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Abstract
Let G = (V, E) be an undirected unweighted planar graph. Let S = {s1, . . . , sk} be the vertices
of some face in G and let T ⊆ V be an arbitrary set of vertices. The Okamura-Seymour metric
compression problem asks to compactly encode the S-to-T distances.

Consider a vector storing the distances from an arbitrary vertex v to all vertices S = {s1, . . . , sk}
in their cyclic order. The pattern of v is obtained by taking the difference between every pair of
consecutive values of this vector. In STOC’19, Li and Parter used a VC-dimension argument to show
that in planar graphs, the number of distinct patterns, denoted p#, is only O(k3). This resulted in a
simple Õ(min{k4 + |T |, k · |T |}) space compression of the Okamura-Seymour metric.

We give an alternative proof of the p# = O(k3) bound that exploits planarity beyond the
VC-dimension argument. Namely, our proof relies on cut-cycle duality, as well as on the fact that
distances among vertices of S are bounded by k. Our method implies the following:
(1) An Õ(p# + k + |T |) space compression of the Okamura-Seymour metric, thus improving the
compression of Li and Parter to Õ(min{k3 + |T |, k · |T |}).
(2) An optimal Õ(k + |T |) space compression of the Okamura-Seymour metric, in the case where the
vertices of T induce a connected component in G.
(3) A tight bound of p# = Θ(k2) for the family of Halin graphs, whereas the VC-dimension argument
is limited to showing p# = O(k3).
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1 Introduction

Planar metric compression. The shortest path metric of planar graphs is one of the most
popular and well-studied metrics in computer science. The planar graph metric compression
problem is to compactly encode the distances between a subset of k terminal vertices so
that we can retrieve the distance between any pair of terminals from the encoding. On
an n-vertex planar graph G = (V, E), a naïve encoding uses Õ(min{k2, n}) bits (by either
storing the k × k distance matrix or alternatively by storing the entire graph1). It turns
out that this naïve bound is actually optimal (up to logarithmic factors) for weighted planar
graphs, as shown by Gavoille et al. [16]. It is important to note that their lower bound

1 Naïvely, this takes O(n log n) bits, but can be done with O(n) bits [4, 10,26,30].
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27:2 Improved Compression of the Okamura-Seymour Metric

applies even when all terminals lie on a single face. The complexity of unweighted undirected
planar graphs is also well-understood. Gavoille et al. [16] (see also [1]) gave a lower bound of
Ω(min{k2,

√
k · n}), and Abboud et al. [1] gave a matching upper bound.

If we are willing to settle for approximate distances, then there are ingenious compressions
requiring only Õ(k) bits [21, 22, 29]. The problem has also been extensively studied (both in
the exact [6,7, 9, 17,23,24] and the approximate [2,5, 8,13,14,18,19] settings) for the case
where we require that the compression is itself a graph (that contains the terminals and
preserves their distances).

The Okamura-Seymour metric compression. An important special case for which tight
bounds are not yet known, is when the planar graph is unweighted and undirected and we
want to encode the S × T distances between a set of k source terminals S = {s1, s2, . . . , sk}
lying consecutively on a single face and a subset of target terminal vertices T ⊆ V . A query
(v, si) to the encoding (with v ∈ T and si ∈ S) returns the v-to-si distance.

When T = S, it is possible to exploit the Unit-Monge property to obtain an O(k log k)
space encoding with O(log k) query time [1]. In fact, even if T ̸= S the Unit-Monge
property implies an (optimal) Õ(|T | + k) space encoding, as long as the vertices of T lie
(not necessarily consecutively) on single face.
When T = V , the MSSP data structure of Eisenstat and Klein [12] gives an O(n) space
encoding with O(log n) query time.
For arbitrary S, T , Li and Parter [25] recently presented a compression of size Õ(min{k4 +
|T |, k · |T |}) and query time O(1).2 This compression is useful algorithmically. In the
distributed setting, Li and Parter used it to compute the diameter of a planar graph in
Õ(poly(D)) rounds where D is the graph’s diameter. It was also used to develop an exact
distance oracle with subquadratic space and constant query time [15].

The Li-Parter compression. At the heart of the Li-Parter compression [25], is the notion
of a pattern. Let d(·, ·) denote the shortest path metric of G. The pattern of a vertex v ∈ V

is the vector pv = ⟨d(v, s2) − d(v, s1), d(v, s3) − d(v, s2), . . . , d(v, sk) − d(v, sk−1)⟩ . Since the
graph is unweighted, every entry of pv is in {−1, 0, 1} by the triangle inequality. This already
gives an efficient way to encode v’s distances to S: Instead of explicitly storing these distances
(using O(k log n) bits), store pv and d(v, s1) (using O(k + log n) bits). This way, any distance
d(v, si) can be retrieved by d(v, si) = d(v, s1) +

∑i−1
j=1 pv[j].

The main contribution of Li and Parter in this context is in showing that, while there are
overall n patterns in the graph, there are only O(k3) distinct patterns:

▶ Theorem 1 ([25]). The number of distinct patterns over all vertices of the graph is O(k3).

The compression follows easily from the above theorem: Store one table that contains
all the distinct patterns of vertices in T , and another table that contains for every v ∈ T

the value d(v, s1) and a pointer to pv in the first table. Since there cannot be more than |T |
distinct patterns, the size of the first table is O(min{k4, k · |T |}). The size of the second table
is Õ(|T |). The query time is O(k) but can be improved to O(1) by storing precomputed
prefix-sums of every pattern (increasing the size of the first table by a logarithmic factor).

2 The actual bound stated by Li and Parter [25, Theorem 1.2] is Õ(k3 · D + |T |) where D is the diameter
of the graph. The reason for the additional D factor is that they store all possible distance tuples
dv = {d(v, si)}k

i=1 instead of all possible patterns pv. The reason for the missing k factor is simply a
mistake in their paper [25, p. 155].
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The original proof of Theorem 1 [25]. Let us assume that the distinguished face is the
infinite face. For convenience, we transform3 the problem so that patterns are binary rather
than ternary (i.e. over {−1, 1} instead of {−1, 0, 1}). To this end, we subdivide every edge of
the graph to get a new (unweighted) graph G′. In particular, we replace each edge {si, si+1}
of the infinite face with a dummy vertex wi and edges {si, wi}, {wi, si+1}. For every vertex
u of G′, let p̂u be the pattern of u w.r.t. the set of vertices S′ = {s1, w1, s2, w2, . . . , sk, wk}.
Observe that the parity of u-to-si distances is different from the parity of u-to-wj distances,
for all i, j’s. Hence, p̂u is a binary vector (i.e. over {−1, 1}). Additionally, for every vertex v

of G we can retrieve its pattern pv from p̂v since pv[i] = (p̂v[2i − 1] + p̂v[2i])/2. See Figure 1.
Hence, we henceforth assume that patterns pv are over {−1, 1} (i.e. we replace pv with p̂v).
For brevity, we also assume that patterns are of length k − 1 (rather than 2k − 1).

Figure 1 Before (left) and after (right) the transformation that makes all patterns binary.
Every edge is subdivided and a new vertex (in color) is put in the middle. In this example,
pv = ⟨0, 1, −1, 0, 1, 1, −1⟩ and p̂v = ⟨1, −1, 1, 1, −1, −1, 1, −1, 1, 1, 1, 1, −1, −1, −1⟩.

Li and Parter’s VC-dimension argument is based on the simple observation that, by
planarity, there cannot be two vertices v and u and 4 indices a < b < c < d such that pu[a] =
−1, pu[b] = 1, pu[c] = −1, pu[d] = 1 but pv[a] = 1, pv[b] = −1, pv[c] = 1, pv[d] = −1. The
reason is that such (−1, 1, −1, 1), (1, −1, 1, −1) patterns correspond to an illegal configuration
of shortest paths in planar graphs.

Consider arranging all the patterns as the rows of a binary matrix P . The VC-dimension
of P is defined as the largest number d, such that there exists in P a submatrix of d columns
that contains all possible 2d different rows (i.e. all possible binary numbers with d digits).
The above forbidden configuration implies that there is no submatrix with 4 columns or
more that contains all possible rows, hence the VC-dimension of P is at most 3. By the well
known Sauer’s Lemma [27], this means that there are O((k − 1)3) = O(k3) distinct rows.
This is the entire proof.

Limitations of the original proof. It remains an open problem whether the number of
distinct patterns in planar graphs is Θ(k3) or less (there is a simple Ω(k2) lower bound).
We do know however that there is no hope of improving Θ(k3) using the VC-dimension
argument: Consider the following set of sequences over {−1, 1}k−1:{

(−1)x1 ◦ 1x2 ◦ (−1)x3 ◦ 1k−1−x1−x2−x3 | x1 + x2 + x3 < k
}

There is no pair of sequences in this set that contains the forbidden (1, −1, 1, −1), (−1, 1, −1, 1)
configuration, and yet its cardinality is Θ(k3). This means that any improvement to the
O(k3) bound on the number of distinct patterns in planar graphs would have to further

3 This transformation was suggested by Li and Parter in their STOC’19 talk.
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exploit structural properties of planar graphs. In fact, even in the restricted family of Halin
graphs, where we know that there are only Θ(k2) distinct patterns (see Appendix A), the
VC-dimension argument is limited to proving O(k3).

Our results and technique. We develop a new technique for analyzing and encoding the
structure of patterns in a planar graph using bisectors. The bisector βi associated with vertex
si is a simple cycle in the dual graph such that all (primal) vertices on the same side of βi

have the same i’th bit in their patterns. We show that any two bisectors are arc-disjoint.
This implies the following lemma:

▶ Lemma 2. The patterns of every two adjacent vertices in G differ by at most two bits.

We then show how to use this property to obtain the following compression (recall that
p# denotes the number of distinct patterns in G):

▶ Theorem 3. There is an Õ(p# + k + |T |) space compression of the Okamura-Seymour
metric with Õ(n) construction time and Õ(1) query time. Moreover, for the special case
where the vertices of T induce a connected component in G, the space is Õ(k + |T |).

By plugging p# = O(k3) from Theorem 1 (and the trivial compression that stores all
T × S distances) we get an Õ(min{k3 + |T |, k · |T |}) compression (i.e. a factor k improvement
over Li and Parter). Moreover, for the special case where the vertices of T induce a connected
component in G, we obtain an optimal Õ(|T | + k) space encoding. Recall that, prior to our
work, this bound was only known (using the Unit-Monge property) when the vertices of T

all lie (not necessarily consecutively) on a single face [1]. In fact, even in such setting, our
method gives Õ(|T | + k). Thus, our method strictly dominates the one based on Unit-Monge.

An additional benefit of working with bisectors is that they can be used to bound the
number p# of distinct patterns. We show that every two bisectors can cross only O(k) times.
Our proof relies not only on the planar structure, but also on the fact that the distance
between any two vertices of S is bounded by k (this property is not used in the VC-dimension
argument). The set of all bisectors partitions the plane into regions. All (primal) vertices in
the same region have the same pattern because they all lie on the same side of every bisector.
Since there are O(k2) pairs of bisectors, and each pair crosses O(k) times, there are only
O(k3) regions (and hence only O(k3) distinct patterns). This provides an alternative proof
of Theorem 1. We believe that our new technique may prove useful in settling the question
of the number of distinct patterns in a planar graph. In particular, it may be that a similar
argument that uses stronger structural properties will be able to show that the partition
induces only O(k2) regions. We demonstrate this potential of our technique by proving such
a bound for a family of graphs that includes Halin graphs:

▶ Theorem 4. The number of distinct patterns over all vertices of a Halin graph is O(k2).
This bound is tight.

In contrast, the VC-dimension argument is limited to proving O(k3), even on Halin graphs.

2 Preliminaries

Let G = (V, E) be an unweighted, undirected planar embedded graph. We prefer to think of
G as a directed planar graph with a set of arcs A, such that there is a pair of arcs uv, vu

(embedded on the same curve) for every edge {u, v} ∈ E. We refer to u and v as the tail and
head of uv, respectively. We refer to uv as the reverse of vu, or simply rev(vu). However, we
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use the term edge whenever the orientation is not important or when we refer to any of the
arcs (possibly both). We denote by Pu,v an arbitrary directed shortest path from u to v. For
i < j we denote by S[i, j] a path (along the infinite face) si − si+1 − · · · − sj . We extend the
definition of rev(·) to paths. We denote by P [w, y] the subpath of P between vertices w and
y. We similarly use P (w, y], P [w, y), and P (w, y) to denote whether the subpath includes
the corresponding endpoint(s) or not. We use ◦ to denote a concatenation of two paths. Let
C be a directed non-crossing cycle in G. We denote by left(C) and right(C) the subgraphs
of G that consist of all edges, vertices and faces that are lying to the left and right of C,
respectively. The arcs of C and their reverses are in both left(C) and right(C).

Figure 2 An example of two directed paths P and Q that cross at the crossing part R.

Let P and Q be directed paths or cycles. We say that they cross at subpath R if, when
ignoring their orientation: (1) R is a proper (not a prefix or suffix) subpath of both P and Q,
and (2) The edges of Q that follow and precede R are in different sides of P . See Figure 2.
We refer to R as a crossing part of P and Q.

The dual graph of G is denoted by G∗ = (V ∗, E∗). Again, we think of G∗ as a directed
graph with a set of arcs A∗, defined as follows. For every arc uv ∈ A, there is a corresponding
arc (uv)∗ ∈ A∗ such that the tail and head of (uv)∗ are the faces that lie to the right and to
the left of uv, respectively. We note that we slightly abuse the notation here, since the dual
of (uv)∗ is rev(uv) (and not uv). For B ⊆ A, let B∗ = {(uv)∗ | uv ∈ B}. For a cut X ⊆ V ,
let δ(X) = {uv ∈ A | u ∈ X, v ∈ V \ X}. For a cycle C∗ in the dual graph we say that v ∈ V

is in left(C∗) (resp. right(C∗)) if the face of G∗ that corresponds to v is in left(C∗) (resp.
right(C∗)).

3 A Bisector-Based Approach to the Okamura-Seymour Compression

In this section we present our new proof of Theorem 1 and the proofs of Lemma 2 and
Theorem 3. Our main tool is the use of simple dual cycles that we call bisectors. In Section 3.1
we define bisectors, and prove that they are arc-disjoint and that this implies Lemma 2. In
Section 3.2 we use it to prove Theorem 3. In Section 3.4 we show that every two bisectors
can cross at most O(k) times (this is the most technical proof of the paper). In Section 3.3
we show why this property implies a partition of the graph into O(k3) regions such that all
vertices belonging to the same region have the same pattern (thus proving Theorem 1).

3.1 Bisectors
For 1 ≤ i ≤ k − 1, define the cut Ai = {v ∈ V | pv[i] = −1}. Since we assume the patterns
are over {−1, 1}, V \ Ai = {v ∈ V | pv[i] = 1}. We define the bisector βi = δ(Ai)∗. Namely,
βi consists of all arcs (uv)∗ ∈ A∗ such that pu[i] = −1 and pv[i] = 1. Moreover, every edge
{u, v} ∈ E such that pu ̸= pv belongs to some bisector (possibly more than one). By cut-cycle
duality, if the induced subgraphs of Ai and V \ Ai are both connected, then βi is a directed
simple cycle in the dual graph. The next lemma implies that both induced subgraphs of Ai

and V \ Ai are connected.

ISAAC 2022
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Figure 3 The bisector βi and its corresponding cut Ai.

▶ Lemma 5. For any u ∈ Ai (resp. V \ Ai), the vertices of Pu,si+1 (resp. Pu,si) are in Ai

(resp. V \ Ai).

Proof. Assume that u ∈ Ai (the proof of the other case is symmetric). Let v be any vertex
of Pu,si+1 and assume for the sake of contradiction that v ∈ V \ Ai. By the definition of
Ai and V \ Ai, we have that d(u, si) = d(u, si+1) + 1 and d(v, si+1) = d(v, si) + 1. By the
triangle inequality, we get the following contradiction:

d(u, si) = d(u, si+1)+1 = d(u, v)+d(v, si+1)+1 = d(u, v)+d(v, si)+2 ≥ d(u, si)+2. ◀

By the above lemma, any two vertices u, v ∈ Ai (resp. V \Ai) are connected in the induced
subgraph of Ai (resp. V \ Ai) by the path Pu,si+1 ◦ rev(Pv,si+1) (resp. Pu,si

◦ rev(Pv,si
)).

This yields the following corollary.

▶ Corollary 6. βi is a directed simple cycle in the dual graph.

We note that the above corollary implies that for any face f , every bisector contains at
most two arcs incident to f . This shows that there are only O(k) total bit changes between
patterns as we go along the vertices of a face f .

Another useful corollary comes from the fact that any edge whose dual is in βi contains
endpoints that are both in Ai and V \ Ai. Therefore:

▶ Corollary 7. For any u ∈ Ai (resp. u ∈ V \ Ai), the dual edges of Pu,si+1 (resp. Pu,si
) are

not in βi.

Note that βi has two arcs incident to f∞, one of them being (si+1si)∗. We think of (si+1si)∗

as the first arc of βi. See Figure 3. The following lemma shows that bisectors are arc-disjoint.

▶ Lemma 8. Every pair of bisectors βi, βj are arc-disjoint.

Proof. Assume for contradiction that arc (uv)∗ appears both in βi and in βj . By definition,
u belongs to Ai and Aj , and v belongs to V \ Ai and V \ Aj . We first prove that under
our assumption, either Pu,si+1 intersects with Pv,sj

or Pu,sj+1 intersects with Pv,si
. To see

why, first note that since Pv,si and Pv,sj are shortest paths, we can choose them to follow a
common maximal-length prefix Pv,si

[v, w] = Pv,sj
[v, w] for some w, and they do not intersect

again after w. Consider the directed cycle C = rev(Pw,sj ) ◦ Pw,si ◦ S[i, j] (see Figure 4).
Notice that by our choice of Pv,si

and Pv,sj
and by the fact that S[i, j] lies on the infinite

face, C is not necessarily simple but it does not self-cross. We have two cases:
Case 1: u ∈ left(C)\C. Since si+1 ∈ right(C) then (by the Jordan curve theorem and the fact

that all vertices of S lie on the infinite face) Pu,si+1 must intersect with rev(Pv,sj
) ◦ Pv,si

.
However, by Lemma 5, Pu,si+1 cannot intersect with Pv,si , therefore it intersects with
rev(Pv,sj

) (and hence with Pv,sj
).



S. Mozes, N. Wallheimer, and O. Weimann 27:7

Case 2: u ∈ right(C). Notice that sj+1 ∈ left(C). If sj+1 is in Pv,si then Pu,sj+1 intersects
with Pv,si

and we are done. Otherwise, since sj+1 is not in Pv,sj
by Lemma 5, then

sj+1 ∈ left(C)\C. But then again (by the Jordan curve theorem) rev(Pu,sj+1) (and hence
Pu,sj+1) must intersect with rev(Pv,sj ) ◦ Pv,si . However, by Lemma 5, Pu,sj+1 cannot
intersect with rev(Pv,sj

), therefore it intersects with Pv,si
.

Figure 4 The two cases in the proof of Lemma 8. Case 1 on the left. Case 2 on the right. right(C)
is shaded. For clarity, v = w and C is a simple cycle in this example.

We can therefore continue under the assumption that Pu,si+1 and Pv,sj
intersect at a

vertex x (the other case is symmetric). By the triangle inequality:

d(u, sj+1) ≤ d(u, x) + d(x, sj) − 1
d(u, x) + d(x, si+1) ≤ d(u, v) + d(v, si) − 1
d(v, si) ≤ d(v, x) + d(x, si+1) − 1
d(v, x) + d(x, sj) ≤ d(v, u) + d(u, sj+1) − 1.

Since d(u, v)=d(v, u)=1, summing these inequalities we get the contradiction 0 ≤ −2. ◀

The above lemma shows that two bisectors cannot share an arc. Note however that it is
still possible that a bisector contains reversed arcs of another bisector. This proves Lemma 2.

3.2 A proof of Theorem 3
We begin by describing how to compute all the bisectors of the graph and report their
arcs in Õ(n) time. We split every edge {si, si+1} by adding a dummy vertex yi and edges
{si, yi}, {yi, si+1} of weight 1

2 . Consider a shortest path tree Ti rooted at yi. Notice that the
arcs of βi which are not incident to f∞, are the duals of arcs whose tail is in the subtree
rooted at si+1 and head is in the subtree rooted at si. In the interdigitating tree of Ti (i.e.,
the tree in the dual graph whose edges are the duals of the edges not in Ti), they are precisely
the fi-to-f∞ path without the last arc, where fi ̸= f∞ is the face incident to {si, si+1} in
G. We can therefore run the MSSP algorithm of Klein [22] in Õ(n) time, and report for
every 1 ≤ i ≤ k − 1 all the arcs of βi in Õ(|βi|) time. To report the two arcs of βi which are
incident to f∞, one of them is trivially (si+1si)∗ and the other one is determined by last arc
of the above fi-to-f∞ path. Since by Lemma 8 the arcs of bisectors are disjoint, this takes
time Õ(n +

∑k−1
i=1 |βi|) = Õ(n) time. We label every edge {u, v} ∈ E by the (at most two)

bisectors that use (uv)∗ and (vu)∗. I.e., the bits that change between pu and pv.
We next describe the compression scheme. Recall that, by storing d(v, s1) for every v ∈ T ,

a query d(v, si) (with v ∈ T and si ∈ S) boils down to extracting pv and computing its
(i − 1)’th prefix-sum. Let T be a spanning tree of G. Label each edge {u, v} of T by the (at

ISAAC 2022
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most two) bits that change between the patterns of u and v. Note that there could be many
(potentially Ω(n)) nodes of T that correspond to the same pattern. In order to decrease the
size of T to be p# (the number of distinct patterns in G), we root T at some arbitrary node
u. Then, for every two nodes v, w of T s.t pv = pw (and w.l.o.g. v is not a descendent of
w) we remove the node w and turn all it’s children to be children of v (their edge labels
remain the same). We repeat this process until the size of the tree is p#. We denote the
resulting tree by T ′. Let Q be an Euler-tour of T ′ starting from the root u. Consider the
patterns of the nodes as we go along Q, starting from pu. In each step, the pattern only
changes in at most two bits (according to the edge labels). Therefore, we can maintain
all these O(|Q|) = O(p#) versions of the pattern using a persistent [11] data structure for
prefix-sum (e.g., using persistent segment trees [3]). Such a data structure supports both
updates and prefix-sum queries to any version in Õ(1) time and uses Õ(|Q| + k) = Õ(p# + k)
space. Finally, for every vertex v ∈ T let qv be a node in Q whose corresponding pattern is
pv. We store a pointer from v to the version of the persistent data structure at qv, using
additional Õ(|T |) bits overall.

We now give a randomized Õ(n) time algorithm for constructing T ′ (and hence the
compression). An arbitrary spanning tree T can be computed in O(n) time. Assume that
every edge {w, v} of T is labeled by the (at most two) bits that change between pw and
pv. Let us compute the pattern of the root u of T with a single-source shortest-paths
computation in G. We also compute the Karp-Rabin fingerprint [20] ϕ(pu) of pu. Such
fingerprints are appealing because: (1) for any pw ≠ pv, we have that ϕ(pw) ̸= ϕ(pv) with
high probability, and (2) given ϕ(S1) and ϕ(S2) of two strings S1, S2 we can compute in O(1)
time the fingerprint of the concatenation ϕ(S1 ◦ S2). Thus, if we maintain a complete binary
tree on top of the pattern where each node contains the fingerprint of its subtree (and in
particular, the root contains the fingerprint of the entire pattern), then we can update this
tree in O(log k) time after changing one or two bits in the pattern.

We maintain the fingerprints in a dictionary initially containing only ϕ(pu). We process
the nodes of T starting from u, maintaining a queue of next-to-visit nodes. When we process
a node v, we compute ϕ(pv) from the fingerprint of v’s parent, by flipping the bits according
to the edge label (in O(log k) time). We then try to add ϕ(pv) to the dictionary. If we find a
collision with some vertex w (namely, ϕ(pv) = ϕ(pw)) then we delete v from T , and set the
children of v to be children of w in T . In any case, we add the children of v to the queue so
they will be processed later. Notice that a node is visited only after all its ancestors have
been visited. Therefore, we can always compute its fingerprint and we never move children
from a vertex to its descendent, so T remains a tree. In addition, the parent of every node
changes or gets deleted at most once, hence the running time is Õ(n). Overall, in Õ(n) time
we construct T ′ and the dictionary (both of size p#).

In the special case where the vertices of T induce a connected component in G, we can
skip the first part of the algorithm and simply take a path Q that traverses only the
vertices of T . The rest of the construction remains the same and since |Q| = O(|T |), the
size of the compression is Õ(|T | + k).

In the special case where the vertices of T all lie on a single face (but not necessarily
consecutively), let Q be a path that visits all the vertices of the face in clockwise order.
By Corollary 6, the total number of bit changes between patterns of consecutive vertices
along Q is O(k). Therefore, the number of patterns encountered is O(k) and hence we
get an Õ(|T | + k) compression for this case as well.

This completes the proof of Theorem 3.
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3.3 The bisector graph and the pattern graph

The bisector graph GB is the subgraph of G∗ composed of the union of all the bisectors. The
faces of GB represent the patterns of G in the following way.

▶ Lemma 9. For every u, v ∈ V , if u and v are embedded inside the same face f of GB,
then pu = pv.

Proof. Notice that GB is a connected graph because all the bisectors are incident to f∞.
Hence, f is a simple cycle in G∗. Let Gf be the subgraph of G embedded inside the face f .
Since there are no bisector edges embedded inside f , then in Gf there is no pair of adjacent
vertices that have different patterns. Since f is a simple cycle, then by cut-cycle duality
Gf is a connected subgraph. Therefore, there exists a u-to-v path in Gf , and every pair of
adjacent vertices in this path have the same pattern. Hence pu = pv. ◀

By the above lemma, every pattern p of G corresponds to a unique nonempty subset of
faces of GB. More precisely, a pattern p corresponds to all the faces of GB such that the
vertices of G embedded in these faces have pattern p. In particular, the number of faces
of GB is an upper bound on the number of distinct patterns in G. Therefore, if we could
prove that GB has O(k3) faces we would be done. Unfortunately, this is not the case. There
can be as many as Ω(n) faces of GB that correspond to the same pattern (see Figure 5). To
tackle this, we transform GB into a new graph GP (called the pattern graph) that has only
O(k3) faces and whose faces still represent all the distinct patterns of G.

Figure 5 The shaded faces all correspond to the same pattern (assuming no other bisector crosses
or separates them). They are formed when the two bisectors either cross each other or just touch
(intersect without crossing). We will later see that two bisectors can cross each other at most O(k)
times, but, they can touch Ω(n) times, creating Ω(n) faces that correspond to the same pattern.

The pattern graph GP is obtained by applying on GB the following two-phase procedure:
(1) A Peel phase: Recall that while Lemma 8 says that every two bisectors are arc-disjoint, it

is still possible that one bisector contains reversed arcs of another. In the peel phase, we
re-embed the bisectors so that no bisector contains reversed arcs of another bisector. After
the peel phase, crossings and touchings occur only at vertices (rather than subpaths).

(2) A Merge phase: In the merge phase, we merge faces that correspond to the same pattern
and share a common vertex.
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Peel Phase. For every two bisectors β and β′, consider the set of maximal-length subpaths
R, such that R is a subpath of β and rev(R) is a subpath of β′. If the arc of β that follows
R is in right(β′) (resp. left(β′)), then we re-embed every arc of R on a new curve lying to
the right (resp. left) of its reverse. See Figure 6. Note that the peel phase does not create
any new crossings between β and β′.

Figure 6 Before (left) and after (right) a peel phase. In this example, R is a single arc, and the
arc of β that follows R is in left(β′).

Merge Phase. For every vertex g ̸= f∞ of a bisector β, if any other bisector crosses β at g

then we do nothing. Otherwise, we split g into two copies. All the arcs in left(β) that are
incident to g are connected to one copy, and all the arcs in right(β) that are incident to g

are connected to the other copy. Finally, we replace the arcs of β that are incident to g (say
fg and gh) by a single arc fh. See Figure 7. Note that if g is not incident to any bisector
other than β, then the merge phase simply contracts the arc gh. We repeat this process until
there are no such bisector pairs in the graph.

Figure 7 Before (left) and after (right) a merge phase. The (shaded) face g′ is obtained by
merging faces h′ and f ′.

We now show that the above two-phase procedure maintains the relation between patterns
in G and faces in GP . Namely, that every pattern in G corresponds to a unique nonempty
subset of faces of GP . To this end, we extend the definition of patterns to faces of GB. This
step is necessary since the peel phase creates faces that do not correspond to primal vertices.

We define the pattern of a face f of GB, denoted pf , to be the length k − 1 vector where
pf [i] = −1 (resp. pf [i] = 1) if f is a face in left(βi+1) (resp. right(βi+1)) in GB. The definition
remains the same for any graph we obtain from GB during the two-phase procedure. The
following two propositions show that this definition is consistent with the original definition
of patterns (of vertices).

▶ Proposition 10. Let v ∈ V be a vertex embedded inside a face f of GB. Then pv = pf .

Proof. Let 0 ≤ i ≤ k − 2. If pf [i] = 1 then f is in right(βi+1) by definition. Since GB is
a subgraph of G∗, then in G∗ v is also embedded in right(βi+1). Hence, v ∈ V \ Ai and
therefore pv[i] = 1. A symmetric argument shows that if pf [i] = −1 then pv[i] = −1. ◀

By Proposition 10, all the faces of GB that correspond to a pattern pv have the same face
pattern. Notice that the peel phase does not change the patterns of existing faces. It can
only add new faces to the graph, but no vertex of G is embedded in any of these new faces.
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Hence, the relation is preserved after the peel phase. Next we show that after a merge step,
every pattern still corresponds to a unique subset of faces (i.e., we show that we do not merge
faces that corresponded to different patterns). Consider a single merge step happening at g

(as illustrated in Figure 7). Denote by f ′ (resp. h′) the face lying to the left of fg (resp. gh).
Namely, f ′ and h′ are the faces that get merged (a symmetric argument holds when they lie
to the right of fg and gh). Let g′ denote the face obtained by merging f ′ and h′.

▶ Proposition 11. pf ′ = ph′ = pg′ .

Proof. Since no bisector crosses β at g, then fg and gh belong to the same side of every
bisector. This, together with the fact that fg, gh, and their reverses do not belong to any
other bisector, implies that f ′ and h′ also belong to the same side of every bisector. Hence
pf ′ = ph′ . Now consider the arc fh after the merge. Since f and h belong to the same side of
every bisector as fg (and gh), then g′ also belongs to the same side of every bisector, hence
pf ′ = ph′ = pg′ . ◀

By proposition 10, if f ′ or h′ are faces that correspond to pv then they do not correspond
to any pu ̸= pv. By Proposition 11, we can set g′ to correspond to pv, and the set of faces
corresponding to every pattern remains unique. This yields the following corollary.

▶ Corollary 12. Every pattern of G corresponds to a unique subset of faces of GP .

Finally, we show that the number of faces in GP depends linearly on the number of bisector
crossings. Let t be the total number of bisector crossings in GP . That is, t is the sum of the
number of crossings between all pairs of bisectors.

▶ Lemma 13. The number of faces in GP is O(t + k).

Proof. By Euler’s formula, it suffices to show that the number of arcs in GP is O(t + k).
For every arc fg in GP , where neither f nor g is f∞, the arc fg belongs to some bisector
β. Moreover, there must exist some other bisector that crosses β at f . Otherwise, the arc
would have been removed in the merge phase. Consider all the bisectors that cross β at
f in a clockwise order around f starting at fg. Let β′ be the one following fg. Then we
charge fg to the crossing of β and β′ at f . Notice that at most two arcs will be charged
to this crossing of β and β′ (the arc fg and the arc of β′ whose tail is f). Overall, we have
charged O(t) arcs. The only arcs that did not get charged are the 2(k − 1) arcs incident to
f∞. Therefore, the number of arcs in GP is O(t + k). ◀

In Section 3.4 we proved that every pair of bisectors can cross at most O(k) times. Since
there are O(k2) pairs of bisectors, the total number of crossings is then t = O(k3), which by
Corollary 12 and Lemma 13 implies Theorem 1.

3.4 Two bisectors can cross at most O(k) times
In this section we prove that every pair of bisectors can cross at most O(k) times. Let βi

and βj be two bisectors in G∗ that cross each other at least once. Let R1, R2, . . . Rr be their
crossing parts that do not contain f∞, sorted by their order of appearance along βi. We note
that since βi and βj are simple cycles, the crossing parts must be disjoint. In Lemma 16
we show that the crossing parts appear in reverse order along βj , and in Lemma 17 we use
this fact to prove that the number of crossings r is at most O(k). We begin by defining an
important configuration of bisectors and shortest paths.
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Figure 8 A configuration of bisectors βi, βj and shortest paths Pu,si+1 , Pv,sj that must intersect.
right(C∗) is shaded.

▶ Lemma 14. Let C∗ = βj [f∞, f ]◦rev(βi[f∞, f ]) be a simple cycle, and let u ∈ Ai, v ∈ V \Aj

(resp. u ∈ V \ Ai, v ∈ Aj) be two vertices in left(C∗) (resp. right(C∗)). Then Pu,si+1 and
Pv,sj (resp. Pu,si and Pv,sj+1) must intersect at some vertex x.

Proof. We focus on the case where u ∈ Ai and v ∈ V \ Aj are vertices in left(C∗) (the proof
of the other case is symmetric). See Figure 8. We assume that G and G∗ are embedded on
the same surface, such that for every wy ∈ A, the curves of wy and (wy)∗ intersect in their
middles at a single point p on the surface.

We refer to the two parts of the curve of wy as (w − p) and (p − y). For a path Q that
contains arc wy, we slightly abuse notation and use Q[·, p] and Q[p, ·] to denote a prefix and
suffix of the curve of Q. In addition, we say that a path P of the primal graph crosses a
path Q of the dual graph, if P contains an arc wy whose dual or reversed dual is in Q. In
particular, it means that there exist a common point p (in the middle of wy), such that
(w − p) and (p − y) are on different sides of Q. Let pj be the point in the middle of sjsj+1,
and let pi be the point in the middle of sisi+1.

Notice that si+1, sj ∈ right(C∗)\C∗ by definition, and that v ∈ left(C∗)\C∗ by assumption
(and the fact that v is not part of C∗ because v is a primal vertex). Hence, Pv,sj

must cross
C∗. However, by Corollary 7 it cannot cross βj [f∞, f ], hence it must cross βi[f∞, f ]. This
means that there is a point q that is common to both Pv,sj

and βi[f∞, f ]. In particular, let
q be the last point along the curve of Pv,sj that is also along the curve of C∗. Notice that
Pv,sj

[q, sj ] ◦ (sj − pj) is a chord inside the cycle C∗. Similarly, there exists a point q′ along
the curve of Pu,si+1 such that Pu,si+1 [q′, si+1] ◦ (si+1 − pi) is a chord in C∗. The endpoints
of the chords appear in clockwise order along C∗ as (q, pi, pj , q′). It is well known that two
chords in such a configuration must intersect. Therefore, there exist a primal vertex x that
is common to both Pv,sj

[q, sj ] and Pu,si+1 [q′, si+1]. ◀

It is important to remark that Lemma 14 holds even when the cycle C∗ is a non-self-
crossing non-simple cycle. Namely, if C∗ intersects with itself, we let g be the first intersection
vertex in βi[f∞, f ], and define a cycle Ĉ∗ = βj [f∞, g] ◦ rev(βi[f∞, g]). Note that since βi

and βj are simple cycles, and by our choice of g, there are no intersections in Ĉ∗. Clearly,
we also have that v, u ∈ left(Ĉ∗). Thus, we apply the Lemma to Ĉ∗ instead of C∗.

▶ Corollary 15. Pv,sj
[v, x] (resp. Pu,si+1 [u, x]) contains an edge whose dual is in βi (resp.

βj).

We are now in the position to prove the two main lemmas of this section.
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Figure 9 Case 1 in the proof of Lemma 16. The dotted parts represent parts in which there may
be crossings. right(C∗) is shaded. In this example, P is crossed by βj [f∞, Ra] exactly twice.

▶ Lemma 16. Let βi and βj be two crossing bisectors. Let R1, R2, . . . Rr be their crossing
parts along βi. Then, the crossing parts along βj are reversed Rr, Rr−1, . . . R1.

Proof. We assume that i < j. For ℓ ≤ r, we say that βj enters Rℓ from left(βi) (resp.
right(βi)) if the arc of βj that precedes Rℓ is in left(βi) (resp. right(βi)). For brevity, we
assume that every Rℓ is a single vertex in V ∗. Finally, we assume without loss of generality
that sj is in left(βi) (the proof of the other case is symmetric).

Assume for the sake of contradiction that the order of appearance is not the reverse order.
Then there exists a pair of crossing parts Ra and Rb such that: (1) a < b, (2) Rb is the
crossing part following Ra in βj , and (3) a is minimal among such pairs. Consider the cycle
C∗ = βj [f∞, Ra] ◦ rev(βi[f∞, Ra]). Note that C∗ is non-crossing since if there exists Rc for
c < a that βj [f∞, Ra] crosses, then a wouldn’t be minimal. We have two cases:
Case 1: βj enters Ra from left(βi) (hence it enters Rb from right(βi)). Let (uv)∗ be the arc

of βj that follows Rb. We next show that v and C∗ form the configuration of Lemma 14,
in the special case of v = u.
First we show that v ∈ V \ Aj and v ∈ Ai. Note that v ∈ V \ Aj by definition, since v is
the primal vertex lying to the right of an arc of βj . Since (uv)∗ follows the crossing part
Rb, and since βj enters Rb from right(βi), then (uv)∗ ∈ left(βi) \ βi. Hence, v ∈ left(βi)
and therefore v ∈ Ai.
Next we show that v ∈ left(C∗). For this, we show that Rb ∈ left(C∗) \ C∗, hence the
arcs incident to Rb and their corresponding primal vertices are in left(C∗). Consider the
path P = βi[Ra, Rb]. The first arc of P is in left(C∗) by the case assumption. To show
that Rb ∈ left(C∗) \ C∗ we will show that P crosses the cycle C∗ an even number of
times. Notice that P does not cross βi[f∞, Ra] since βi is a simple cycle. It therefore
remains to show that P crosses βj [f∞, Ra] an even number of times (equivalently, we
show that βj [f∞, Ra] crosses P an even number of times). To this end, let us define a
cycle Ĉ∗ = P ◦ rev(βj)[Rb, Ra]. Notice that Ĉ∗ is non-crossing since Rb follows Ra in
βj . Notice that the first and last arcs of βj [f∞, Ra] are both in left(βi). Also notice that
right(Ĉ∗) is included in right(βi) (by the case assumption), therefore the first and last
arcs of βj [f∞, Ra] are in left(Ĉ∗). Hence, βj [f∞, Ra] crosses Ĉ∗ an even number of times.
Since βj [f∞, Ra] can only cross Ĉ∗ at P (as βj is a simple cycle), it must cross P an even
number of times.
We can thus apply Lemma 14, and conclude that Pv,sj

and Pv,si+1 intersect at vertex x,
and that Pv,si+1 [v, x] contains an edge whose dual is in βj (by Corollary 15). Since the
lengths of Pv,sj [v, x] and Pv,si+1 [v, x] are equal, Pv,si+1 [v, x]◦Pv,sj [x, sj ] is a shortest v-to-
sj path. However, since Pv,si+1 [v, x] contains an edge of βj , this contradicts Corollary 7.
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Figure 10 Case 2 in the proof of Lemma 16. The dotted parts represent parts in which there
may be crossings. left(C∗) is shaded. In this example, P is crossed by βj [f∞, Ra] exactly twice.

Case 2: βj enters Ra from right(βi) (hence it enters Rb from left(βi)). Let (uv)∗ be the arc
of βj that follows Rb. We next show that u and C∗ form the configuration of Lemma 14
(again, in the special case of u = v). By symmetric arguments to Case 1, we can show
that u ∈ Aj and u ∈ V \ Ai. We therefore only need to show that u ∈ right(C∗).
To show that u ∈ right(C∗), it suffices to show that Rb ∈ right(C∗) \ C∗ (hence the arcs
incident to Rb and their corresponding primal vertices are in right(C∗)). Consider the
path P = βi[Ra, Rb]. The first arc of P is in right(C∗) by the case assumption. To show
that Rb ∈ right(C∗) \ C∗, we will show that P crosses the cycle C∗ an even number of
times. Since P does not cross βi[f∞, Ra], we need to show that βj [f∞, Ra] crosses P an
even number of times (here is where the argument will differ from Case 1).
Let Ĉ∗ = P ◦ rev(βj)[Rb, Ra] be a non-crossing cycle. Let R be the first crossing between
βj [f∞, Ra] and βi. R exists and is not Ra by the assumption that sj ∈ left(βi), and by
the case assumption. Note that βj [f∞, R] does not cross βi (and hence does not cross P )
by definition of R, so it remains to show that the number of crossings between βj [R, Ra]
and P is even. Notice that, since sj ∈ left(βi), the first and last arcs of βj [R, Ra] are both
in right(βi). Also note that left(Ĉ∗) is contained in left(βi). Therefore, the first and last
arcs of βj [R, Ra] are in right(Ĉ∗). Hence, βj [R, Ra] crosses Ĉ∗ an even number of times.
Since it can only cross Ĉ∗ at P , then βj [R, Ra] crosses P an even number of times.
We can thus apply Lemma 14, and the contradiction follows similarly to Case 1. ◀

▶ Lemma 17. Two bisectors can cross at most k
2 + O(1) times.

Proof. We will prove that if two bisectors βi, βj cross r times then there exists a vertex
v ∈ V such that d(v, sj) − d(v, si+1) ≥ 2r − k

2 − O(1). Since the distance between any pair
of vertices along the infinite face is at most k

2 , then by the triangle inequality we have also
d(v, sj) − d(v, si+1) ≤ k

2 . Hence, we get 2r − k
2 − O(1) ≤ k

2 and the lemma follows.
Again, let us assume without loss of generality that sj is in left(βi) (the proof of the other

case is symmetric). For every ℓ < r, consider the cycle C∗
ℓ = βj [f∞, Rℓ] ◦ rev(βi[f∞, Rℓ]).

By the previous lemma, C∗
ℓ does not self-cross. For even (resp. odd) r − ℓ, let (uℓvℓ)∗ (resp.

(vℓuℓ)∗) be the arc of βj that follows Rℓ. See Figure 11. We assume that r − ℓ is even (the
odd case is symmetric).

We claim that C∗
ℓ , vℓ, vℓ+1 forms the configuration of Lemma 14. By definition of βj we

have that vℓ ∈ V \ Aj . Thus, it remains to prove that vℓ+1 ∈ Ai and that vℓ, vℓ+1 ∈ left(C∗
ℓ ).

By Lemma 16 and the assumption that sj ∈ left(βi), βj reaches Rℓ+1 from right(βi). Therefore,
(vℓ+1uℓ+1)∗ ∈ left(βi) \ βi. Hence, vℓ+1 is in left(βi) and therefore vℓ+1 ∈ Ai. To see that
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Figure 11 Two bisectors that cross r times and the vertices and shortest paths they induce.
Observe that vℓ is in right(βi) when r − ℓ is even, and otherwise in left(βi). right(C∗

ℓ ) is shaded.

vℓ, vℓ+1 ∈ left(C∗
ℓ ), note that by Lemma 16, (vℓ+1uℓ+1)∗ is in βj [f∞, Rℓ], hence vℓ+1 ∈ left(C∗

ℓ )
by definition (as βj [f∞, Rℓ] is part of C∗

ℓ ). Clearly, since βj enters Rℓ from right(βi) we also
have that (uℓvℓ)∗ ∈ left(C∗

ℓ ) and in particular vℓ ∈ left(C∗
ℓ ).

We can thus apply Lemma 14 and conclude that Pvℓ,sj
and Pvℓ+1,si+1 must intersect at

some vertex xℓ. In addition, we can conclude that Pvℓ−1,sj+1 and Pvℓ,si intersect at some
vertex xℓ−1, and that Pvℓ−2,sj

and Pvℓ−1,si+1 intersect at some vertex xℓ−2. Therefore, by
the triangle inequality and the assumption that patterns are binary, we have:

d(vℓ, xℓ) + d(xℓ, sj) ≤ d(vℓ, xℓ−1) + d(xℓ−1, sj+1) − 1
d(vℓ, xℓ−1) + d(xℓ−1, si) ≤ d(vℓ, xℓ) + d(xℓ, si+1) − 1
d(vℓ−1, xℓ−2) + d(xℓ−2, si+1) ≤ d(vℓ−1, xℓ−1) + d(xℓ−1, si) − 1
d(vℓ−1, xℓ−1) + d(xℓ−1, sj+1) ≤ d(vℓ−1, xℓ−2) + d(xℓ−2, sj) − 1.

Summing the above inequalities we get:

d(xℓ, sj) − d(xℓ, si+1) + 4 ≤ d(xℓ−2, sj) − d(xℓ−2, si+1). (1)

Let m ∈ {1, 2} be so that r − m is even. Let v = xm. By repeating Equation (1) we get:
d(xr−2, sj) − d(xr−2, si+1) + 4 ·

(
r
2 − O(1)

)
≤ d(v, sj) − d(v, si+1).

Since the distance between any two vertices along the infinite face is at most k
2 , it follows

that: − k
2 + 4 ·

(
r
2 − O(1)

)
≤ d(v, sj) − d(v, si+1) ≤ k

2 . Therefore r ≤ k
2 + O(1). ◀

4 Conclusions

In this work we developed a technique for analyzing the structure and number of distinct
patterns in undirected planar graphs. This technique leads to an improved Õ(p# + k + |T |)
space compression of the Okamura-Seymour metric, and to an optimal Õ(k+ |T |) compression
in the special case where the vertices of T induce a connected component in G. Moreover,
the technique leads to an alternative proof of the p# = O(k3) upper bound on the number
of different patterns.

We have shown that for the family of Halin graphs, the original proof technique using
VC-dimension is not tight, and that our approach easily proves the tight bound in this case.
Going back to planar graphs, we were unable to come up with constructions of families of
planar graphs that have p# = ω(k2) patterns. We therefore make the following conjecture.
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▶ Conjecture. The number of distinct patterns over all vertices of a planar graph is O(k2).

Note that, if the above conjecture turns out to be true, then our compression would
automatically improve further to Õ(min{k2 + |T |, k · |T |}) (i.e. by an additional factor
of k). We hope that the tools we have developed in this work will be useful in proving this
conjecture.
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A A Θ(k2) Proof for Halin Graphs

In this section we prove Theorem 4. Namely, we show a tight Θ(k2) bound on the number of
patterns in a family of graphs that includes Halin graphs. The Halin graph family (see [28]
for history and properties) is a restricted family of planar graphs. A Halin graph is obtained
from an embedded tree T with no degree-2 vertices by attaching a cycle C to its leaves in
their order of appearance according to the embedding. The cycle is then the boundary of
the infinite face, and we denote its size by k. We will consider a more general family than
Halin graphs. Namely, we allow the tree T to have degree 2 vertices, and we allow the cycle
C to contain vertices that are not in T . Such graphs can be seen as subdivided Halin graphs.
We will refer to such graphs as S-Halin graphs. See Figure 12.

Figure 12 An S-Halin graph whose matrix of patterns has VC-dimension 3.

In this section, we show that the number of distinct patterns in S-halin graphs is only
O(k2), and that this bound is tight. In contrast, we show that the VC-dimension argument
is limited to proving O(k3) even on such graphs.
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▶ Lemma 18. Let G = T ∪ C be an S-Halin graph, obtained by identifying the leaves of
T with a subset of vertices of a cycle C. If the size of C is k then the number of distinct
patterns in G is O(k2).

Proof. Notice that the total number of vertices of G with degree larger than 2 is O(k) (and
hence, the number of faces in G is also O(k)). This is because C is of size k and T contains
at most k leaves (and hence O(k) vertices with degree larger than 2). Now consider the dual
graph G∗ = (V ∗, E∗). Since every bisector is a simple cycle in G∗, and since |V ∗| = O(k),
then the number of arcs in the graphs GB and GP is O(k2). Therefore, by Corollary 12 the
number of distinct patterns in G is O(k2). ◀

We next show that it is not possible to prove Lemma 18 using the VC-dimension argument.
Namely, consider the S-Halin graph of Figure 12 and let P be the matrix whose rows are the
patterns of the graph (recall that each pattern is in {−1, 1}k−1).

▶ Proposition 19. The VC-dimension of P is 3.

Proof. Consider the following submatrix of P whose rows correspond to the vertices v0, . . . , v7
and columns correspond to the edges e1, e2, e3:

e1 e2 e3



v0 1 1 1
v1 1 1 −1
v2 1 −1 1
v3 1 −1 −1
v4 −1 1 1
v5 −1 1 −1
v6 −1 −1 1
v7 −1 −1 −1

Since it contains all possible rows, the VC-dimension of P is at least 3. ◀

It is important to remark that we can generalize the example of Figure 12 to any large
enough k, by adding vertices along the infinite face in the part between v7 and v0 (clockwise).

So far we have seen that S-Halin graphs have at most O(k2) distinct patterns (Lemma 18),
and that the VC-dimension argument is limited to showing O(k3) distinct patterns (Proposi-
tion 19). To conclude this section, we prove that the O(k2) bound is tight:

▶ Lemma 20. There exists an S-Halin graphs with Ω(k2) distinct patterns.

Proof. We assume that k is even and denote k′ = k/2. We construct the tree T by taking
the union of k′ + 1 simple paths P0, P1, . . . , Pk′ where every Pi is of length i and all Pi’s
originate from a common vertex v0,0. Namely, Pi = (vi,0 − vi,1 − · · · − vi,i), and vi,0 = vj,0
for every i ̸= j. We choose the embedding of T so that in a clockwise tour around v0,0, the
order of appearance of the paths is (P1, P2, · · · , Pk′).

We define an additional vk′,k′-to-v1,1 path of length k′ + 1 denoted Q = (vk′,k′ − q1 −
q2 − · · · − qk′ − v1,1). Let C be the cycle Q ◦ (v1,1 − v2,2 − · · · − vk′,k′). Let G = T ∪ C. See
Figure 13. Note that |C| is 2k′ = k.

Consider the patterns of G, when we choose the first vertex to be v1,1, the second v2,2,
etc. Let i ∈ [k′], j ∈ [i − 1]. We claim that the pattern of vi,j is:

pvi,j
= 1i−j−1 ◦ (−1)j ◦ 1k′+j+1−i ◦ (−1)k′−j−1 (2)
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Figure 13 The S-Halin of Lemma 20 for k = 8.

To see why, consider the vi,j-to-vt,t distances for t ≤ i. Notice that for every 1 ≤ t ≤ i − j

we have d(vi,j , vt,t) = j + t and for every i − j ≤ t ≤ i we have d(vi,j , vt,t) = 2i − j − t. In
particular, they are equal at t = i − j. Therefore, the pattern of all the edges between v1,1
and vi,i is 1i−j−1 ◦ (−1)j .

Now consider the vi,j-to-vt,t distances for i ≤ t ≤ k′. Notice that a shortest vi,j-to-vt,t

path will never use Q and instead will go through (vi,i − vi+1,i+1 − · · · − vt,t). Namely, the
distance is d(vi,j , vt,t) = t − j. Therefore, the pattern of all the edges between vi,i and vk′,k′

is 1k′−i.
Finally, consider the vi,j-to-qt distances for 1 ≤ t ≤ k′. For every 1 ≤ t ≤ j + 1 we have

d(vi,j , qt) = k′ + t − j and for every j + 1 ≤ t ≤ k′ we have d(vi,j , qt) = k′ + j + 2 − t. In
particular they are equal at t = j + 1. Therefore the pattern of all the edges between vk′,k′

and q′
k is 1j+1 ◦ (−1)k′−j−1. Overall, we get that pvi,j

is as in Equation (2).
Notice that pvi,j

is unique for every different i ∈ [k′], j ∈ [i − 1]. Since the number of such
vertices is Ω(k′2) = Ω(k2), there are Ω(k2) distinct patterns in G. ◀
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