quantum bit commitment scheme that achieves
the unique-binding; Ananth, Qian and Yuen [3] construct a two-message statistically-binding

6 That is, initialize an ancilla qubit in the state |0⟩, and then store the measurement outcome in this
qubit without further disturbed afterwards.
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quantum bit commitment scheme but based on pseudorandom quantum states, an arguably
weaker complexity assumption than quantum-secure one-way functions [25]. A common
benefit of these two constructions is that their reveal stage consists of just a single classical
message. The latter AQY scheme is also shown to satisfy a stronger quantum statistical
binding property (AQY-binding hereafter) that turns out useful in applications (e.g. [5]).

After a careful examination, we find that the underlying idea of AQY-binding is almost
the same as that of the analysis framework introduced in this work; this is also observed in a
recent work by Morimae and Yamakawa [30, Appendix B]. Roughly speaking, AQY-binding
is a quantum statistical binding property for general (as opposed to canonical) quantum
commitments that is used in a similar way as our analysis framework in applications; and it
can be shown by combining similar techniques as commitment measurement and perturbation
introduced in this work. Actually, by tweaking these two techniques one can show that the
statistical binding property of canonical quantum bit commitment implies the AQY-binding
property [41, Appendix B]. As a consequence, following [3] canonical statistically-binding
quantum bit commitments can also be used to instantiate the construction in [5] to achieve the
full simulation-secure quantum oblivious transfer7 (as opposed to the weaker one presented
in Section 6 of this paper).

Comparing our analysis framework and the AQY-binding property in applications, all
the technical detail in the former analysis will be hidden in establishing the latter binding
property. Thus, AQY-binding is more readily usable by cryptographers. Another advantage
of AQY-binding is that it is more general, i.e. not necessarily requires canonical quantum
bit commitments. In spite of this, as argued at the beginning of Subsection 1.2, restricting
to consider canonical statistically-binding bit commitments and use our analysis framework
does not lose generality. Moreover, our analysis framework explicitly allows us to ignore
the statistical binding error while focusing on perfectly-binding (canonical) quantum bit
commitments in general. This will often make the security analysis conceptually simpler.
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